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This paper describes an investigation on the electric permittivity of concentrated suspensions of non-
spherical particles, specifically prolate spheroids. It is first discussed how the determination of the fre-
quency (x) dependence of the electric permittivity (a phenomenon traditionally known as LFDD or
low-frequency dielectric dispersion) can provide ample information on the properties of the dispersed
material (shape, size, state of aggregation, conductivity) and of its interface with the (typically aqueous)
medium. The basic quantities are the strength and frequency dependence of the dipole moment induced
by the applied field, and its dimensionless counterpart, the dipole coefficient, C*(x). It is explicitly shown
how the (complex) relative permittivity of the suspension, e�r ðxÞ, can be calculated from it. Two theoret-
ical models on the polarizability of spheroidal colloidal particles will be used as theoretical starting point;
one of them (Model I) explicitly considers two relaxations of the permittivity, each associated to one of
the particle axes. The other (Model II) is a semi-analytical theory that yields an LFDD practically indepen-
dent of the axial ratio of the particles. Both models are aimed to be used if the suspensions are dilute (low
volume fraction of solids, /), and here they are generalized to concentrated systems by means of a pre-
viously published approximate evaluation of the permittivity of concentrated suspensions. Experiments
are performed in the 1 kHz–1 MHz frequency range on suspensions of elongated goethite particles; the
effects of ionic strength, pH, and volume fraction are investigated, and the two models are fitted to the
data. In reality, taking into account that the particles are non-uniformly charged (a fact that contributes
to their instability), two zeta potentials (roughly representing the lateral surface and the tip of the spher-
oid) are used as parameters. The results indicate that, when experimental conditions are optimal (high
ionic strength and low zeta potential), the suspensions do indeed display two relaxations, that we ascribe
to the long axis (and to flocs likely present in suspension) and to the short one. The permittivity increases
with ionic strength, a result found with other systems, and compatible with a zeta potential that, on the
average, decreases with ionic strength, an equally well known result, consequence of electric double layer
compression. Another reasonable finding is the increase of estimated average dimensions and the
decrease of electrokinetic potentials when the pH is close to the isoelectric point of goethite (around
pH 9). The increase in volume fraction, finally, produces an overall increase in the permittivity, and
the approximate model used for the evaluation of volume fraction variations can describe properly these
effects, with basically constant zeta potentials and dimensions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The electrokinetics of concentrated colloidal suspensions of
nonspherical particles has received limited attention, considering
the experimental and theoretical difficulties involved. Shape
effects are very often neglected in the investigation of disperse sys-
tems, as nonspherical ‘‘model” particles (with controlled geometry,
polydispersity and composition) are not readily accessible, unlike
spheres, many of them commercially available. In addition, the
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theoretical description of electrokinetic phenomena in suspensions
of particles with geometry other than spherical (spheroidal, cylin-
drical, planar) although developed under certain limiting situations
in the past [1,2], has quite recently received attention and an exact
description [3,4]. For that reason, the scarce existing experimental
data have typically been described in terms of qualitative models
or under the assumption that an equivalent-sphere formulation
suffices, something strictly valid only in the so-called Smoluchow-
ski limit (low surface conductivity, and electric double layer thick-
ness much smaller than the particle radius).

The information is even more limited if we consider the more
technologically interesting case of concentrated suspensions. In
this case, there are only some experimental investigations on clays
[5], which take advantage of electro-acoustic techniques [6]
allowing the determination of the electrophoretic mobility of
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concentrated suspensions in alternating electric fields (the dy-
namic mobility). Available instruments and theoretical models
have the capability of calculating both the zeta potential and aver-
age size (assuming spherical shape) of the particles in concentrated
slurries, as usually found in natural soils or technological applica-
tions. However, the assumption of sphericity has been shown to
lead to erroneous particle sizes [6] and a consequently poor char-
acterization of the particles is obtained. Notwithstanding these
limitations, correct characterizations are mandatory for many
applications [7], in which an exact knowledge of the electrical state
of the particle surface, and from this the electrostatic interaction
between particles, is a necessary requirement.

