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ISOPERIMETRIC REGIONS IN CONES

FRANK MORGAN AND MANUEL RITORÉ

Abstract. We consider cones C = 0××Mn and prove that if the Ricci curvature of C is
nonnegative, then geodesic balls about the vertex minimize perimeter for given volume.
If strict inequality holds, then they are the only stable regions.

1. Introduction

An isoperimetric region minimizes perimeter for given volume. There are few manifolds
of dimension n+1 � 3 for which the isoperimetric regions are known: the classical examples
Rn+1, Sn+1, Hn+1, certain Cartesian products [P], [PR], [R1], and RP3 [RR]. To this list
we add cones with nonnegative Ricci curvature by showing that geodesic balls about the
vertex are isoperimetric (Thm. 3.6, Cor. 3.9). If Ric > 0, then these are the only smooth
regions with nonnegative second variation of perimeter (for fixed volume).

The proof. The proof shows first that isoperimetric regions exist. By standard geomet-
ric measure theory, their boundaries are smooth constant-mean-curvature hypersurfaces
except possibly for the vertex and a singular set of Hausdorff dimension at most n − 7.
Using the Minkowski formulas (Prop. 3.4), after Montiel [Mo], and a variation vectorfield
associated to homotheties of the cone, we show that the only stable regions are the geo-
desic balls about the vertex (or flat round balls with greater perimeter). To generalize the
standard Minkowski formulas to singular surfaces in cones, we show that the singular sets
are negligible, using a new covering argument (Lemma 3.1).

Existence. Geometric measure theory provides the existence of a limiting, perimeter-
minimizing region, but some volume may disappear to infinity. As long as the limit is
not 0, a rescaling has the desired volume. If on the other hand everything disappears to
infinity, an isoperimetric inequality (Thm. 2.1) after Bérard and Meyer [BM] shows that
a geodesic ball about the vertex does better.
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We begin with an easy theorem about spherically symmetric cones by comparison with
Euclidean space, as in Bray ([Br, § 2.5], see [BrM, Cors. 2.3, 2.6]).

Theorem 1.1 (Isoperimetric Regions in Spherical Cones). Let C be the cone over a non-
great round sphere Sn in S

N ⊂ R
N+1 (n � 1). Then in C, for given volume, a round
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sphere T0 about the vertex uniquely minimizes perimeter (among smooth surfaces or more
generally among integral currents).

Proof. Consider the natural map f : C → Rn+1 (mapping S homothetically to a great
sphere), stretching by a factor λ > 1 in tangential directions. The map f multiplies all
volume by λn, tangential area by λn, and other area by a factor less than λn. The sphere
T0 in C is stretched by the maximum possible factor λn. Since its image f(T0), a round
sphere in Rn, is minimizing, T0 must be minimizing. Any minimizer has to be a completely
tangential inverse image of a round sphere; T0 is therefore the only minimizer. �

2. Existence and regularity

Theorem 2.1 (Isoperimetric Inequality (Bérard-Meyer [BM, App. C])). Let Mn+1 be
a smooth, complete Riemannian manifold, possibly with boundary, of bounded geometry
(bounded sectional curvature and positive injectivity radius). Then given 0 < δ < 1 there
exists V0 > 0 such that any open set U of volume V � V0 satisfies

(2.1) |∂U | � δβV n/(n+1),

where

|Sn| = β|Bn+1|n/(n+1) in R
n+1.

Here |∂U | denotes the n-dimensional Hausdorff measure of the topological boundary of
U (or better the mass of the current boundary).

Proof. The result differs from the treatment in [BM] in two minor respects. First of all,
Bérard and Meyer consider only smooth regions, but any open set of finite perimeter may
be approximated by a smooth, bounded region of nearly the same volume and perimeter.
Second, Bérard and Meyer consider only compact manifolds M for their global result

(although they remark that their local result applies to complete manifolds with boundary).
Given small ρ > 0, they cover M with � small balls B(xi, ρ), such that the B(xi, ρ/2) are
disjoint. We may need to use a covering by countably many such balls, constructed for
example over an increasing exhaustive sequence of compact subsets. Next for each i they
choose ρ < ti < 2ρ such that

|∂B(xi, ti) ∩ U | � V

ρ
,

and conclude that
�∑

i=1

|∂B(xi, ti) ∩ U | � �
V

ρ
.

