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In this work we consider how the spheroidal shape of colloidal particles and their concentration in suspension
influence their electrokinetic properties in alternating (ac) electric fields, in particular, their electrophoretic mobility,
traditionally known as dynamic mobility in the case of ac fields. Elaboration of a formula for the mobility is based on
two previous models related to the electrokinetic response of spheroids in dilute suspensions, completed by means of an
approximate formula to account for the finite concentration of particles. At the end, semianalytical formulas have been
obtained in the form of the classical Helmholtz-Smoluchowski equation for the mobility with three frequency-
dependent factors, each dealing with inertia relaxation, electric double layer polarization and volume fraction effects.
The two resulting expressions differ basically in their consideration of double layer polarization processes, as one
considers only Maxwell-Wagner-O’Konski polarization (related to the mismatch between the conductivities of the
particles plus their double layers and the liquid medium), and the other also includes the concentration polarization
effect. Since in the frequency range typically used in dynamic mobility measurements the latter polarization has already
relaxed, both models are capable of accounting for the dynamic mobility data experimentally obtained on elongated
goethite particles in the 1-18 MHz frequency range. Results are presented concerning the effects of volume fraction,
ionic strength, and pH, and they indicate that the models are good descriptions of the electrokinetics of these systems,
and that dynamic mobility is very sensitive not only to the zeta potential of the particles, but also to their concentration,
shape, and average size, and to the stability of the suspensions. The effects of ionic strength and pH on the dynamic
mobility are very well captured by bothmodels, and a consistent description of the dimensions and zeta potentials of the
particles is reached. Increasing the volume fraction of the suspensions produces mobility variations that are only
partially described by the theoretical calculations due to the likely flocculation of the particles, mainly associated with
the fact that goethite particles are not homogeneously charged, with attraction between positive and negative patches
being possible.

Introduction

Concentrated suspensions of colloidal particles find applica-
tions in a wide variety of fields, including paints, ceramics, drug
dispersions, soils, or food processing, to mention a few.1 Very
often, such applications need procedures (either online or in the
quality control laboratories) for testing the physical state of
the suspension, particularly concerning its stability, particle size,
particle charge, and so forth. Light scattering techniques are very
suited to be used in online determinations, but they are applicable
to dilute or slightly concentrated systems, in spite of significant
improvements recently described.2

Methods based on the determination of some electrokinetic
properties of the dispersed particles are classical tools that are
gaining acceptance andapplicability, especially since the introduc-
tionof electroacoustic techniques.3 These permit the evaluation of
the frequency spectrum of the so-called dynamic electrophoretic
mobility, ue, a complex quantity that can be considered as the
alternating current (ac) counterpart of the direct current (dc) or
standard electrophoreticmobility. Interestingly, the electroacous-
tic response is a collective one and the measurements can be
carried out without the need of diluting the sample, thus altering

its state.4-7 In addition, the existing experimental techniques
provide very useful information on the in situ particle size
distribution, making use of the high-frequency relaxation of the
mobility or the attenuation of an acoustic wave through the
suspension.

The mobility spectrum is determined by the properties of the
particle itself (like size, shape, chemical composition, and surface
charge) and by the polarization state of the ionic atmosphere
around the particle (its electrical double layer or EDL). The
problemhas been solved extensively for spherical particles,5-8 but
fewer works have been devoted to the evaluation of the dynamic
mobility of nonspherical particles. One of the mathematical
complications of the solution in the case of such geometries is
the description of the polarization of the EDL of the particles in
the presence of an alternating electric field. This has been solved
analytically by Shilov et al.8,9 and numerically by Fixman,10

although, unfortunately, experimental tests of these descriptions
are practically nonexistent. Furthermore, the calculation of the
dynamic mobility of such particles needs the knowledge of the
unsteady (oscillatory) Stokes resistance, which is not solved for
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all geometries. In a series of theoretical works by Lowenberg
and O’Brien11 and Lowenberg,12-14 an approximate theory was
proposed for the evaluation of the dynamic mobility of dilute
suspensions of charged colloidal spheroids and cylinders, valid for
axial ratios (r=a/b; here a is the semiaxis parallel to the axis of
revolution, and b is the semiaxis in the perpendicular direction) in
the interval 0.1e re 10. In addition, it is assumed that the EDL is
thin, i.e., its thickness (theDebye length κ-1) is much smaller than
the smallest particle dimension.