Here it should be mentioned that there is another electrokinetic
phenomenon which is related to electro-acoustics in the sense that
it is based on the application of alternating fields, and that mea-
sures a collective property of the suspension. This is the so called
low-frequency dielectric dispersion (LFDD), which consists of the
evaluation of the electric permittivity of a colloidal suspension as
a function of the frequency of the electric field. This phenomenon
has been shown to be very sensitive to the polarization state of
the solid–liquid interface and the properties of the particles them-
selves [1,8–12]. Again in this case, neither theoretical nor experi-
mental works exist dealing with concentrated suspensions of
nonspherical particles, and only some studies concerning dilute
systems (spheroidal [13] or planar [14,15] particles) have been
reported.

One of the mathematical complications involved in the theoret-
ical evaluation of electrokinetics in such geometries is the descrip-
tion of the polarization of the electrical double layer (EDL) of the
particles in the presence of an alternating electric field. The full
solution of this problem was recently made available numerically
by Fixman [3] in the case of dilute suspensions, and analytical or
semi-analytical treatments are also available in some situations
[16,17]. Any correct analysis should predict at least two main
relaxation processes in the frequency dependence of the EDL polar-
ization (and hence of the electric permittivity). On one hand, the d
or Maxwell–Wagner-O’Konski (MWO) relaxation process appears
typically in the MHz frequency range, and it is hence especially
important in electro-acoustic experiments, as they are mostly sui-
ted to be used in that range. The MWO process is due to the mis-
match of both permittivity and conductivity values between
particles and solution [10], and it is usually of minor importance
in dielectric measurements, considering that the amplitude of the
associated relaxation tends to be low.

In fact, the main contribution to the dielectric relaxation pro-
cesses in suspensions comes from another mechanism: it is related
to the concentration polarization phenomenon. We are referring to
the field-induced concentration gradient of neutral electrolyte on
both sides of the particle along the direction of the field. We will
give a very short description here (see Refs. [1,2,10,11] for more
details). Consider a particle bearing a negative surface charge, dis-
persed in an electrolyte solution. Assume that an electric field (sta-
tionary, at the moment) is applied in the +z direction (from left to
right of the page, say), inducing fluxes of ions both in the bulk solu-
tion and in the EDL. Because the double layer is enriched in coun-
terions (cations in the case considered), the field will drive them
towards the right hand side of the particle; in solution, the concen-
tration of counterions is smaller than it is in the EDL, so the coun-
terions brought tangentially by the field in the EDL cannot be
driven at the same rate in the bulk. Conversely, coions are driven
from the bulk to the right hand side of the particle; because they
are so scarce in the EDL, their flux will be considerably reduced
there. As a consequence, both counterions (cations) and coions (an-
ions) are accumulated on that side: briefly, one can say that excess
EDL cations cannot travel into the bulk, and coions from the bulk
cannot go into the EDL. We are faced with an increase in neutral
salt concentration on the right and a subsequent decrease on the
opposite side (the concentration polarization). The characteristic
dimension of the region at which such accumulation and depletion
occur is comparable to the particle size. This polarization induces
large diffusion electric currents around the particles, lagging be-
hind the electric field, and these displacement currents are macro-
scopically observed as an increased electric permittivity.

