INTRODUCCIÓN A LA TEORÍA DE CAMPOS CUÁNTICOS

MÓDULO	MATERIA	ASIGNATURA	CUR SO	SEMES TRE	CRÉDITOS	CARÁCTER	
Física Matemática y Teórica	Introducción a la teoría de campos cuánticos	Introducción a la teoría de campos cuánticos	1	2	6ECTS	Optativo	
PROFESOR				DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS			
				Dpto. Física Atómica, Molecular y Nuclear Sección Físicas. 3ª planta. Despacho 135. Tel. 958240772, salcedo@ugr.es			
Lorenzo Luis Salcedo Moreno			HORARIO DE TUTORÍAS				
				Lunes, martes de 16h a 18h, viernes de 10h a 12h			
MÁSTER EN EL QUE SE IMPARTE			OTROS MÁSTERES A LOS QUE SE PODRÍA OFERTAR				
Física y Matemáticas - FisyMat			Máster doble MAES-FisyMat Máster en Matemáticas Máster en Física: Radiaciones Nanotecnología, Partículas y Astrofísica				
PRERREOLUSITOS V/O RECOMENDACIONES (si procede)							

PRERREQUISITOS Y/O RECOMENDACIONES (si procede)

Necesario tener conocimientos de mecánicas clásica y cuántica

BREVE DESCRIPCIÓN DE CONTENIDOS (SEGÚN MEMORIA DE VERIFICACIÓN DEL MÁSTER)

Cuantización del campo de radiación. Invariancia gauge. Fotones. Emisión espontánea. Efecto Casimir. Teoría clásica de campos. Invariancia relativista. Acción y formulación lagrangiana. Cuantización de los campos de Klein-Gordon, Dirac y Maxwell. Ecuaciones de movimiento. Propagador de Feynman.

Interacción entre campos cuánticos. Matriz S y sus simetrías. Unitaridad. Teorema de Wick.

Teoría de perturbaciones. Diagramas y reglas de Feynman. Procesos elementales.

Representación de Lehmann y fórmulas de reducción.

Formulación funcional. Renormalización perturbativa y no perturbativa.

COMPETENCIAS GENERALES Y ESPECÍFICAS DEL MÓDULO

Competencias generales

CG2 Capacidad de generar y desarrollar de forma independiente propuestas innovadoras y competitivas en la investigación y en la actividad profesional en el ámbito científico de la Física y Matemáticas.

CG5 Adquirir la capacidad de desarrollar un trabajo de investigación científica de forma independiente y en toda su extensión. Ser capaz de buscar y asimilar bibliografía científica, formular las hipótesis, plantear y desarrollar problemas y elaborar de conclusiones de los resultados obtenidos.

Competencias específicas

CE1 Resolver problemas físicos y matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos.

CE2 Desarrollar la capacidad de decidir las técnicas adecuadas para resolver un problema concreto con especial énfasis en aquellos problemas asociados a la Modelización en Ciencias e Ingeniería, Astrofísica, Física, y Matemáticas.

CE4 Tener capacidad para elaborar y desarrollar razonamientos físicos avanzados, y profundizar en los distintos campos de la física y astrofísica.

CE6 Demostrar la capacidad necesaria para realizar un análisis crítico, evaluación y síntesis de resultados e ideas nuevas y complejas en el campo de la astrofísica, física, matemáticas y biomatemáticas.

CE7 Capacidad para comprender y poder aplicar conocimientos avanzados de matemáticas y métodos numéricos o computacionales a problemas de biología, física y astrofísica, así como elaborar y desarrollar modelos matemáticos en ciencias, biología e ingeniería.

Competencias transversales

CT1 Fomentar el espíritu innovador, creativo y emprendedor.

CT3 Desarrollar el razonamiento crítico y la capacidad de crítica y autocrítica.

CT5 Capacidad de aprendizaje autónomo y responsabilidad (análisis, síntesis, iniciativa y trabajo en equipo).

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

El alumno sabrá/comprenderá:

La cuantización de teorías de campos sin interacción con distintos espines.

Extraer las simetrías de una teoría de campos cuánticos y sus modos de realización en la naturaleza.

La formulación de integral funcional en la teoría de campos.

Los mecanismos involucrados en el proceso de renormalización perturbativa y no perturbativa.

El alumno será capaz de:

Utilizar el formalismo de segunda cuantización.

Calcular anchuras de emisión espontánea en átomos.

Obtener y manipular diagramas de Feynman de una teoría.

Calcular amplitudes de probabilidad de procesos elementales mediante un lagrangiano efectivo.