The same authors provided an expression for a quantity of the
utmost importance, namely, the induced dipole coefficient, C:
under the action of the alternating field of frequency ω, E0 exp-
(-jωt) (j=

√
-1), an oscillating dipole d exp(-jωt) is induced in

the particle and its double layer that is customarily expressed in
terms of the dipole coefficient and the field:

d ¼ 4πε0εrmab
2CE0 ¼ 4πε0εrmab

2ðC1- jC2ÞE0 ð1Þ
where εrm is the relative electric permittivity of the liquid
medium, and ε0 is the permittivity of vacuum. As we will see
below, the frequency spectrum of the mobility is essentially
determined by that of C (a complex quantity, expressed in
terms of its real and imaginary components, C1 and -C2,
respectively), together with the inertia of the particles. Fre-
quency relaxations in C are also associated with significant
mobility relaxations, hence the importance of the dipole
coefficient in any rigorous description of electrokinetics.15,16

Lowenberg12-14 provided expressions for the dipole coefficient
of spheroids in the (high) frequency range including the
Maxwell-Wagner-O’Konski (MWO) relaxation, whereas
other expressions were published by Fricke,17 Sillars,18 or
Saville et al.19 Recall that such relaxation occurs when the
field frequency is so high (typically around a few MHz) that
ions in the EDL cannot follow the field oscillations for
distances long enough to polarize the double layer by unequal
accumulation on theþz and-z sides of the particle (the field is
applied in the z direction of a reference frame fixed to the
particle center).

These models do not consider the effects of the low-frequency
relaxation process or R-relaxation.20,21 This relaxation (typically
in the kHz region) takes place when the phenomenon of concen-
tration polarization cannot occur. We refer to the formation of a
gradient of electrolyte concentration around the particle, whereby
the salt concentration is increased on one side of the particle and
decreased on the opposite, with characteristic distance compar-
able to the particle dimensions in the field direction. It must be
mentioned that its effects are not relevant in electroacoustic
measurements, but they become dominant in the dielectric
relaxation of the suspensions, a subject that will be dealt with in
a forthcoming contribution.

In fact, the problem of the full relaxation spectrum character-
ization in the case of spheroidal particles was recently solved
numerically by Fixman,10 and analytically by Chassagne and
Bedeaux22 for κb g 1, a not very restrictive condition, as few
practical cases will not fulfill it. These authors proved that their
calculations agree with existing data for spheres23 in the whole
frequency range and with the dc mobility calculations previously
elaborated on spheroids byO’Brien andWard24 for the case of κb
. 1 and dc fields.

All the above-mentioned models assume that the suspen-
sions are dilute. It can be of interest to extend their calculations
to account for particle-particle interactions and thus making
them applicable to concentrated dispersions. In the case of
spheres, cell models have been envisaged and experimentally
tested with that purpose.25,26 Recently, Ahualli et al.27 pre-
sented an approximate analytical model describing the correc-
tions required to take into account hydrodynamic and
electrical interactions between particles when the suspensions
are moderately concentrated in solids. Although specifically
elaborated for spheres, the model is based on such general
arguments that it may be safe to apply it to spheroids, at least
for not too high (or too low) axial ratios. In fact, its validity has
been tested against numerical and analytical calculations, such
as those of O’Brien et al.28

In this contributionwe intend topresent new calculations of the
dynamic mobility of concentrated suspensions of spheroids. The
analytical models elaborated by Loewenberg and O’Brien11,12

(model I hereafter) and Chassagne and Bedeaux22 (model II in
what follows) will be completed by adding the semianalytical
corrections suited to consider finite volume fraction of solids. The
results will be compared to each other and to a set of experimental
data on the dynamic mobility of concentrated suspensions of
elongated goethite (β-FeOOH) particles.

Theoretical Background

In this work we intend to obtain a general expression for the
dynamic mobility of concentrated suspensions of spheroidal
colloidal particles as a correction to the classical Helmholtz-
Smoluchowski equation, valid for particles of any shape, pro-
vided the EDL is much thinner than the curvature radius at
any point of its surface, and that the surface conductivity is
negligible:29,30

uie ¼
εrmε0ζ

ηm
f i1 3 f

i
2 3 f

i
3 ð2Þ

where the superscript i (= ),^) indicates the parallel or perpendi-
cular orientation of the symmetry axis of the particle with respect
to the field, ζ is the zeta potential, and ηm is the viscosity of the
dispersion medium. The factor f1 gives information of the inertia
effects of the particle due to the oscillating movement, f2
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accounts for the EDL polarization, and f3 corrects the expres-
sion so as to consider finite volume fractions, that is, particle-
particle interactions.