The characteristic relaxation frequency will be of the order of
2D=‘2, where D is some average diffusion coefficient of ions and ‘

is the characteristic dimension of the concentration perturbation
(of the order of the particle size). Assuming a solution of simple
ions with a diffusion coefficient of, say, 10�9 m2/s, and a particle
dimension ‘ = 150 nm, the a-relaxation will occur at about
9 � 104 rad/s or 14 kHz. This is the reason why this process is con-
sidered a low-frequency one (as compared to the MWO relaxation
-or to molecular or atomic relaxations, occurring at still higher fre-
quencies), and hence the denomination of low-frequency dielectric
dispersion (LFDD) given to the frequency dependence of the per-
mittivity in this region. Note that when the field frequency is suf-
ficiently above that value, the concentration gradient cannot be
built, and the electric permittivity relaxes to its high frequency va-
lue [9,10]. When the particles have two or more characteristic size
parameters, like the two axial dimensions in spheroids, the prob-
lem involves the additional difficulty of distinguishing the contri-
butions of ionic fluxes in either axis direction, and how these
fluxes contribute to the observed experimental behavior.

It is worth to mention that, important as this relaxation is for
the permittivity of the suspension, it bears little significance in dy-
namic mobility determinations, where the MWO and the inertia
processes are dominant. It can thus be said that LFDD and elec-
tro-acoustic techniques are appropriate to be used in different fre-
quency ranges and can be considered as complementary
electrokinetic tools [18].

All the above mentioned models assume that the suspensions
are dilute. It is of interest to extend their calculations to account
for particle–particle interactions and thus make them applicable
to concentrated dispersions. Since a general model of the electroki-
netics in suspensions of concentrated non-spherical particles is
lacking, we propose in this paper the use of an approximate
semi-analytical model, reported by Delgado et al. [19]. These
authors described the corrections that were required in electric
permittivity calculations in order to take into account that the sus-
pensions are moderately concentrated in solids. Although specifi-
cally elaborated for spheres, the model is based on such general
arguments that it may be adequate to apply them to spheroids,
at least for not too large axial ratios. In a recent work [20] we sug-
gested a similar approach for the analysis of the electro-acoustic
response of concentrated suspensions of prolate spheroids, both
experimentally and theoretically.

Our aim in this paper is to contribute to our knowledge of the
LFDD of spheroidal particles, applying the technique to suspen-
sions of elongated goethite (b-FeOOH) moderately concentrated
in solids. Electric permittivity determinations will be presented,
considering the effects of the volume fraction of solids, the pH,
and the ionic strength of the medium. These experimental data
will be compared to the predictions of existing models for the
low-frequency polarization effects in dilute suspensions of spher-
oids [16,17], that will be extended so as to include interactions
among particles by means of the semi-analytical formula reported
in Ref. [19].
2. Theoretical background

In this work, two approximations to the electric permittivity of
concentrated suspensions of prolate colloidal spheroids are made.



566 R.A. Rica et al. / Journal of Colloid and Interface Science 343 (2010) 564–573
It will be clear from our previous comments that the fundamental
physical quantity required for the description of the electric permit-
tivity of disperse systems is the strength d expð�jxtÞ ðj ¼

ffiffiffiffiffiffiffi
�1
p

Þ of
the dipole induced in the particles (including their EDLs) by the ap-
plied alternating field of frequency x, E0 expð�jxtÞ. This dipole will
be characterized by its dimensionless dipole coefficient C*, carrying
information about the polarizability of the particle. The relationship
between d and C* is, for the case of a prolate spheroid with semiaxes
a and b (a is the long semiaxis, or half the dimension of the particle
along its symmetry axis; b is the short semiaxis, or half the dimen-
sion perpendicularly to the symmetry axis):

di ¼ 4pe0ermab2C�;iE0 ¼ 4pe0ermab2ðCi
1 � jCi

2ÞE0 ð1Þ

where i ¼ k;? corresponds, respectively, to parallel and perpendic-
ular orientation of the long axis with respect to the field. Here e0 is
the permittivity of vacuum, and erm is the relative permittivity of
the medium. In this equation, the complex character of the dipole
coefficient has been explicitly taken into account (for convenience,
its real and imaginary components will be denoted Ci

1 and �Ci
2,

respectively). As will be shown below, it is the frequency dispersion
of this coefficient that determines the LFDD of the suspension, and,
to a large extent, also the frequency dependence of the dynamic
mobility. In addition, its zero frequency value is also determinant
of the electrophoretic mobility of the particles. From this it will
be clear how important it is the evaluation of the dipole coefficient
in any rigorous description of electrokinetics [21–23].