We note that actually

∑
i

|∂B(xi, ti) ∩ U | � |B(xi, 2ρ) ∩ U |
ρ

.

Moreover, since the sectional curvature is bounded, volume estimates show that the number
of B(xi, 2ρ) containing any point is bounded by some constant �′. Hence we can conclude
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that

(2.2)
∑

i

|∂B(xi, ti) ∩ U | � �′ V
ρ

.

The rest of the argument is unchanged. Namely, in each (small) component of M −⋃
∂B(xi, ti), which is closely approximated by its Euclidean tangent space, they can apply

a local isoperimetric inequality. By (2.2), the edge effects are bounded by a constant times
V , which for small V is much less than perimeter. �

Theorem 2.2 (Existence and Regularity Theorem). Let Cn+1 = 0××Mn ⊂ R
N+1 (n � 1)

be the cone over a smooth submanifold Mn of the sphere SN , with |Mn| < |Sn|. Then for
all V > 0, there exists a bounded open set U ⊂ C of volume V minimizing the Hausdorff
measure of ∂U . Moreover, ∂U is a smooth, constant-mean-curvature submanifold, except
possibly for 0 and a singular set of Hausdorff dimension at most n− 7.

Proof. It suffices to prove the result in the category of locally integral currents, since the
Hausdorff measure of the topological boundary of an open set of finite volume is greater
than or equal to the mass of its current boundary ([F, 4.5.12, 4.5.6]). Consider a sequence
Ui of locally integral currents of mass V and boundary mass approaching the infimum m0.
By compactness ([M1, 9.1], [S, 27.3, 31.2]) we may assume that the sequence converges
to a locally integral current U . By standard arguments, U is perimeter minimizing for its
volume V ′ � V. If U �= 0 (and hence V ′ > 0), a rescaling under homothetic expansion of
C yields a minimizer with volume V as desired.
Alternatively, suppose U = 0. Choose 0 < δ < 1 such that (|M |/|Sn|)1/(n+1) < δ2.

Choose V0 to obtain the Isoperimetric Inequality (2.1) for C1 = {x ∈ C : |x| � 1}. By
rescaling, we may assume that V < V0. For i large, we may assume that Ui is contained in
C1 and that

m0 � δ|∂Ui|.
By (2.1), |∂Ui| � δβV n/(n+1), and therefore

m0 � δ2βV n/(n+1).

On the other hand, an initial piece of C of volume V has perimeter

(|M |/|Sn|)1/(n+1)βV n/(n+1) < δ2βV n/(n+1),

the desired contradiction.
The asserted regularity is standard ([M1, Thm. 8.6]). �

Remark 2.3. (Hypercube and More Singular Cones). Gnepp, Ng, and Yoder [GNY] have
proved for the surface of the cube that for small prescribed area, a geodesic disc about a
vertex minimizes perimeter. The corresponding question is open for the hypercube in R4

or even for its tangent cone C at a vertex, which has a 1-dimensional singular set consisting
of four rays from the vertex.
Cao and Escobar [CE] study such three-dimensional PL Riemannian manifolds and

prove isoperimetric inequalities, but their fundamental estimate, even if generalized from
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their case of nonpositive curvature to our case of nonnegative curvature, does not rule out
for example a sphere which crosses each singular ray twice.

3. Isoperimetric domains in certain cones

Let C be the cone over a smooth compact submanifold (Mn, ds2) of the sphere S
N ⊂

R
N+1, and assume that the Ricci curvature is nonnegative.
The punctured cone C∗ = C − {0} can be viewed as a warped product (0,+∞)×f M ,

where f(t) = t, endowed with the Riemannian metric 〈 , 〉 = dt2 + t2 ds2. We consider
on C the radial vector field X = t ∂/∂t. If D is the Levi-Civitá connection on C∗ then
DuX = u for any u ∈ TC∗. We refer to [ON, pp. 204–211] and [Mo] for background on
these warped products. In particular the Ricci curvature of the cone is given by