The problem is solved for the parallel and perpendicular
orientations, and, considering that the orientation of the spheroid
will be random, the measured mobility will be given by31

ue ¼ u )

e þ 2u^e
3

ð3Þ

This expression can be applied provided the Brownian motion
inhibits the tendency of the particles to align in the field direction,
a requirement that is achieved if the field strength obeys the
following inequality:32,33

E0
2 ,

kBT

εrmε0V
ð4Þ

where kB is the Boltzmann’s constant, T is the absolute tempera-
ture, and V is the particle volume. For a rod of length 600 nm
and maximum cross-sectional diameter 120 nm (the approxi-
mate dimensions of our particles) inwater and room temperature,
this condition requires E0 , 45 kV m-1. In our electroacoustic
determinations, the applied field ranges between 1 and 12kVm-1,
and hence orientation effects can be neglected in most cases.
Inertia Effects. The inertia effects for a colloidal particle

undergoing small amplitude oscillationswith angular frequencyω
in a viscous incompressible fluid can be taken into account by
writing the f1 functions as follows, in terms of the drag coefficient
DH

i and the added mass Ma
i for each orientation i = ), ^:10

f i1 ¼
Di

H -jωMi
a

Di
Hþ jωM

ð5Þ

whereM is the particle mass. Expressions for these quantities are
provided in Appendix 1.
Contribution of EDL Polarization. This is represented by

the factor f2, which is a function (among other parameters) of the
extra conductivity of the fluid due to the existence of an EDL.We
restrict ourselves to the main results of the models. For a wider
discussion, the reader is referred to the original papers.11,14 In
order to introduce the effects of EDL conductivity and nonzero
particle permittivity, Loewenberg13 derived the following expres-
sion (model I):

ðf i2ÞI ¼
1þ λ2E

1þ ~KSDimi
aþ½ðεrp=εrmÞmi

a�λ2E
, i ¼ ),^ ð6Þ

with λE=(1- j)(εrmε0ω/Km)
1/2, ma

i as defined in eq A.3, and εrp
being the relative permittivity of the particles. The excess con-
ductivity of the EDL is represented by the dimensionless surface
conductivity ~Ks = Ks/d

iKm, Km being the conductivity of the
dispersionmedium, and di the minimum particle dimension in the
direction perpendicular to the particlemotion (minor semiaxis for
prolate spheroids in both orientations and oblate spheroids
moving perpendicular to their symmetry axis, andmajor semiaxis
for oblate spheroids moving along their symmetry axis). The
value of the surface conductivity Ks can be obtained from ζ using

the well-known Bikerman equation,29 which, for a symmetric
z-valent electrolyte reads:

KS ¼ 2e2z2103cNA

kBTK 3

0
@Dþ ½expð-zeζ=2kBTÞ-1� 1þ 3mþ

z2

 !

þD-½expðzeζ=2kBTÞ-1� 1þ 3m-

z2

� �1A ð7Þ

where e is the elementary charge,NA is the Avogadro number, c is
the commonmolarity of ions,D ( are the diffusion coefficients of
the ions, and

m( ¼ 2εrmε0
3ηmD(

kBT

e

� �2

ð8Þ

are the dimensionless mobilities of the respective ions. The
expression of the reciprocal Debye length κ is as follows for
whatever ionic composition of the liquid medium (N ionic species
of valencies zR, and molar concentrations cR):

K ¼
PN
R¼1

103NAcRe
2z2R

εrmε0kBT

0
BBBB@

1
CCCCA

1=2

ð9Þ

In the case of prolate spheroids, the factors Di in eq 6 are
defined for different axial ratios and orientations as (seeAppendix
1 for the symbol meaning):

D ),^ ¼ b3
F

),^
d

Vð1þm

),^
a Þ2

ð10Þ

Finally, Lowenberg’s calculations also provide a formula for
the high frequency value of the dipole coefficient, for the two
orientations:

ðC ),^ÞI¼ 1

3

½ð ~KSD

),^ -1Þþ ðεrp=εrm -1ÞλE2�ð1þm

),^
a Þ

1þ ~KSD ),^m

),^
a þð1þm

),^
a εrp=εrmÞλE2

ð11Þ

As mentioned, Chassagne and Bedeaux22 carried out a differ-
ent evaluation of the induced dipole coefficient of a spheroidal
particle, based on that of spheres and for monovalent and
symmetric electrolyte, both ions having identical diffusion coeffi-
cientsDþ=D-�D. Their calculation is valid for arbitrary values
of the zeta potential and for κa g 1.