We will make use of two previous models of the induced dipole
coefficient of spheroids in dilute suspensions, and extend them in
order to make the models applicable to systems with high concen-
trations of solids. From the first model, based on a work by Grosse
et al. [16] (Model I hereafter), expressions for the dielectric incre-
ment at zero frequency (see below), characteristic time of the
a-relaxation and limiting (static and high-frequency) values of
the dipole coefficient can be obtained for arbitrary values of the
zeta potential and the axial ratio r (r = b/a), in the traditionally
called thin double layer approximation. This means that the thick-
ness of the double layer, j�1, is much smaller than the smallest
dimension of the particle (b in the case of prolate spheroids):

jb� 1

j ¼
PN

a¼1103NAcae2z2
a

erme0kBT

 !1=2
ð2Þ

where j, the Debye-Hückel parameter (reciprocal Debye length),
depends on the molar concentrations ca, and the valencies za of
the N ionic species in solution. In Eq. (2), NA is the Avogadro num-
ber, e is the elementary charge, kB is Boltzmann’s constant and T
is the absolute temperature.

The second model is based on a recent work by Chassagne and
Bedeaux [17] (Model II in what follows), where the authors provide
a formula for the dipole coefficient of a spheroidal particle for
monovalent, symmetric electrolyte, both ions having identical dif-
fusion coefficients Dþ ¼ D� � D. The only restriction of this model
is jb P 1, a condition very often fulfilled in practice.

The quantity of interest, considering experimental evaluation, is
the dielectric increment, de�r ðxÞ, a complex quantity which mea-
sures to what extent the relative permittivity of the suspension,
e�r ðxÞ, differs from its high-frequency value:

de�r ðxÞ ¼ e�r ðxÞ � e�r ð1Þ ð3Þ

As above mentioned, both models considered in this work assume
that the suspensions are dilute (a subscript ‘‘d” will be used to take
this into account explicitly): Model I provides expressions for the
static (x! 0) dielectric increment (der;dð0Þ; this is a real quantity)
and the characteristic relaxation frequency of the a-dispersion
(xa;d). In addition, the authors consider Debye-like relaxations.
Model II, in turn, yields the frequency spectrum of the dipole coef-
ficient. Note that in both cases, orientation effects must be taken
into account, as the polarization of the spheroids will be different
for parallel and perpendicular orientation. This means that, accord-
ing to Model I, the dielectric spectrum of the suspension will be gi-
ven by the following expression:

e�;ir;dðxÞ ¼ erm þ /
Dei

r;dð0Þ
1þ jx=xi

a;d
ð4Þ

where Dei
r;dð0Þ is the dielectric increment per unit volume fraction,

and the linear dependence of the dielectric increment on the vol-
ume fraction is the manifestation of the fact that this theory is valid
for dilute suspensions. The meaning of the superscript ‘‘i” was men-
tioned above (Eq. (1)). In the case of Model II, since only the dipole
coefficient is provided (for the two orientations, C�;iðxÞ), it is re-
quired to establish the relationship between the permittivity and
the coefficient. This can be done using the Maxwell model, and
the result is [10]:

e�;ir;dðxÞ ¼ erm 1þ 3/C�;iðxÞ
h i

� j
3/Km

xe0
C�;iðxÞ � C�;ið0Þ
h i

ð5Þ

where Km is the dc conductivity of the medium.
Whatever the model used, it must be added that typically the

measurements are performed on suspensions containing ran-
domly oriented spheroids. The calculations for each individual
orientation can be easily combined for the random distribution
as follows:

de�r;dðxÞ ¼
de�;kr;dðxÞ þ 2de�;?r;d ðxÞ

3
ð6Þ

This expression can be applied provided the Brownian motion
inhibits the tendency of the particles to align in the field direction,
a requirement that is achieved if the field strength obeys the fol-
lowing inequality [24,25]:

E2
0 �

kBT
erme0Vp

ð7Þ

where Vp is the particle volume. For a rod of length 600 nm and
maximum cross sectional diameter 120 nm (the approximate
dimensions of our particles) in water and room temperature, this
condition requires E0 � 45 kV m�1. In our conductivity cell, the
maximum applied field was smaller than 2.5 Vm�1, so this condi-
tion is completely fulfilled.

As mentioned above, in order to extend these models to concen-
trated suspensions, that is, to account for particle–particle interac-
tions, at least approximately, we use a result obtained by Delgado
et al. [19], which predicts the following volume fraction depen-
dence of the a-relaxation parameters:

dei
rð0Þ ¼ dei

r;dð0Þ 1þ 1
ð/�1=3�1Þ2

� ��3=2

xi
a ¼ xi

a;d 1þ 1
ð/�1=3�1Þ2

� � ð8Þ

It is important to note that these expressions were obtained for
monodisperse, uniformly charged spherical particles. Although
their application to our elongated, non-uniformly charged rodlike
particles is not strictly valid, it allows us to check how important
those deviations from a strictly dilute character are for the electro-
kinetic behavior. Combining the information described on the
behavior of dilute systems and the effect of volume fraction, the
Model I expression for the frequency spectrum of the dielectric
increment of a concentrated suspension of spheroids reads, for ran-
dom orientation:
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de�r ðxÞ¼
1
3

/ 1þ 1

ð/�1=3�1Þ2

 !�3=2
dekr;dð0Þ

1þ jx=xka
þ2

de?r;dð0Þ
1þ jx=x?a

( )
ðModel IÞ

ð9Þ

As mentioned, in the case of Model II, no expressions are avail-
able for the frequency dispersion, so the corresponding version of
Eq. (9) for that model is:

de�r ðxÞ¼
1
3
/ 1þ 1

ð/�1=3�1Þ2

 !�3=2

de�;kr ðxÞþ2de�;?r ðxÞ
� �

ðModel IIÞ

ð10Þ

Details on the evaluation of the dielectric increment calculated
according to Model I (Model II) are given in Appendix A (Appendix
B). Because the experimental spectra are not exactly Debye-like, as
has been found many times in different investigations of the LFDD
of colloidal systems [26], Eq. (9) was modified, and an empirical
Cole–Cole relaxation function was used, as the additional c param-
eter permits a better description of the typically wider relaxations
shown by actual systems, as compared to the simple Debye one:

de�r ðxÞ ¼
1
3

/ 1þ 1

ð/�1=3 � 1Þ2

 !�3=2

�
dekr;dð0Þ

1þ ðjx=xkaÞ1�c þ 2
de?r;dð0Þ

1þ ðjx=x?a Þ
1�c

( )
ðModel IÞ ð11Þ
3. Experimental

3.1. Materials

Rod-like goethite particles were purchased from Lanxess, USA,
under the trade name of Bayferrox-920. As shown in Fig. 1, they
have uniform shape and moderate polydispersity. Fitting log-nor-
mal distributions to size measurements performed on scanning
electron microscope pictures like those in Fig. 1, we obtained
a = (290 ± 30) nm and b = (50 ± 6) nm for the semiaxes dimensions,
giving an axial ratio r = a/b = 5.8 ± 0.6. Light scattering techniques
were also used for obtaining the sizes in situ, using the methods
and devices described in Ref. [27]. Dynamic light scattering mea-
surements yielded an average hydrodynamic radius of 190 nm,
and a value of 175 nm was obtained as radius of gyration using sta-
tic light scattering [20].
Fig. 1. SEM picture of the goethite particles used. Bar length: 1 lm.
3.2. Methods

