GUIA DOCENTE DE LA ASIGNATURA

FENOMENOS CRITICOS Y GRUPO DE RENORMALIZACION

MÓDULO	MATERIA	ASIGNATURA	CUR SO	SEMES TRE	CRÉDITOS	CARÁCTER	
Física Matemática y Teórica	Fenómenos críticos y cooperativos. Grupo de renormalización	Fenómenos críticos y cooperativos. Grupo de renormalización	1	1	6ECTS	Optativo	
PROFESOR(ES)				DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS			
Miguel Ángel Muñoz Martínez Francisco de los Santos Fernández			Dpto. de Electromagnetismo y Física de la materia, Facultad de Ciencias. mamunoz@onsager.ugr.es dlsantos@onsager.ugr.es HORARIO DE TUTORÍAS: Martes y Jueves, 11.00 a 14.00				
MÁSTER EN EL QUE SE IMPARTE			OTROS MÁSTERES A LOS QUE SE PODRÍA OFERTAR				
Física y Matemáticas - FisyMat			Máster Doble MAES-FisyMat. Máster en Física: Radiaciones, Nanotecnología, Partículas y Astrofísica.				
PRERREQUISITOS Y/O RECOMENDACIONES (si procede)							

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL MÁSTER)

Curso dedicado al estudio de temas básicos de Física Estadística, con especial hincapié en el uso de técnicas computacionales y teoría de campos aplicada a fenómenos críticos.

COMPETENCIAS GENERALES Y ESPECÍFICAS DEL MÓDULO

CG2: Capacidad de generar y desarrollar de forma independiente propuestas innovadoras y competitivas en la investigación y en la actividad profesional en el ámbito científico de la Física y Matemáticas.

CG3: Presentar públicamente los resultados de una investigación o un informe técnico, comunicar las conclusiones a un

tribunal especializado, personas u organizaciones interesadas, y debatir con sus miembros cualquier aspecto relativo a los mismos

C5: Adquirir la capacidad de desarrollar un trabajo de investigación científica de forma independiente y en toda su extensión. Ser capaz de buscar y asimilar bibliografía científica, formular las hipótesis, plantear y desarrollar problemas y elaborar de conclusiones de los resultados obtenidos.

CE1: Resolver problemas físicos y matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos

CE2: Desarrollar la capacidad de decidir las técnicas adecuadas para resolver un problema concreto con especial énfasis en aquellos problemas asociados a la Modelización en Ciencias e Ingeniería, Astrofísica, Física, y Matemáticas

CE3: Tener capacidad para elaborar y desarrollar razonamientos matemáticos avanzados, y profundizar en los distintos campos de las matemáticas.

CE4: Tener capacidad para elaborar y desarrollar razonamientos físicos avanzados, y profundizar en los distintos campos de la física y astrofísica.

CE5: Saber obtener e interpretar datos de carácter físico y/o matemático que puedan ser aplicados en otras ramas del conocimiento

CE6: Demostrar la capacidad necesaria para realizar un análisis crítico, evaluación y síntesis de resultados e ideas nuevas y complejas en el campo de la astrofísica, física, matemáticas y biomatemáticas.

CE7: Capacidad para comprender y poder aplicar conocimientos avanzados de matemáticas y métodos numéricos o computacionales a problemas de biología, física y astrofísica, así como elaborar y desarrollar modelos matemáticos en ciencias, biología e ingeniería.

CE8: Capacidad de modelar, interpretar y predecir a partir de observaciones experimentales y datos numéricos.

CT3 - Desarrollar el razonamiento crítico y la capacidad de crítica y autocrítica

CT5 - Capacidad de aprendizaje autónomo y responsabilidad (análisis, síntesis, iniciativa y trabajo en equipo).

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

El alumno sabrá/comprenderá:

- Conceptos básicos y fenomenología sobre cambios de fase y su modelado mediante procesos estocásticos.
- Técnicas analíticas y computacionales básicas para el modelado y análisis de fenómenos críticos.
- Conceptos útiles para la descripción de la criticidad: leyes de potencias, fractales, grupo de renormalización, invariancia de escala, percolación, etc.

El alumno será capaz de:

- Identificar fenómenos cooperativos y sistemas complejos.
- Análisis crítico de resultados.

TEMARIO DETALLADO DE LA ASIGNATURA

- . Introducción a las transiciones de fase y a los fenómenos críticos. Universalidad.
- . Modelos reticulares. Modelo de Ising.
- . La aproximación de campo medio. La teoría de Ginzburg-Landau.
- . Invariancia de escala y el grupo de renormalización.
- . Fractales: Percolación, agregación limitada por difusión (DLA).
- . Dinámica en transiciones de fase.
- . Crecimiento de superficies invariantes de escala.

BIBLIOGRAFÍA

Barabási y Stanley, Fractal Concepts in Surface Growth (Cambridge University Press)

Binney, Dowrick, Fisher y Newman, The Theory of Critical Phenomena: An Introduction to the Renormalization Group (Oxford Science Publications).

Le Bellac, Quantum and Statistical Field theory. Oxford University Press. 2010

ENLACES RECOMENDADOS

ACTIVIDADES FORMATIVAS

Clases teóricas, seminarios y trabajo autónomo del alumno.

METODOLOGÍA DOCENTE

Lección Magistral.

Resolución de problemas y casos prácticos.

Tutorías académicas.

Realización de trabajos individuales o en grupos.

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

Valoración de pruebas ejercicios y prácticas (entre un 0% y un 30%) y

Realización, exposición y defensa final de trabajo de investigación (entre un 30% y un 100%)

INFORMACIÓN ADICIONAL

Contactar con los profesores de la asignatura para otras aclaraciones