The proposed expression for the induced dipolar coefficient of
a prolate spheroid is (model II):

ðCiÞII ¼ K
�
p -K

�
mþ 3ð1-LiÞ½K )þKU �þ 3LiK^

3K
�
mþ 3LiðK�

p -K
�
mÞþ 9Lið1-LiÞ½K )ðb=r0Þ3þKUðb=r1Þ3 -K^�

ð12Þ
where the superscript i applies as above, and the meaning of the
symbols is explained in Appendix 2. From this, the expression of
(f2

i)II follows:

ðf ),^
2 ÞII ¼ 1-C ),^ b

r1

� �3

ð13Þ

(31) Keizer, A.; van der Drift, W. P. J. T.; Overbeek, J. T. G. Biophys. Chem.
1975, 3, 107–108.
(32) Landau, L. D.; Lifshitz, E. M.; Pitaevskii, L. P. Electrodynamics of

Continuous Media; Pergamon: Oxford, 1984.
(33) Hunter, R. J. Foundations of Colloid Science; Clarendon Press: Oxford,

1984; Vol. 1.



10590 DOI: 10.1021/la9013976 Langmuir 2009, 25(18), 10587–10594

Article Rica et al.

with

r1 ¼ bþK-1 2:5

1þ 2 expð-KbÞ ð14Þ

Consideration of Finite Volume Fraction.When the colloi-
dal suspension is not dilute, interactions between particles have to
be accounted. We will use an expression obtained for spheres by
Ahualli et al.,27 according to which hydrodynamic and electrical
interactions between particles can be accounted for by means of
the factor

f i3 ¼
ð1-φÞ

ð1-φCiÞð1þφΔF=FmÞ
ð15Þ

where φ is the volume fraction of solids, and ΔF, the density
contrast, is the difference between the particle (FP) and dispersion
medium (Fm) densities. In this expression, the numerator accounts
for the hydrodynamic interactions. The first factor in the denomi-
nator (1-φCi) includes the electrical interactions between par-
ticles, and the second one (1 þ φΔF/Fm) ensures that we are
referring the particle motions to a zero-momentum frame, as
required for the determination of the true mobility from electro-
acoustic techniques. Note that by electrical interactions we mean
those associatedwith the effect of the field produced by the dipole
induced on a given particle (by the external field), on the velocity
of a neighbor particle. The reader is referred to the original paper
for a wider discussion of the derivation of this expression.

Experimental Section

Materials. Rod-like goethite particles were purchased from
Lanxess, USA, under the trade name of Bayferrox-920. As shown
in Figure 1, they have uniform shape and moderate polydisper-
sity. Ranges for major and minor semiaxes where a ∈ [150-400]
nm and b ∈ [40-60] nm, respectively, as obtained from measure-
ments performed on scanning electron microscopy (SEM) pic-
tures. Fitting log-normal distributions to the datawe obtained a=
(290( 30) nm and b=(50( 6) nm, giving an axial ratio r=a/b=
5.8( 0.6. Light scattering techniques were used for obtaining the
sizes in situ, using the methods and devices described in ref 2.
Dynamic light scattering measurements yielded an average
hydrodynamic radius of 190 nm, and a value of 175 nm was
obtained as the radius of gyration using static light scattering.
Methods. The powder was first dispersed in deionized and

filtered water (Milli-Q Academic, Millipore, France) at a con-
centration of about 20 g/L. The suspensions were cleaned by
successive cycles of centrifugationand redispersion inwater.After
this cleaning procedure, aqueous suspensions of goethite particles
were prepared with different concentrations of the electrolyte
(KCl), particle concentrations, and pH values. The suspensions
were left to equilibrate for at least 48 h under mechanical stirring.
Nevertheless, goethite suspensions with even moderate volume
fractions were extremely viscous, as reported by Blakey and
James,34 who explained such behavior by considering that
goethite particles tend to flocculate in a similar manner as clay
particles in water, because the particles have two types of charged
groups on their surface. Such high viscosity made it difficult
working with elevated volume fractions or low particle charge
conditions, limiting the range of measurements performed to
volume fractions up to 8% and pH up to 8.

Dynamic mobility measurements were carried out in an elec-
troaocustic Acoustosizer II device, manufactured by Colloidal

Dynamics, Inc. (USA). All measurements were performed at
25.0 ( 0.5 �C.