The goethite powder was first dispersed in deionized and fil-
tered water (Milli-Q Academic, Millipore, France) at a concentra-
tion of about 20 g/L. The suspensions were cleaned by successive
cycles of centrifugation and redispersion in water. After this clean-
ing procedure, aqueous suspensions of goethite particles were pre-
pared with different concentrations of electrolyte (KCl), particle
concentrations, and pH values. The suspensions were left to equil-
ibrate for at least 48 h under mechanical stirring. Nevertheless,
goethite suspensions with even moderate volume fractions were
extremely viscous, as reported by Blakey and James [28], who ex-
plained such behavior by considering that goethite particles tend
to flocculate in a manner similar to clay particles in water, because
the former also have two types of charged groups on their surface.
Such groups are not uniformly distributed, and when goethite par-
ticles are dispersed at pH 6, their behavior can be explained by
assuming that they have both positive and negative charged
groups on the lateral surface, and only positive groups and the tips.
Like in the case of clay platelets, this non-uniformity will have
important consequences on the electrokinetics of this kind of par-
ticles. In particular, the high viscosity of goethite suspensions
made it difficult working with elevated volume fractions or low
particle charge conditions, thus limiting the range of measure-
ments performed to volume fractions up to 8% and pH up to 8.

The permittivity spectra of the suspensions were obtained by
measuring the frequency dependence of the impedance of a con-
ductivity cell with parallel, platinized-platinum electrodes at
25.0 ± 0.5 �C, using an HP 4284A (USA) impedance meter, as de-
scribed in [29]. The main obstacle when performing electric per-
mittivity determinations comes from the electrode–suspension
interface. Accumulation of ions occurs in such interface (the so-
called electrode polarization, EP), which results in a huge low-fre-
quency contribution to the apparent permittivity of the system.
Although different methods are available [8,29–31], measurements
were corrected from electrode polarization effects by means of the
logarithmic derivative technique [32]. With this method, the con-
tributions to the permittivity of the polarization of both the elec-
trode–solution interface and the suspension are easier to
discriminate than in the real or imaginary parts. The logarithmic
derivative e00rD is a quantity whose behavior is very similar to the
imaginary part of the electric permittivity, and from which the real
part can be easily obtained by integration. Its definition is:

e00rDðxÞ ¼
�p
2

@e0rðxÞ
@ lnx

ð12Þ

Once the data were properly corrected, fits to our two models
were made by a least-squares method, which provided the param-
eters for the electrokinetic characterization of the goethite parti-
cles. The steps followed were:

1. Get the impedance vs. frequency data, Z�ðxÞ, for a range of dis-
tances between the electrodes, in the 5–15 mm interval.

2. From these data, and the cell constant k previously obtained by
using a KCl solution of known electrical conductivity, we can
obtain the spectrum of the complex conductivity of the
suspension:
K�ðxÞ ¼ k
Z�ðxÞ ð13Þ
3. From the complex conductivity, the real part of the relative per-
mittivity is obtained as follows [10]:
e0rðxÞ ¼
ImfK�ðxÞg

xe0
ð14Þ
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4. Using the definition (12), the logarithmic derivative spectrum is
obtained.

5. The data are corrected for electrode polarization as described
below. The spectrum of the logarithmic derivative finally
ascribed to any system will be the average of the corrected
spectra corresponding to the different electrode separations.
4. Results and discussion

4.1. Model predictions

Fig. 2 shows the main features of the behavior of the permittiv-
ity of suspensions of randomly oriented spheroids, according to the
predictions of the two models. Note, first of all, that both predict
evident alpha relaxations, although with significant differences.
The low-frequency values of the dielectric increment differ sub-
stantially, as a consequence of the different descriptions of the
EDL relaxations predicted by each of the two approaches.