Ric(∂t, ∂t) = 0,

Ric(u, u) =
1

t2
(RicM (u, u)− (n− 1)),

(3.1)

for u tangent to the geodesic sphere of radius t > 0 centered at the vertex. Hence RicM �
n− 1 is equivalent to Ric � 0.
We are interested in characterizing the isoperimetric domains in these cones. When M

is a curve, i.e. C is a two-dimensional cone, then C is isometric to a right circular cone, for
which isoperimetric domains are the geodesic balls about the vertex. See [HHM, sect. 8]
and Theorem 1.1.
In arbitrary dimension n � 2, we know from Theorem 2.2 that ∂U = Σ ∪ Σ0, where Σ

is a smooth hypersurface with inward constant mean curvature H = n−1(k1 + . . . + kn)
(average of principal curvatures) and Hs(Σ0 − {0}) = 0 for s > n − 7. Moreover at every
point of p ∈ Σ0 − {0} there is a tangent cone and |σ|2 = k2

1 + . . .+ k2
n (the squared sum of

the principal curvatures) goes to ∞ when we approach p from inside Σ.
The regular part Σ is a stable hypersurface for given volume. This means that the index

form Q satisfies the inequality

(3.2) Q(u, u) = −
∫
Σ
u
(
∆u+ (Ric(N,N) + |σ|2) u

)
dΣ � 0,

for any smooth function u with mean zero and compact support in Σ ([BdCE]). In the
above formula, ∆ is the Laplacian on Σ and N is the unit inner normal vector to Σ.

Lemma 3.1. Let Σk (k � 2) be a smooth, embedded manifold of bounded mean curvature
in R

n+1 or in any cone C over a smooth submanifold Mn of the unit sphere S
N , with

singular set Σ0 = Σ − Σ, satisfying Hk−2(Σ0) = 0 or consisting of isolated points. Then
given ε > 0, there is a smooth function ϕε : Σ → [0, 1] supported in Σ such that

(i) Hk({ϕε �= 1}) < ε,
(ii)

∫
Σ |∇ϕε|2 dΣ < ε,

(iii)
∫
Σ |∆ϕε| dΣ < ε.

Remark 3.2. The idea of the proof is to use the definition of Hausdorff measure to obtain
a covering of the singular set Σ0 by small balls Bi, to choose functions ϕi vanishing on
Bi, and to set ϕε =

∏
ϕi. The problem is that the Bi may overlap a lot. Leon Simon has



ISOPERIMETRIC REGIONS IN CONES 5

explained to us that to obtain (ii), as in [SS, sect. 2], one could take ϕε = minϕi. The
reader can find a detailed argument in [SZ, Lemma 2.4]. To obtain both (ii) and (iii), we
instead choose the Bi carefully in order to bound overlap among balls of comparable size
and then divide the balls into size classes.

Proof. We may assume that Σ has compact closure Σ. First we treat the case that
Hk−2(Σ0) = 0. Note that there is a constant c1(N) � 1 such that for any collection of balls
B(pi, ri) in R

N+1 with radii within a factor of 4 (max ri � 4min ri) and the B(pi, ri/6)
disjoint,

(3.3) a ball intersects at most c1 balls,

as follows easily by a volume estimate.
Choose a smooth radial function ϕ : R

N+1 → [0, 1] such that ϕ vanishes on B(0, 1/2)
and ϕ = 1 on B(0, 9/10)C . Let c2 = sup{|Dϕ|2, |D2ϕ|}, where D denotes differentiation
in R

N+1. Then scalings of ϕ to any smaller B(p, r), vanishing on B(p, r/2) and equal to 1
on B(p, 9r/10)C , satisfy

(3.3a) |Dϕ|2 � c2

r2
, |D2ϕ| � c2

r2
.

We claim that on Σ, for some c3 � c2, for a scaling to ϕ0 on a small ball B(0, r) about 0,

(3.3b) |∆ϕ0| � c3

r2
.