Results and Discussion

Model Predictions. Figure 2 shows the main features of the
real parts of the functions f1, f2 and their product f1� f2. As
observed, f1 (as above-mentioned, it is the same for both models)
displays a single relaxation process (the inertia relaxation), by
virtue of which the mobility tends to zero above a certain field
frequency ωi, approximately given by ωi = νm/b

2 (νm is the
kinematic viscosity of the solvent), or 14 MHz for the conditions
depicted in Figure 2, in good agreement with the model predic-
tions. Note that the relaxation in the mobility is due to the fact
that, at such frequencies, there is no time for the electro-osmotic
flow of liquid around the particle to fully develop.

Figure 1. SEM picture of the goethite particles used.

Figure 2. (a) Frequency dependences of the real parts of the
functions f1 (eq 5) and f2 (according to model I, eq 6, and model
II, eq 13) and f1 � f2, for prolate particles 100 nm in minor semi-
axis and 500 nm in major semiaxis, in a 1 mM KCl solution, with
a zeta potential of 100 mV. Dash-dotted lines: model I; solid
lines: model II. (b) Same as panel a, but for the imaginary part
of f1 � f2.

(34) Blakey, B. C.; James, D. F. Colloids Surf., A 2003, 231, 19–30.
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The function f2 is model-dependent, as it describes the polar-
ization of the EDL. The differences between the two models are
clear, sincemodel II predicts two relaxations andmodel I includes
only one. This is because the latter does not consider the con-
centration polarization mechanism,20,21 unlike model II, even if
the approach is based on a simplified theory in this case. The
effects of thesemechanisms on themobility spectrumare linked to
the fact that concentrationpolarization reduces the strength of the
induced dipole, and hence increases the mobility15,30 (c.f. eq 1), so
that when a certain frequency (the R-relaxation frequency, ωR) is
reached and the process is thus absent, the dynamic mobility
decreases. The value ofωR (2D

*/b2,D* being the average diffusion
coefficient of ions in solution) corresponds to 64 kHz in the
case depicted in Figure 2. The R-relaxation appears to be well
described by model II, although in any case it does not produce a
very significant effect, mainly when compared to the other
frequency dependences. For frequencies above R-relaxation,
another feature is observed in Figure 2, which is predicted very
similarly by both models. This is the so-called MWO relaxation,
leading to an increase in the mobility; the process is associated
with the decrease in the dipole coefficient because ions cannot
move along distances large enough between two successive field
oscillations. As a consequence, the polarization of the EDL
associated with the conductivity mismatch between particles
and medium cannot occur. The relaxation takes place at a
frequency ωMWO=D*/κ-2, or 34 MHz, in agreement with the
results in Figure 2.

The behavior of the product f1�f2 is a consequence of the three
mentioned processes and their relative position in the electro-
acoustic spectrum.Hence itmay appear quite different depending
on the suspension properties. In the case shown, the inertia
decrease starts before the MWO relaxation takes place, so the
characteristic increase associated with this process is masked, and
only a small plateau is observed in the real part of the mobility at
frequencies above 1 MHz.

The full mobility spectrum, including the factor f3 (eq 15), is
displayed in Figure 3, where both the real and imaginary
components of ue are shown as a function of frequency and
volume fraction, for the two models. The effect of f3 is a decrease
in the mobility, a well-known consequence of particle concentra-
tion, whereby particles obstruct each other in their movement
following the field, and the mobility magnitude is consequently
reduced.

An essential point in the comparison between the twomodels is
the evaluation of the effect of axial ratio variations for the case of
interest, prolate spheroids in suspension. This has been done in
Figure 4, where the dynamic mobility components are plotted for
different axial ratios (and fixed minor axis). As observed, the
models predict different mobility spectra: at low frequencies, the
mobility increaseswith r inmodel I, and is not affectedby the axial
ratio in model II. Above the MWO relaxation (with coincident
relaxation frequencies in both approaches), a decreasing trend is
observed for both models, although the mobility is systematically
larger in model I.

