GUIA DOCENTE DE LA ASIGNATURA

EDP DE TRANSPORTE EN TEORÍA CINÉTICA Y MECÁNICA DE FLUIDOS

MÓDULO	MATERIA	ASIGNATURA	CURSO	SEMESTRE	CRÉDITOS	CARÁCTER
Métodos y Modelos Matemáticos en Ciencia e Ingeniería	EDP de transporte en teoría cinética y mecánica de fluidos	EDP de transporte en teoría cinética y mecánica de fluidos	1	1	6ECTS	Optativo
PROFESOR(ES)			DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS (Dirección postal, teléiono, correo electrónico, etc.)			
Óscar Sánchez Romero Juan Soler Vizcaíno			Despacho 56 (O.S.) y 45 (J.S.) Departamento de Matemática Aplicada Facultad de Ciencias Campus Universitario de Fuentenueva 18071 Granada Teléfonos: 958242963 (O.S.) y 958243287 (J.S.) ossanche@ugr.es, jsoler@ugr.es			
Juan Soler Vize	anno		HORARIO DE TUTORÍAS			
			Véase la información actualizada en la web del departamento http://www.ugr.es/local/mateapli/			
MÁSTER EN EL QUE SE IMPARTE			OTROS MÁSTERES A LOS QUE SE PODRÍA OFERTAR			
Física y Matemáticas - FisyMat			Máster en matemáticas Máster doble MAES-FisyMat Máster en Física: Radiaciones, Nanotecnología, Partículas y Astrofísica			
PRERREQUISITOS Y/O	O RECOMENDACIONES (S	i procede)				
		ellos que posean unos co ferenciales y en espacios			os a nivel de L	icenciatura,

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL MÁSTER)

- 1) Modelos de transporte. Leyes de conservación (fluidos, tráfico, ...), modelos cinéticos (ecuaciones de Liouville, Vlasov, Boltzmann).
- 2) Ecuaciones de transporte lineales. Problemas de valores iniciales. Ecuaciones de primer orden con campos regulares y singulares. Ecuaciones de las características. Sistemas dinámicos asociados.
- 3) Introducción a las leyes de conservación escalares no lineales. Condiciones de Ranquine-Hugoniot y condiciones de admisibilidad de singularidad.
- 4) Introducción a las ecuaciones de la Mecánica de Fluidos.
- 5) La ecuación de Liouville en teoría cinética. Algunos modelos derivados: ecuación de transporte libre, sistemas de Vlasov-Poisson y Vlasov-Maxwell, ecuaciones de Boltzmann y Vlasov-Poisson-Fokker-Planck.
- 6) Generalidades sobre el sistema de Vlasov Poisson. Invarianzas y cantidades conservadas. Estimaciones a priori, control de momentos. Formulación débil, lemas de momentos y existencia. Comportamiento asintótico en el caso repulsivo: la ley pseudoconforme.
- 7) Estabilidad orbital de galaxias. Dispersión en sistemas gravitacionales. Polítropos.
- 8) Estudio de los modelos acoplados de Vlasov-Maxwell. Cinética relativista.

COMPETENCIAS GENERALES Y ESPECÍFICAS DEL MÓDULO

Competencias generales

CG3: Presentar públicamente los resultados de una investigación o un informe técnico, comunicar las conclusiones a un tribunal especializado, personas u organizaciones interesadas, y debatir con sus miembros cualquier aspecto relativo a los mismos.

CG5: Adquirir la capacidad de desarrollar un trabajo de investigación científica de forma independiente y en toda su extensión. Ser capaz de buscar y asimilar bibliografía científica, formular las hipótesis, plantear y desarrollar problemas y elaborar de conclusiones de los resultados obtenidos.

CG6: Adquirir la capacidad de diálogo y cooperación con comunidades científicas y empresariales de otros campos de investigación, incluyendo ciencias sociales y naturales.

Competencias específicas

CE1: Resolver problemas físicos y matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos.

CE2: Desarrollar la capacidad de decidir las técnicas adecuadas para resolver un problema concreto con especial énfasis en aquellos problemas asociados a la Modelización en Ciencias e Ingeniería, Astrofísica, Física y Matemáticas.

CE5: Saber obtener e interpretar datos de carácter físico y/o matemático que puedan ser aplicados en otras

ramas del conocimiento.

CE6: Demostrar la capacidad necesaria para realizar un análisis crítico, evaluación y síntesis de resultados e ideas nuevas y complejas en el campo de la astrofísica, física, matemáticas y biomatemáticas.

CE7: Capacidad para comprender y poder aplicar conocimientos avanzados de matemáticas y métodos numéricos o computacionales a problemas de biología, física y astrofísica, así como elaborar y desarrollar modelos matemáticos en ciencias, biología e ingeniería.

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

El alumno sabrá/comprenderá:

- El modelado de sistemas físicos de un gran número de partículas que interactúan, como pueden ser interacciones gravitacionales o electrostáticas.
- Aspectos de modelado mediante el estudio de distintos de núcleos de interacción que representen fenómenos de choque, coagulación, fragmentación o dispersión.
- Técnicas de análisis no lineal para el estudio del comportamiento cualitativo de soluciones de problemas originados en Teoría Cinética. Esto le permitirá identificar las diferencias cualitativas y de análisis entre modelos de dispersión y difusión.