Indeed note that the radial mean curvature of Σ in R
N+1 equals its radial mean curvature

in C, which is bounded by hypothesis by H0, the bound on the mean curvature. Since ϕ0

is radial,

|∆ϕ0| � N (|D2ϕ0|+H0|Dϕ0|) � N

(
c2

r2
+H0

√
c2

r

)
� c3

r2
.

Since the radial mean curvature of Σ in RN+1 is bounded, at the vertex one can apply
monotonicity ([S, Thm. 17.6], [A, Cor. 5.1(3)], [M1, 9.3]) in R

N+1. Hence there is a
constant c4 � 1 such that Hk(B(0, r) ∩ Σ) � c4r

k for r � 1.
Fix ε > 0. Since k � 3, by (3.3a) we may scale down ϕ0 to B(0, r0) with

(3.4) Hk(B(0, r0) ∩ Σ) <
ε

2
,

∫
B(0,r0)∩Σ

|∇ϕ0|2 < ε

16
, and

∫
B(0,r0)∩Σ

|∆ϕ0| < ε

4
.

On B(0, r0/8)
C the curvature of C is bounded and the mean curvature of Σ in R

N+1

is bounded by say H1. Hence by (3.3a), for some c5 > c3, scalings of ϕ to B(p, r) ⊂
B(0, r0/8)

C satisfy

(3.4’) |∆ϕ| � N(|D2ϕ| +H1|Dϕ|) � N

(
c2

r
+H1

√
c2

r

)
� c5

r2
,

as does ϕ0 (by (3.3b)). Also we may apply monotonicity to obtain c6 � c4 such that for
|p| � r0/4 and r � r0/16, as well as for p = 0 and r � 1,

(3.5) Hk(B(p, r) ∩ Σ) � c6r
k.
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constant Cover Σ0 − B(0, r0/2) with finitely many B(pi, ri/2) with r0/16 > r1 � r2 � . . .
such that

(3.6)
∑

αkr
k
i � ε

2
and

∑
rk−2
i � ε

16 c1c5c6

;

here αk is the volume of the unit ball in Rk. By covering first with {B(pi, ri/6)}, enlarging,
and discarding unnecessary balls, we may assume that the B(pi, ri/6) are disjoint. Divide
this covering into classes Bm for which 2m � ri < 2m+1.
Put ϕε =

∏
ϕi. Conclusion (i) follows immediately by (3.4) and (3.6). We next show

that

(3.7)
∑
i�j

∫
Σ
|∇ϕi||∇ϕj| < ε

4
.

Notice that by (3.3a) and (3.5), for i � j,

(3.7’)
∫
Σ
|∇ϕi||∇ϕj| � c5

rirj

c6r
k
j .

We consider first the products involving ∇ϕ0. By (3.4),
∫
Σ |∇ϕ0|2 � ε/16. By (3.7’),∑

j�1

∫
Σ
|∇ϕ0||∇ϕj| � c5c6

∑
j�1

rk−2
j � ε

16
,

by (3.6). Therefore the products involving ∇ϕ0 contribute at most ε/8 to (3.7).
Second consider the remaining products involving ∇ϕ1. By (3.3) there are at most c1

products with second factor from the largest class Bm0
and the next largest Bm0−1, yielding

a contribution to (3.7) of at most c1c5c6 r
k−2
1 by (3.7’). Second factors from succeeding

classes Bm0−1−h, with rj � 2−hr1, contribute at most c1c5c6 r
k−2
1

∑
h 2

−h = c1c5c6 r
k−2
1 , for

a total of 2 c1c5c6 r
k−2
1 .

Similarly, the remaining products involving ∇ϕ2 contribute at most 2 c1c5c6r
k−2
2 . Indeed,

the further remaining products involving ∇ϕi contribute at most 2 c1c5c6r
k−2
i . Therefore∑