The low-frequency increase of the mobility with r observed in
model I is a well-known feature of the mobility of colloidal
particles: it increases with the product κl, l being the characteristic
size of the particle. Model II does not show this characteristic
because of the assumption made in its development: Chasagne
and Bedeaux considered that the main contribution to the
polarizaton of prolate spheroids comes from ionic motion in
the direction of its minor axis, neglecting the effects of conductiv-
ity along the major axis. The particle shape, that is to say, the size
of the major axis, is accounted for by the depolarization factors

Li (see Appendix 2), and only a slight effect comes from this
contribution.22,24

Overall Behavior of the DynamicMobility of Goethite. In
Figure 5 we show an example illustrating the main features of the
mobility spectrum of prolate goethite particles. The experimental
conditionswere pH4, 0.1mMKCl, and 4%volume fraction. The
real part data allows one to appreciate the end of the MWO rise
and the start of the inertia decrease. Note that the accuracy of the

Figure 3. Real (a) and imaginary (b) components of the dynamic
mobility of suspensions of prolate particles like in Figure 2, but for
particles with a major semiaxis of 1000 nm and different volume
fractions, as indicated. Dash-dotted lines: model I; solid lines:
model II.

Figure 4. Real (a) and imaginary (b) components of the dynamic
mobility of suspensions of prolate spheroidal particles (minor
semiaxis b=100 nm; axial ratio r as indicated) as a function of
frequency. Zeta potential: 100 mV; 1 mM KCl solution; volume
fraction: 1%. Dash-dotted lines: model I; solid lines: model II.
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real part is much higher than that of the imaginary component
(compare the size of the error bars) because of the small values of
the phase angle characteristic of these systems. Also, the accuracy
is better at low than at high frequencies, and hence the main
weight of the fittingwill be associatedwith the real part, especially
in the low-frequency side of the spectrum. In all cases, the fitting
was performed by the weighted least-squares method, using the
zeta potential ζ and the short semiaxis b as parameters, whereas
the axial ratio was fixed to 5.8, the value obtained from SEM
pictures. Note that, although model I is not strictly applicable
because of the low values of κb (typically around 3), the two
approaches are capable of properly fitting the data, with negli-
gible differences in either the zeta potential or the axis dimen-
sions. These considerations apply to all the obtained data. In the
following, in order to present the results more clearly, we will not
include the error bars in the plots, but we have found that the
relative errors are in all cases similar to those shown in Figure 5.
Effect of Volume Fraction.As depicted in Figure 6, both the

real and imaginary components of the mobility are reduced by
increasing particle volume fraction, as theoretically predicted.
However, neither of the models can account properly for the
observed trends of the experimental data. The best-fit parameters
shown in Table 1 indicate that a slight decrease in both ζ and b
with volume fraction is required to fit the data.

This apparent inconsistency must be related to the model used
to account for the interactions, strictly applicable to monodis-
perse, uniformly charged spheres. We already mentioned the
tendency of concentrated suspensions of elongated goethite
particles to be flocculated, partly due to the fact that the charge
on the particle surface can be different (even in sign) for different
crystal faces, a situation impossible to take into account in the
frequency domain, the only approaches having been elaborated
for dc data.35 Nevertheless, it is possible to use the data presented
in Table 1 in order to obtain average values of ζ and b, which
might be considered representative of goethite in 0.5mMKCl and
pH 4 for the whole range of volume fractions.

It is also worth pointing out an additional feature of the data in
Figure 6. This is the change in tendency indicated by the dash-
dotted arrows: small plateaus are observed in the real part (and
shoulders in the imaginary component). These are presumably
related to the fact that theMWOprocess takes place for frequencies
comparable to those corresponding to the inertial decay. Finally, it
is necessary to mention that the fits do not properly reproduce the

high frequency decrease: the tendency to flocculation of our
systems should give rise to an increase in its actual polydispersity,
leading to a wider inertial decay in the electroacoustic spectra.
DynamicMobility and Ionic Strength.Figure 7 displays the

effect of the ionic strength on the dynamic mobility (only the real
part will be considered, according to our comments above
concerning accuracy) of a suspension with 4% volume fraction
of goethite particles and pH4. The best-fit parameters tomodels I
and II are detailed in Table 2. The real part of the mobility
undergoes a decreasewhen the salt concentration is increased, and
the data in Table 2 demonstrate that this decrease manifests in a
decline in zeta potential with KCl concentration, the expected
EDL compression behavior when the concentration of an in-
different electrolyte is raised. Such a reduction in zeta gives rise to
a more likely aggregation between particles, this in turn yielding
a larger mean size. This may explain the trend of the inertia
relaxation frequency toward lower values, displayed in Figure 7.
We note that both models describe the data with great accuracy,
and, for the conditions of our experiments, they are absolutely
compatible, and they can both be used with confidence for
obtaining the zeta potential of elongated particles from their
dynamic mobility spectrum.

