Física de Redes Complejas y Aplicaciones Interdisciplinares

MÓDULO	MATERIA	ASIGNATURA	curso	SEMESTRE	CRÉDITOS	CARÁCTER	
Biomatemática	Física de Redes Complejas y Aplicaciones Interdisciplinares	Física de Redes Complejas y Aplicaciones Interdisciplinares	1	2	6ECTS	Optativo	
PROFESOR(ES)				DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS (Dirección postal, teléfono, correo electrónico, etc.)			
Joaquín Javier Torres Agudo Joaquín Marro Borau Miguel Ángel Muñoz Martínez			Materia jtorres telefor jmarro mamu Teléfo	Departamento de Electromagnetismo y Física de la Materia, Facultad de Ciencias, Universidad de Granada jtorres@onsager.ugr.es, (despacho 12) telefono 958241000 (ext 20188) jmarro@ugr.es, (despacho 2) mamunoz@onsager.ugr.es (despacho 5) Teléfono: 958240033 HORARIO DE TUTORÍAS Martes y Jueves de 11:30 a 13:30			
MÁSTER EN EL QUE SI	ÁSTER EN EL QUE SE IMPARTE OTROS MÁSTERES A LOS QUE SE PODRÍA OFI			A OFERTAR			
Física y Matemáticas - FisyMat			Máste	Máster doble MAES-FisyMat Máster en Física: Radiaciones, Nanotecnología, Partículas y Astrofísica			
PRERREQUISITOS Y/O	D RECOMENDACIONES (S	procede)					
Física estadística	, Física de los siste	mas complejos					
BREVE DESCRIPCIÓN	DE CONTENIDOS (SEGÚN	MEMORIA DE VERIFICACIÓ	N DEL MÁSTEI	R)			
CAMPETENCIA CENE	DALES V ESDEJÍFICAS DE	I MÁDUIA					
COMPETENCIAS GENER	RALES Y ESPECÍFICAS DE	r wangra					

Generales:

CG1:Saber trabajar en un equipo multidisciplinar y gestionar el tiempo de trabajo.

CG2:Capacidad de generar y desarrollar de forma independiente propuestas innovadoras y competitivas en la investigación y en la actividad profesional en el ámbito científico de la Física y Matemáticas

CG3: Presentar públicamente los resultados de una investigación o un informe técnico, comunicar las conclusiones a un tribunal especializado, personas u organizaciones interesadas, y debatir con sus miembros cualquier aspecto relativo a los mismos

CG4:Saber comunicarse con la comunidad académica y científica en su conjunto, con la empresa y con la sociedad en general acerca de la Física y/o Matemáticas y sus implicaciones académicas, productivas o sociales.

CG5: Adquirir la capacidad de desarrollar un trabajo de investigación científica de forma independiente y en toda su extensión. Ser capaz de buscar y asimilar bibliografía científica, formular las hipótesis, plantear y desarrollar problemas y elaborar de conclusiones de los resultados obtenidos.

CG6:Adquirir la capacidad de diálogo y cooperación con comunidades científicas y empresariales de otros campos de investigación, incluyendo ciencias sociales y naturales.

Específicas:

CE1: Resolver problemas físicos y matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos

CE2:Desarrollar la capacidad de decidir las técnicas adecuadas para resolver un problema concreto con especial énfasis en aquellos problemas asociados a la Modelización en Ciencias e Ingeniería, Astrofísica, Física, y Matemáticas

CE4: Tener capacidad para elaborar y desarrollar razonamientos físicos avanzados, y profundizar en los distintos campos de la física y astrofísica.

CE5:Saber obtener e interpretar datos de carácter físico y/o matemático que puedan ser aplicados en otras ramas del conocimiento

CE6: Demostrar la capacidad necesaria para realizar un análisis crítico, evaluación y síntesis de resultados e ideas nuevas y complejas en el campo de la astrofísica, física, matemáticas y biomatemáticas.

CE7: Capacidad para comprender y poder aplicar conocimientos avanzados de matemáticas y métodos numéricos o computacionales a problemas de biología, física y astrofísica, así como elaborar y desarrollar modelos matemáticos en ciencias, biología e ingeniería.

CE8:Capacidad de modelar, interpretar y predecir a partir de observaciones experimentales y datos numéricos.

Transversales:

CT1:Fomentar el espíritu innovador, creativo y emprendedor.

CT2:Garantizar y fomentar el respecto a los Derechos Humanos y a los principios de igualdad, accesibilidad universal, no discriminación y los valores democráticos y de la cultura de la paz.

CT3:Desarrollar el razonamiento crítico y la capacidad de crítica y autocrítica.

CT4:Comprender y reforzar la responsabilidad y el compromiso éticos y deontológicos en el desempeño de la actividad profesional e investigadora y como ciudadano.