0�i�j

∫
Σ
|∇ϕi||∇ϕj| < 2 c1c5c6

∑
i�1

rk−2
i +

ε

8
� ε

4
,

by (3.6), proving (3.7). Now∫
Σ
|∇ϕε|2 � 2

∑
i�j

∫
Σ
|∇ϕi||∇ϕj| < ε

2
,

proving (ii).
Finally we estimate that

∫
Σ
|∆ϕε| �

∑
i

∫
Σ
|∆ϕi|+ 2

∑
i�j

∫
Σ
|∇ϕi||∇ϕj| <


∑

i�1

c5

r2
i

(c6 r
k
i ) +

ε

4


+

ε

2
< ε,

by (3.4’), (3.5), (3.4), (3.7), and (3.6), and proving (iii).
Second we consider the case when Hk−2(Σ0) > 0 but Σ0 consists of isolated points, so

that k = 2. It suffices to consider a small ball about a single point p (trivially establishing
(i) and guaranteeing that

∫
H2

0 andH0 times the diameter are small), which for convenience
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we move and scale to be B(0, 2). For this case we need a refined form of monotonicity
involving the area

A(r) = H2(B(0, r) ∩ Σ)

and the angle θ that the normal to Σ makes with the radial direction:

(3.8)
A(r2)

r2
2

eH0r2 − A(r1)

r2
1

eH0r1 �
∫

Σ∩{r1�r�r2}

cos2 θ

r2
dΣ

([S, Thm. 17.6], [A, Thm. 5.1(1)]). In particular, A(r)r−2 approaches a limit c7, and we
may assume it is close to that limit (by taking the original small ball small enough). Since
H0r2 is small, it follows from (3.8) that

(3.9)
∫

B(0,2)

cos2 θ

r2
dΣ

is small.
For ρ > 0 small, let

f(r) =




0, r � ρ,
log(r/ρ)

log(1/ρ)
, ρ � r � 1,

1, 1 � r,

as in Figure 1. Note that f ′(r) = (r log(1/ρ))−1 and f ′′(r) = −(r2 log(1/ρ))−1 in the
interval [ρ, 1]. We obtain a smooth function ϕ by altering f as in Figure 1 on (1

2
ρ, 3

2
ρ) and

(1
2
, 3

2
). The function ϕ is convex in the interval (1

2
ρ, 3

2
ρ) and concave in (1

2
, 3

2
), and hence

ϕ′ is positive in both intervals. We can even choose ϕ so that there is an absolute constant
M > 0 such that ϕ′′ is bounded above by M (ρ2 log(1/ρ))−1 in (1

2
ρ, 3

2
ρ), and bounded

below by −M (log(1/ρ))−1 in (1
2
, 3

2
).

0.5 1.51

1 f

ϕ

0.5ρ 1.5ρ

Figure 1. Dimension two requires a logarithmic cut-off function.
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As ϕ′ is increasing in (1
2
ρ, 3

2
ρ) and decreasing in (1

2
, 3

2
) we have ϕ′ � 3 (r log(1/ρ))−1.

Then if A(r) = H2(B(0, r) ∩ Σ),

log2(1/ρ)
∫
Σ
|∇ϕ|2 � 3

∫ 3/2

ρ/2

dA

r2
(3.10)

= 3

[
A(r)

r2

]3/2

ρ/2

+ 3
∫ 3/2

ρ

2A(r)

r3
dr.

� 9 c7 + 12 c7 log(3/2ρ),

because A(r) � 2 c7r
2, so that

∫
Σ |∇ϕ|2dΣ is small for ρ small, proving (ii).

To estimate
∫ |∆ϕ|, note that

|∆ϕ| � |ϕ′′|+H0|ϕ′| � |ϕ′′|+ .5|ϕ′|2 + .5H2
0 .

Since
∫ |ϕ′|2 and ∫ H2

0 are small, it suffices to estimate
∫ |ϕ′′|. On the altered portion inside

(1
2
ρ, 3

2
ρ), ∫

Σ∩{ 1
2
ρ�r� 3

2
ρ}
ϕ′′ � M

1

ρ2 log(1/ρ)
2c7

(
3ρ

2

)2

,

which is small for ρ small. Similarly, on the altered portion inside (1
2
, 3

2
),

∫
Σ∩{ 1

2
�r� 3

2
}
ϕ′′ � M

1

log(1/ρ)
2c7

(
3

2

)2

,

which is small for ρ small.
On the unaltered portion, where ϕ = f , ∆ϕ = ∆f . In R