Concerning the MWO rise of the real part of the dynamic
mobility, the Figure indicates that it is clearly reduced until
becoming unobservable when the ionic strength is increased.
The explanation of such a decrease in the amplitude of the

Figure 5. Real and imaginary components of the dynamic mobi-
lity spectrum in a goethite suspension containing 4% volume
fraction of solids, in a 0.1 mMKCl solution at pH 4. Experimental
data are shown togetherwith the predictions ofmodels I and II; the
best fit parameters (zeta potential and short semiaxis) are shown in
the inset. Dash-dotted lines: model I; solid lines: model II.

Figure 6. Same as Figure 5, but in a 0.5 mMKCl solution and for
different volume fractions, as indicated. (a) real component of the
mobility; (b) imaginary component. The best-fit parameters (mod-
el I, dash-dotted lines; model II, solid lines) are shown in Table 1.

Table 1. Best-Fit Values of the Zeta Potential ζ and the Minor

Semiaxis b Corresponding to the Data in Figure 6a

ζ/mV b/nm

volume fraction φ/% model I model II model I model II

4 64 70 97 113
6 56 61 80 92
8 48 52 67 77

aElectrolyte concentration 0.5 mM KCl; pH 4.

(35) Velegol, D.; Anderson, J. L.; Solomentsev, Y. In Interfacial Electrokinetics
and Electrophoresis; Delgado, A. V., Ed.; Marcel Dekker: New York, 2002; pp
147-172.
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MWO process comes from two facts. One is the already men-
tioned trend of the inertia relaxation toward lower frequencies,
partly masking the MWO process. The second reason can be
understood from the observation that the surface conductivityKS

of the particles plays a decreasing role on their electrokinetics
when Km is increased (for instance, in eq 6 ~Ks=Ks/d

iKm is the
quantity that matters). This makes the induced dipole coefficient
more negative and closer to its high frequency value, so that the
importance of the MWO relaxation is diminished.
The Effect of pH. Finally, Figure 8 shows the real component

of the dynamicmobility of suspensions at pH4, 6, and 8, andwith a
4% volume fraction of solids in 5 mM KCl. As before, the lines
correspond to the fittings performedusing the twomodels, with the
parameters displayed in Table 3. Note that the positive mobility
decreases when the pH is increased in the 4-8 range for all
frequencies. This is a clear indication that goethite has an isoelec-
tric point above pH 8, and in fact other reported results34,36,37

indicate a value around pH 9. Again, both models predict very
similar mobility trends, and the tendency of aggregation expected
when the isoelectric point is approached manifests in a reduc-
tion of the frequency of the inertia relaxation, associated with a
larger average particle size.

Conclusions

The main aim of this work was to elaborate on models of
the electrokinetics of elongated particles in ac fields. We have
considered shape and zeta potential effects, aswell as the influence
of volume fraction on the dynamic mobility of prolate spheroids.
Two theoretical models (differing in their description of the
double layer polarization mechanisms) suited to dilute suspen-
sions (but not compared before to each other) have beenmodified
to account for the finite volume fraction of solids. The two
approaches have been used to obtain the zeta potential and
average dimensions of elongated goethite particles. It has been
found that for the range of dimensions and zeta potentials of our
particles, and in the frequency interval experimentally accessible,
the models give a limited account of the observed trends of
the experimental data with volume fraction. Fitting of the data
requires allowing the zeta potential and particle dimensions to
change with the volume fraction. This is manifestation of the fact
that goethite particles have a great tendency to flocculate, partly
due to the inhomogeneity (even in sign) of the charge distribution
on the particle surface. On the contrary, regarding the effects of
ionic strength and pH on the dynamic mobility, the two models
perform with a great accuracy, and lead to a coherent character-
ization of the particle dimensions and surface potential.
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Appendix 1

Lawrence and Weinbaum38 proposed the approximate
formula

Di
H ¼ -ηdi Fi

0þ λiF i
dþðλiÞ2 Mi

a

FmðdiÞ3 þ ðFi
0Þ2
6π

-Fi
d

 !
λi

1þ λi

2
4

3
5

ðA:1Þ
for the drag coefficient of an ellipsoid, where

λi ¼ ð1-jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðdiÞ2
2νm

s
ðA:2Þ

The other quantities are given for both prolate and oblate
spheroids in refs 12 and 13, but here we will focus on the case

Figure 7. Effect of ionic strength (KCl concentration) on the
dynamic mobility of goethite particles in a suspension containing
4% of solids by volume. The pH is 4. The best-fit parameters
(model I, dash-dotted lines; model II, solid lines) are shown in
Table 2.