CT5:Capacidad de aprendizaje autónomo y responsabilidad (análisis, síntesis, iniciativa y trabajo en equipo)

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

El alumno sabrá/comprenderá:

- Comprensión del concepto de red compleja en física y matemáticas, en particular el concepto grafo aleatorio, red invariante de escala, red pequeño mundo y redes multiplex.
- Comprensión del concepto de distribución de probabilidad de nodos, de correlaciones entre nodos, de modularidad y extracción de comunidades en redes complejas.
- Comprensión del concepto de redes multiplex.
- Comprender el concepto de red social y red metabólica.

- Comprender el concepto de una red neuronal y los mecanismos dinámicos involucrados en la misma, como los mecanismos de generación de actividad eléctrica y de transmisión sináptica, en diferentes grados de descripción.
- Comprender el concepto de aprendizaje, recuerdo y estabilidad de estados atrayentes en redes de neuronas complejas.
- Comprender el concepto de red neuronal compleja evolutiva y el concepto de poda sináptica.

El alumno será capaz de:

- Entender la dinámica de redes complejas generadas por "unión preferencial" (preferential attachment).
- Entender la propiedad de "pequeño mundo" en redes complejas.
- Entender la física subyacente y fenómenos emergentes en redes complejas sociales. Entender la dinámica de la estructura de las redes sociales.
- Entender la física subyacente y fenómenos emergentes en otras redes complejas como redes tróficas y redes metabólicas.
- Entender la física subyacente y fenómenos emergentes en las redes neuronales complejas.
- Capacidad para simular por ordenador diferentes tipos de redes complejas y estudiar sus propiedades emergentes.

TEMARIO DETALLADO DE LA ASIGNATURA

Tema 1: Breve introducción a los sistemas complejos.

Tema 2: Red compleja como ejemplo de sistema complejo: concepto de grafo, matriz de adyacencia, grafos aleatorios, redes dirigidas y no dirigidas, redes pesadas. Distribución de nodos. Redes invariantes de escala. Redes de pequeño mundo. Correlaciones nodo-nodo: coeficiente de Pearson, redes asortativas y disasortativas. Estructura modular. Redes jerárquicas. Redes multiplex.

Tema 3: El cerebro como paradigma de sistema y red compleja. Estructura y función: matrices de connectividad (DTI), y actividad (mutielectrodos, EEG, MEG, fMRI).

Tema 4: Redes de neuronas: Concepto de red neuronal, modelos de actividad neuronal y transmisión sináptica, modelo de Hodgkin-Huxley, modelos de integración y disparo, modelos de neuronas binarios. Modelos de sinapsis: función alfa, excitación e inhibición, modelos exponenciales, sinapsis dinámicas, modelo de Tsodyks-Markram. Redes neuronales atrayentes: modelo de Amari-Hopfield, aprendizaje Hebbiano, capacidad de una red neuronal. Redes feed-forward: Perceptron. Modelos de tasa de disparo: modelo de Wilson-Cowan. Modelos tipo Fokker-Planck. Redes neuronales balanceadas: Balance homeoestático en redes neuronales complejas, estados UP/DOWN en el cortex.

Tema 5: Concepto de conectoma: construcción de conectomas, propiedades estructurales de los conectomas cerebrales, comparativa de conectomas, propiedades computacionales.

Tema 6: Redes sociales: Métodos de la física estadística en el contexto de modelos sociales. Conceptos básicos: orden y desorden, modelo de Ising, importancia de la topología (redes de escala libre y acotada), dinámica de Glauber. Fenómenos sociales como fenómenos cooperativos/emergentes.

Modelos de dinámica social: Dinámica de opiniones y dinámica cultural: modelo de Axelrod. Redes sociales e internet. Modelos de epidemias y propagación de virus en redes.

Tema 7: Redes en ecología: Redes tróficas. Estabilidad y paradoja de May. Redes mutualista. Propiedad de anidamiento y otras propiedades estructurales.

Tema 8: Redes en biología de Sistemas. Concepto de red de regulación genética. Cancer y enfermedades sistémicas. Redes booleanas aleatorias. Genotipo vs fenotipo. Atractores y fenotipos.

BIBLIOGRAFÍA

- -The structure and function of complex networks, M. E. J. Newman, SIAM Review 45, 167-256 (2003).
- -Statistical mechanics of complex networks R. Albert and A.L. Barabási Reviews of modern physics 74, 47-97 (2002).
- -Complex networks: Structure and dynamics, Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U. Physics Reports, 424(4-5), 175-308 (2006).
- -Modeling Brain Function D. J. Amit. Cambridge University Press (1989).

ENLACES RECOMENDADOS

METODOLOGÍA DOCENTE

MD0: Lección magistral

MD1: Resolución de problemas y estudio de casos prácticos

MD3: Seminarios

MD4: Tutorías académicas

MD5: Realización de trabajos individuales y/o en grupos

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

E1: Valoración de las pruebas, ejercicios, prácticas or problemas realizados individualmente o en grupo a lo largo del curso (80%)

E2: Realización, exposición y defensa final de informes, trabajos, proyectos y memorias realizadas de forma individual o en grupo (10%)

E4: Valoración de la asistencia y participación del alumno en clase y en los seminarios, y sus aportaciones en las actividades desarrolladas (10%)

INFORMACIÓN ADICIONAL		