N+1, at say (r, 0, 0, . . .),
f11 = −(r2 log(1/ρ))−1, f22 = . . . = (r2 log(1/ρ))−1. Hence in Σ,

∆ϕ � 2 cos2 θ

r2
+ 2H0 |∇f | � 2 cos2 θ

r2
+ |∇f |2 +H2

0 ,

which has a small integral by (3.9), (3.10), and the smallness of the integral of H2
0 , proving

(iii). �

Lemma 3.3. Let Σn(n � 2) be a smooth, bounded hypersurface of constant mean curvature
in the cone C over a smooth submanifold Mn of the sphere S

N , with singular set Σ0 = Σ−Σ
satisfying Hn−2(Σ0) = 0 or consisting of isolated points.

If Σ is stable then inequality (3.2) holds for any smooth bounded function u : Σ → R

with mean zero on Σ and gradient in L2(Σ). Moreover
∫
Σ |σ|2dΣ is finite.

Proof. If u is a bounded function with mean zero on Σ and L2 gradient on Σ, then define
uε = (ϕεu)

+ − aε(ϕεu)
−, where aε is a constant computed so that uε has mean zero over

Σ. As u has mean zero it follows that aε → 1 when ε → 0. Then inequality (3.2) holds for
uε since uε has compact support on Σ. As ε → 0 it follows by Lemma 3.1 that (3.2) holds
for u as well.
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To show the finiteness of the integral
∫
Σ |σ|2dΣ consider a function u ≡ 1 in a neighbor-

hood V of Σ0 in Σ and extend it so that |u| � 1, |∇u| is bounded and
∫
Σ u dΣ = 0. Then

by the first part of this Lemma and (3.2)∫
V
|σ|2dΣ �

∫
Σ
|∇u|2dΣ < ∞.

�

We now prove Minkowski formulae for the regular part, Σ. The reader can consult
Montiel’s paper ([Mo, §5]) for the smooth case.

Proposition 3.4 (Minkowski formulae on Σ). Let Σn(n � 2) be a smooth, bounded hyper-
surface of constant mean curvature in the cone C over a smooth submanifold Mn of the
sphere S

N , with singular set Σ0 = Σ− Σ satisfying Hn−2(Σ0) = 0 or Σ0 = {0}. Then

(3.11)
∫
Σ
{1 +H 〈X,N〉} dΣ = 0,

where N is the inner normal to Σ. If, in addition, H is constant then

(3.12)
∫
Σ

{
Ric(N,N) +

(
|σ|2 − nH2

)}
〈X,N〉 dΣ = 0

Formula (3.11) is the First Minkowski formula, and (3.12) is the Second Minkowski
formula.

Proof. Let XT be the tangent projection of the conformal field X to Σ. Consider the
functions ϕε defined in Lemma 3.1, which have compact support in Σ. By the Divergence
Theorem the integral of the vector field divΣ(ϕεX

T ) over Σ is 0. Letting ε → 0 and using
Lemma 3.1 we obtain that divΣ(X

T ) = n (1 + H 〈X,N〉) has mean zero over Σ, which
proves (3.11).
Now we consider the variation of Σ with initial velocity vector field ϕεN , where N is

the inner normal to Σ. Let Σt be the hypersurface obtained at time t. Over Σt the first
Minkowski formula holds, so that differentiating with respect to t and evaluating at t = 0
we have

(3.13) 0 =
∫
Σ
(1 +H 〈X,N〉) d

dt

∣∣∣∣∣
t=0

dΣt +
∫
Σ

{
〈X,N〉 d

dt

∣∣∣∣∣
t=0

Ht +H
d

dt

∣∣∣∣∣
t=0

〈X,N〉
}

dΣ,

and we have

d

dt

∣∣∣∣∣
t=0

dΣt = −nH 〈ϕεN,N〉 = −nHϕε

d

dt

∣∣∣∣∣
t=0

Ht =
1

n

(
∆ϕε + (Ric(N,N) + |σ|2)ϕε

)

d

dt

∣∣∣∣∣
t=0

〈X,N〉 = ϕε.
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The first equality is standard when computing the first derivative of perimeter. The second
one is a well known formula for the derivative of the mean curvature along a deformation.
The third one is immediate. Substituting in (3.13) we obtain

0 =
∫
Σ

1

n

(
∆ϕε + (Ric(N,N) + |σ|2)ϕε

)
〈X,N〉

+
∫
Σ
Hϕε −

∫
Σ
nHϕε (1 +H 〈X,N〉) .