Table 2. Best-Fit Values of the Zeta Potential ζ and the Minor

Semiaxis b Corresponding to the Data in Figure 7a

ζ/mV b/nm

ionic strength (KCl mM) model I model II model I model II

0.1 64 70 82 75
0.5 64 70 97 113
1 59 64 86 96
5 35 35 108 103

aVolume fraction: 4%; pH 4.

Figure 8. Real component of the dynamic mobility of goethite
particles as a function of the frequency of the field, for the pH
values indicated. In all cases, theKCl concentration in themedium
is 5 mM, and the volume fraction of solids is 4%. The best-fit
parameters (model I, dash-dotted lines; model II, solid lines) are
shown in Table 3.

Table 3. Best-Fit Values of the Zeta Potential ζ and the Minor

Semiaxis b Corresponding to the Data in Figure 8a

ζ/mV b/nm

pH model I model II model I model II

4 35 35 108 103
6 12 14 146 194
8 10 10 283 291
aVolume fraction: 4%; ionic strength: 5 mM KCl.

(36) Antelo, J.; Avena, M.; Fiol, S.; L�opez, R.; Arce, F. J. Colloid Interface Sci.
2005, 285, 476–486.
(37) Allison, S. J. Colloid Interface Sci. 2009, 332, 1–10. (38) Lawrence, C. J.; Weinbaum, S. J. Fluid Mech. 1988, 189, 463–489.
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of prolate particles (r> 1), like the ones we used in our
experiments:

Added mass (Ma

),^; in dimensionless form, ma

),^):

m )
a ¼

M )

a

FmV
¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffi
r2 -1

p
-rcosh-1ðrÞ

cosh-1ðrÞ-r
ffiffiffiffiffiffiffiffiffiffiffi
r2 -1

p

m^
a ¼ M^

a

FmV
¼ 1

1þ 2m )

a

ðA:3Þ

Steady Stokes resistance:

F )

0 ¼4πr
1þm )

a

1=2þ r2m )

a

F^
0 ¼ 8πr

1þm )
a

3=2þ r2m )
a

ðA:4Þ

Basset force:

F

),^
d ¼ ð1þm ),^

a Þ2I ),^ ðA:5Þ
with:

I ) ¼2πr2
r2 -2

ðr2 -1Þ3=2
cos-1 1

r
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 !

I^ ¼ π
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r

� �
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Appendix 2

The quantities appearing in eq 12defining the dipole coefficient
have the following meanings and expressions:

Complex conductivities of bulk electrolyte and particles:

K
�
m ¼ Kmþ jωεrmε0

K
�
p ¼ jωεrpε0

ðA:7Þ

Complex conductivities associated with fluxes of ions along or
perpendicular to the surface of the particle in the EDL:

K ) ¼ -KmIn;eq -
2J1Km½Ic;eq2 -In;eq

2�
J2ðr0=bÞ3 exp½λnðr0 -bÞ�

K^ ¼ 2J1KmIn;eq

J2ðr0=bÞ3 exp½λnðr0 -bÞ�

ðA:8Þ

where:

In;eq ¼ -1

b2

Z r0

b

x cosh
eΨeq

kBT

� �
-1

" #
dx

Ic;eq ¼ 1

b2

Z r0

b

x sinh
eΨeq

kBT

� �" #
dx

r0 ¼ bþK-1 1þ 3

Kb
expð-eζ=2kBTÞ

� �
ðA:9Þ

In these integrals Ψeq(r) is the equilibrium electric potential at
distance r of the center of a spherical particle of radius b, and x=
(r - b). Other parameters needed are

λn ¼
ffiffiffiffiffi
jω

D

r
ðA:10Þ

J1 ¼ 1þ λnr0 ðA:11Þ

J2 ¼ 2þ 2λnbþ λn
2b2 ðA:12Þ

For prolate spheroids, the depolarization factors can bewritten as
follows:

L )¼ 1

1-r2
þ r

ðr2 -1Þ3=2
lnðrþðr2 -1Þ1=2Þ

L^ ¼ 1-L )
2

ðA:13Þ

Finally, the correction for the fluid movement is introduced by
introducing in eq 12 the quantity39

KU ¼ -Kmm
eζ

kBT
Ic;eq

In;eq -γIc;eq-1=4

ðIn;eq -γIc;eqÞ-J2=ð2J1Þðr0=bÞ3 expðλnðr0 -bÞÞ -1

" #

ðγ ¼ In;eq=Ic;eqÞ ðA:14Þ

(39) Note the missing minus sign at the beginning of this expression in the
original paper.