Obtener el potencial producido por intercambio de mesones.

TEMARIO DETALLADO DE LA ASIGNATURA

I. Introducción: cuantización del campo de radiación

- 1. Ecuaciones de Maxwell.
- 2. Oscilador armónico. Fonones.
- 3. Cuantización del campo de radiación. Fotones. Espín del fotón.
- 4. Energía del vacío. Efecto Casimir. Emisión espontánea.

II. Teoría clásica de campos

- 5. Relatividad especial. Grupo de Poincaré.
- 6. Acción. Formulación lagrangiana. Ecuaciones de Euler-Lagrange.
- 7. Formalismo hamiltoniano.
- 8. Ejemplos. Campos de Klein-Gordon real, complejo, campo de Schrödinger.
- 9. Simetrías. Teorema de Noether. Simetrías cinemáticas e internas.

III. Campos cuánticos libres: campos de Klein-Gordon, Dirac y Maxwell.

- 10. Cuantización. Espacio de Fock. Representación de operadores cinemáticos.
- 11. Campo complejo. Carga conservada. Conjugación de carga.
- 12. Conmutadores. Operador cronológico. Propagador de Feynman.
- 13. Operador posición y localización en sistemas cuánticos relativistas.
- 14. Campos de Dirac y Maxwell.

IV. Interacción entre campos cuánticos

- 15. Lagrangianos con interacción. Imagen de Heinserberg.
- 16. Operador de evolución. Imagen de interacción.
- 17. Matriz de colisión. Teorema adiabático. Unitaridad.
- 18. Teorema de Wick.

V. Teoría de perturbaciones

- 19. Procesos elementales. Diagramas de Feynman.
- 20. Reglas de Feynman. Factores de simetría. Relaciones diagramáticas. Rotación de Wick.

- 21. Esquemas de regularización.
- 22. Teorema de "linked cluster".
- 23. Ejemplo: Anchura de desintegración.

VI. Resultados no perturbativos

- 24. Funciones de Green: espacio de posiciones y de momentos.
- 25. Representación de Lehmann. Fórmulas de reducción.
- 26. Funcional generador. Integral funcional. Relación con mecánica estadística.
- 27. Renormalización perturbativa y no perturbativa.

VII. Temas avanzados

BIBLIOGRAFÍA

- 1. K. Huang, Quantum field theory: from operators to path integrals, John Wiley and Sons, 1998.
- 2. F. Mandl y G. Shaw, Quantum field theory, John Wiley, 1993.
- 3. S. Weinberg, The quantum theory of fields (vol 1 y 2), Cambridge University Press, 1995.
- 4. C. Itzykson y J-B. Zuber, Quantum field theory, McGraw-Hill Book Company, 1980.
- 5. T. Banks, Modern Quantum Field Theory, Cambridge University Press, 2008.
- 6. A. Zee, Quantum Field Theory in a Nutshell, Princeton, 2003.
- 7. M. Srednicki, Quantum Field Theory, Cambridge University Press, 2007.
- 8. M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory, Westview Press, 1995.
- 9. W. Greiner and J. Reinhardt, Field quantization, Springer-Verlag, 1996.
- 10. W. Greiner and J. Reinhardt, Quantum electrodynamics, Springer-Verlag, 2003.
- 11. J. C. Collins, Renormalization, Cambridge, 1984.

ENLACES RECOMENDADOS

https://www.ugr.es/~salcedo/public/

ACTIVIDADES FORMATIVAS

Clases teóricas. Clases prácticas. Seminarios. Trabajos tutorizados. Trabajo autónomo del estudiante.

METODOLOGÍA DOCENTE

MD0 Lección magistral

MD1 Resolución de problemas y estudio de casos prácticos

MD3 Seminarios

MD4 Tutorías académicas

MD5 Realización de trabajos individuales o en grupos

EVALUACIÓN (INSTRUMENTOS DE EVALUACIÓN, CRITERIOS DE EVALUACIÓN Y PORCENTAJE SOBRE LA CALIFICACIÓN FINAL, ETC.)

E1 Valoración de las pruebas, ejercicios, prácticas o problemas realizados individualmente o en grupo a lo largo del curso (de 10% a 20%)

E2 Realización, exposición y defensa final de informes, trabajos, proyectos y memorias realizadas de forma individual o en grupo (de 30% a 50%)

E3 Realización de exámenes parciales o finales escritos (de 10% a 30%)

E4 Valoración de la asistencia y participación del alumno en clase y en los seminarios, y sus aportaciones en las actividades desarrolladas (de 20% a 30%)

INFORMACIÓN ADICIONAL