Letting ε → 0, using Lemma 3.1 and the first Minkowski formula (3.11), we obtain (3.12).
�

Remark 3.5. The function u = 1 + H 〈X,N〉 is bounded over (the bounded) Σ and its
gradient equals ∑

i

H 〈X, kiei〉 ei,

where ei (|ei| = 1) are principal directions with principal curvatures ki. So the modulus of
the gradient of u is bounded from above by H|X ||σ|, which is in L2(Σ). If Σ is stable then
Q(u, u) � 0 by Lemma 3.3.

Theorem 3.6. Let Σn(n � 2) be a smooth, bounded, stable hypersurface of constant mean
curvature in the cone C over a smooth, connected submanifold Mn of the sphere SN , with
Ricci curvature Ric � 0. Suppose that the singular set Σ0 = Σ− Σ satisfies Hn−2(Σ0) = 0
or Σ0 = {0}. Then either Σ is a geodesic sphere centered at the vertex of the cone or Σ
bounds a flat round ball.

Theorem 3.6 can fail for n = 1, because if the vertex angle is a multiple of 2π, you can
have a constant-curvature curve encircling the vertex not centered at the vertex.

Proof. The function u = 1+H 〈X,N〉, where N is the inward normal to Σ, has mean zero
over Σ by the first Minkowski formula (3.11). Observe that H �= 0.
We first note that Σ is connected. This can be proved by inserting a locally constant

nowhere vanishing function v over Σ in the index form Q. By Lemma 3.3 we have Q(v, v) �
0 and so Ric(N,N)+ |σ|2 ≡ 0, which implies H = 0, a contradiction to the first paragraph.
A straightforward calculation as in [BdC, Lemmas 3.5 and 2.23] (the only modification

is that the Ricci curvature appears in formula (i) of Lemma 2.23) shows that

∆u + (Ric(N,N) + |σ|2) u =
(
Ric(N,N) + (|σ|2 − nH2)

)
.

By remark 3.5 inequality (3.2) holds for u and we have

−
∫
Σ

{
Ric(N,N) +

(
|σ|2 − nH2

)}
(1 +H 〈X,N〉) dΣ � 0.

From the second Minkowski formula (3.12) we deduce

−
∫

Σ

{
Ric(N,N) + (|σ|2 − nH2)

}
dΣ � 0.
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As |σ|2 − nH2 � 0 and Ric(N,N) � 0, we obtain that Ric(N,N) = 0 and |σ|2 = nH2, so
that Σ is totally umbilic. Furthermore, Σ0 is empty since |σ|2 is bounded. We conclude by
applying Lemma 3.8. �
Remark 3.7. Instead of the Minkowski formulas, one could just use scaling and unit nor-
mal variations. Earlier work by Montiel [Mo, Cor. 7] considered more general, say non-
constant-curvature, warped products and showed that a smooth, compact, constant-mean-
curvature hypersurface which is a graph over one of the constant-mean-curvature slices
must be such a slice. For cones, the graph hypothesis is unnecessary (see our Lemma 3.8)
and his additional hypothesis on the Ricci curvature reduces to ours.

Lemma 3.8. Let Σn(n � 2) be a smooth, compact, connected, totally umbilic hypersurface
of constant nonzero mean curvature in the cone C over a smooth, connected submanifold
Mn of the sphere S

N . Then either Σ is a geodesic sphere centered at the vertex of the cone
or Σ bounds a flat round ball.