According to Model II, a single, wide relaxation with character-
istic frequency around 60 kHz is found. The spectra are further-
more practically independent of the axial ratio, r. This is a
manifestation of a fundamental hypothesis of the model, according
to which the contributions of ionic trajectories in planes perpen-
dicular to the symmetry axis of the prolate spheroid are dominant
over those of ions migrating tangentially in the direction parallel to
that axis. This means that the only observable relaxation must be
that controlled by the size of the small axis, b, which is kept con-
stant in Fig. 2.

On the contrary, Model I considers explicitly two relaxations,
each related to one axis length, and in fact two processes (two
absorption peaks in Fig. 2b) can be detected if r is sufficiently larger
than unity. Additionally, the amplitude of the relaxation increases
with r: this is a consequence of the overall increase in particle
dimensions: larger dimensions mean larger effects of concentra-
Fig. 2. Real (a) and imaginary (b) parts of the electric permittivity increment of
goethite suspensions as a function of the frequency of the applied electric field for
different values of the axial ratio r = a/b, as predicted by Model I (solid lines) and
Model II (dash-dotted lines). Other parameters: 1% volume fraction of solids; zeta
potential f = 100 mV; b = 100 nm; 1 mM KCl.
tion polarization [33]. Furthermore, the characteristic frequency
of the alpha relaxation associated to the long axis shifts to lower
values, as expected from the dependence of xa on the reciprocal
particle size.

The models differ even in the r = 1 case, but it must be pointed
out that Model I assumes thin double layer, while Model II is appli-
cable for virtually any double layer thickness. To this we must add
the consideration that the former assumes a Debye relaxation
function, and this is not the one that best describes the true relax-
ation, as mentioned above. The Debye function always yields a
steeper permittivity decrease than that found experimentally or
in numerical calculations.

The effects of the zeta potential and ionic strength are depicted
in Fig. 3. Firstly, we note that de0rð0Þ increases when either of
the two parameters is raised, whereas no change is observed in
the characteristic frequency. Regarding the relative importance
of the two peaks predicted by Model I, it can be seen that the
one associated to the short semiaxis is more important for high io-
nic strengths and relatively low zeta potentials. This is in agree-
ment with the calculations of Bellini and Mantegazza [34], who
showed that, for high frequencies, the differences between the
polarizabilities corresponding to parallel and perpendicular orien-
tations increase when the zeta potential increases, with the paral-
lel component always dominating. Thus, at low zeta potential the
two contributions are comparable, yielding a wide, single relaxa-
tion. When f is increased, the surface conductivity raises and so
do both polarizabilities, but the parallel orientation produces a fas-
ter increase than the perpendicular one. Similarly, when the ionic
strength is higher, the differences between both components tend
to disappear, and the behavior approaches that of a sphere with a
size close to the short semiaxis. It can be said that shape effects are
less significant the lower the zeta potential and the higher the ionic
strength. This result was partially explored experimentally by
Jiménez et al. [35], who showed that two relaxations can be ob-
served in the low-frequency dielectric spectrum of monodisperse
elongated hematite particles when the pH of the system is close
to the isoelectric point of the particles.

Finally, the effects of the inclusion of a non-zero volume frac-
tion are described in Fig. 4. The effect of / can be summarized by
saying that de0rð0Þ increases with / until reaching a maximum after
which it decreases, while xa shows a continuous increasing trend.
Physically, the maximum expected in de0rð0Þ is explained by a com-
petition between the enhancement of permittivity due to the lar-
ger number of electric double layers and the decrease coming
from the overlap between neighbor EDLs. On the other hand, the
explanation for the monotonically increasing trend of the charac-
teristic frequency is straightforward if we consider the decreasing
volume available to each particle and the subsequent decrease of
the diffusion length, which is not the size dimension any more, be-
cause the ions encounter the double layer of neighbor particles for
distances shorter than ‘.