El alumno será capaz de:

- Manejar con soltura literatura especializada en EDP's.
- Llevar a cabo un análisis crítico de un artículo científico que aborde temas relacionados con el curso.
- Defender en exposición pública las conclusiones de dicha revisión.

TEMARIO DETALLADO DE LA ASIGNATURA

Tema1: Modelos de transporte. Leyes de conservación (fluidos, tráfico, ...), modelos cinéticos (ecuaciones de Liouville, Vlasov, Boltzmann).

Tema 2: Ecuaciones de transporte lineales. Problemas de valores iniciales. Ecuaciones de primer orden con campos regulares y singulares. Ecuaciones de las características. Sistemas dinámicos asociados.

Tema 3: Introducción a las leyes de conservación escalares no lineales. Condiciones de Ranquine-Hugoniot y condiciones de admisibilidad de singularidad.

Tema 4: Introducción a las ecuaciones de la Mecánica de Fluidos.

Tema 5: La ecuación de Liouville en teoría cinética. Algunos modelos derivados: ecuación de transporte libre, sistemas de Vlasov-Poisson y Vlasov-Maxwell, ecuaciones de Boltzmann y Vlasov-Poisson-Fokker-Planck.

Tema 6: Generalidades sobre el sistema de Vlasov Poisson. Invarianzas y cantidades conservadas. Estimaciones a priori, control de momentos. Formulación débil, lemas de momentos y existencia. Comportamiento asintótico en el caso repulsivo: la ley pseudoconforme.

Tema 7: Estabilidad orbital de galaxias. Dispersión en sistemas gravitacionales. Polítropos.

Tema 8: Estudio de los modelos acoplados de Vlasov-Maxwell. Cinética relativista.

Temario práctico:

Seminarios impartidos por los alumnos en los que expondrán un trabajo de investigación relacionado con los contenidos de la asignatura.

BIBLIOGRAFÍA

- H. Brézis, Functional Analysis, Sobolev Spaces and Partial Di erential Equations. Springer, New York Dordrecht Heidelberg London Alianza Editoral, Madrid, 2011. Versión revisada de Analyse fonctionnelle, Masson, París. 1983.
- . R.R. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, Philadelphia, 1996.
- . P. D. Lax, Hyperbolic Partial Diferential Equations, Courant Lecture Notes in Mathematics, AMS, 2006.
- . A.J. Chorin, J.E. Marsden, A mathematical introduction to Fluid Mechanics, Springer-Verlag, New York, 1993.
- . C. Cercignani, The Boltzmann Equation and Its Applications. Springer-Verlag, New York, 1985.
- . B. Perthame, Transport Equations in Biology, Birkhäuser Verlag, Basel-Boston-Berlin, 2007.
- . C. Villani, A Review of Mathematical Topics in Collisional Kinetic Theory. Handbook of Mathematical Fluid Dynamics, Vol. I., 71-305, North-Holland, Amsterdam, 2002.
- . G. Rein, Collisionless kinetic equations from Astropysics-The Vlasov-Poisson system. Handbook of Differential Equations, Evolutionary equations, Vol. 3. Eds. C.M.Dafermos, E. Feireisl, Elsevier 2007.
- J. Binney, S. Tremaine, Galactic dynamics. Princeton University Press, Princeton 1987

ENLACES RECOMENDADOS

A. Bressan, Hyperbolic Conservation Laws. An Ilustrated Tutorial. Notes for a summer course, Cetraro 2009

Disponible online: www.math.psu.edu/bressan/PSPDF/clawtut09.pdf S. Ukai, T. Yang, Mathematical theory of Botlzmann equation Disponible online

METODOLOGÍA DOCENTE

MD0	Lección magistral	
MD1	Resolución de problemas y estudio de casos prácticos	
MD3	Seminarios	
MD4	Tutorías académicas	
MD5	Realización de trabajos individuales o en grupos	
MD6	Análisis de fuentes y documentos	
MD7	Sesiones de discusión y debate	_

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

Código	Descripción	Ponderación Mínima	Ponderación Máxima
E1	Valoración de las pruebas, ejercicios, prácticas o problemas realizados individualmente o en grupo a lo largo del curso	10%	60%
E2	Realización, exposición y defensa final de informes, trabajos, proyectos y memorias realizadas de forma individual o en grupo	10%	70%
E4	Valoración de la asistencia y participación del alumno en clase y en los seminarios, y sus aportaciones en las actividades desarrolladas	5%	25%

Con la anterior evaluación los alumnos podrán alcanzar el 100% de la evaluación. Alternativa o complementariamente, los alumnos tendrán la opción para superar la asignatura mediante la realización de un exámen final escrito (Código E3) cuya nota podrá suponer el 100% de la nota.

E3	Realización de exámenes parciales o finales escritos	0%	100%	
----	--	----	------	--

INFORMACIÓN ADICIONAL