Proof. We reproduce Montiel’s arguments [Mo, pp. 732–733] since the result is not explic-
itly stated in his paper. Let N be the inward normal to Σ. As Σ is totally umbilic, we
have ∇2

Σ 〈X,N〉 = −(H2 〈X,N〉 +H) 〈 , 〉. So 〈X,N〉 is a concircular scalar field on Σ in
the sense of Tashiro’s paper [T].
If the function H2 〈X,N〉+H is identically 0 over Σ, then Σ is a geodesic sphere about

the vertex, since M is connected (〈X,N〉 is the same at maxima and minima of distance
to the vertex, hence that distance must be constant). Otherwise, by [T, Thm. 2 (III)], Σ
is a sphere with sectional curvature H2, because Σ is connected.
Let R, RΣ denote the curvature operators in C and Σ, respectively. We are going to

show that R ≡ 0 over Σ. First observe that R(u, v)X = 0 for any u, v ∈ TC∗, and
R(u, v)w = 0 for all u, v, w ∈ TΣ. The last equality follows from the Gauss equation
taking into account that Σ is totally umbilic and that RΣ is the curvature operator of a
sphere with sectional curvature H2. This implies that R(u, v)w = 0 for any u, v, w ∈ TC∗

along {x ∈ Σ : 〈X,N〉 �= 0} (when X is not tangent to Σ). But when X is tangent to
Σ (〈X,N〉 = 0) we have 〈∇Σ 〈X,N〉 , X〉 = −H |X |2, which is different from 0 out of the
vertex; so {p ∈ Σ : 〈X,N〉 = 0} is a hypersurface of Σ. We conclude that R ≡ 0 on all of
Σ.
Projecting Σ radially to M we obtain a set Ω. Taking into account the relation between

curvatures in C and in M we conclude that the sectional curvatures of M over Ω equal
1, and so RicM = n − 1 on Ω. Then the set (0,∞) × Ω is a region with zero sectional
curvature containing Σ. We can contract Σ by its inner normal to conclude that Σ bounds
a (round, flat) ball in (0,∞)× Ω. �
Corollary 3.9 (Isoperimetric Theorem). Let C be a cone with nonnegative Ricci curvature
over a connected submanifold Mn of the sphere S

N (n � 2). Then geodesic spheres about
the vertex uniquely minimize perimeter for given volume (unless C = R

n+1).

Proof. As Ric � 0, we have RicM � n − 1 by (3.1). Since n � 2, by Bishop’s Theorem
[C, Theorem. 3.9], |Mn| � |Sn|, and equality implies that M is isometric to S

n and so
C = Rn+1. Hence we may assume that |Mn| < |Sn|. Combine Theorems 2.2 and 3.6
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to obtain an isoperimetric domain which is either a geodesic ball about the vertex or a
ball with zero sectional curvature enclosed by a totally umbilic hypersurface. A domain
of the latter type satisfies the Euclidean isoperimetric inequality. Direct comparison using
|Mn| < |Sn| shows that a geodesic sphere about the vertex of the same volume has less
perimeter. �
Remark 3.10. Corollary 3.9 is sharp in the sense that if M is a round sphere, then geodesic
spheres have nonnegative second variation for fixed volume if and only if Ric � 0, and if
Ric = 0 (so that C is R

n), then isoperimetric domains are not unique.
It is still an open question, however, if the Ricci curvature hypothesis could be weakened

to the hypothesis that |M | < |Sn| of the Existence Theorem 2.2.

Remark 3.11. Bray and Morgan [BrM] apply Corollary 3.9 to identify isoperimetric do-
mains in certain warped products I ×M , such as Schwarzschild space.

Corollary 3.12. Let C be a cone with nonnegative Ricci curvature over a connected sub-
manifold Mn of the sphere S

N (n � 2). Then horizontal slices of an isoperimetric region
in C × R

m are geodesic spheres.

Proof. Otherwise symmetrization, replacing horizontal slices with geodesic spheres, would
decrease perimeter while preserving volumes. �
Remark 3.13. Similarly if n = 1 and |M | < 2π, then of course geodesic circles about the
origin uniquely minimize perimeter in C, and isoperimetric regions in C×R

m are geodesic
spheres about points in {0} × R

m.

Remark 3.14. Morgan [M2] shows that n-dimensional area-minimizing hypersurfaces in
cones sometimes pass through the vertex if n � 3.
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