4.2. Overall behavior of the electric permittivity of goethite

Examples of raw logarithmic derivative spectra together with
data corrected for electrode polarization are shown in Fig. 5. The
correction was carried out by subtracting from the raw data an
Ax�3=2 contribution associated to the effect of the electrode polar-
ization on the measured permittivity [32]. The constant A was
determined by least-squares fitting of the first few low-frequency
data points to the Ax�3=2 function. Although part of the true low-
frequency dielectric dispersion is thus lost, the information
remaining is still sufficient as to characterize the LFDD of the
spheroids.

The Figure also includes theoretical predictions according to
Models I and II. The best-fitting curves of the two models were



Fig. 3. Real and imaginary components of the electric permittivity increment of goethite suspensions as a function of the frequency of the applied electric field for different
values of the zeta potential (left) and the KCl molar concentration (right), according to the predictions of Model I (solid lines) and Model II (dash-dotted lines). Left: 1% volume
fraction of solids; b = 100 nm; 1 mM KCl; r = 10. Right: 1% volume fraction of solids; f = 100 mV; b = 100 nm; r = 10.

Fig. 4. Real (a) and imaginary (b) parts of the electric permittivity increment of
goethite suspensions as a function of the frequency of the applied electric field for
different volume fraction of solids. Model I: solid lines; Model II: dash-dotted lines.
Other parameters: f = 100 mV; b = 100 nm; 1 mM KCl; r = 10.

Fig. 5. Logarithmic derivative of the real part of the measured electric permittivity
(symbols) and best fits to models (lines) for a suspension containing 4% volume
fraction of goethite particles, in a pH 4, 0.5 mM solution of KCl. Full squares: raw
data; open squares: data corrected for electrode polarization (EP); solid lines:
Model I; dash-dotted lines: Model II. The dashed straight line shows the expected
x�3=2 EP effect.
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obtained by the least-squares method, using four adjustable
parameters, namely, the semiaxes dimensions (a and b) and two
zeta potentials, one corresponding to the parallel orientation fk,
and one to the perpendicular direction f?. The sizes characterize
the relaxation frequencies, while the necessity of two zeta poten-
tials in the case of spheroids was already pointed out by Jiménez
et al. [35], considering that the equipotential surface in spheroidal
geometry is not at constant distance to the spheroidal surface,
while the ideal stagnant (electrokinetic) plane most likely is. In
addition, the use of two zeta potentials can be specially suitable
in order to take into account that the goethite particles used appear
to be non-uniformly charged [28].

The plots in Fig. 5 show some features which are worth to con-
sider: (i) the uncorrected logarithmic derivative of the permittivity
displays huge values in the low-frequency range, which gives us an
idea of the importance of electrode polarization; (ii) the correction
applied seems to be satisfactory, and, at least above 1 kHz, the



Table 1
Best-fit values of the zeta potentials (fk and f?), and the two semi-axis (a and b)
corresponding to the data in Fig. 6. Volume fraction of solids: 4%; pH 4.

Ionic strength (mM KCl) fkðmVÞ f?ðmVÞ

Model I Model II Model I Model II

0.1 90 ± 10 200 ± 15 3 ± 2 180 ± 20
0.5 90 ± 10 140 ± 15 3 ± 2 140 ± 20
1 100 ± 15 145 ± 12 3 ± 2 130 ± 15

a (nm) b (nm)

Model I Model II Model I Model II

0.1 3200 ± 300 – 40 ± 5 1100 ± 200
0.5 3300 ± 300 – 50 ± 6 1000 ± 180
1 3400 ± 350 – 60 ± 7 1000 ± 190
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permittivity data appear to be mostly free of the perturbing EP ef-
fects; (iii) a large absorption peak is observed in the kHz region in
both corrected and uncorrected data, which is well fitted by both
models; (iv) a smaller amplitude peak (note the logarithmic scale),
at a frequency around 100 kHz, is also noticeable. This smaller peak
is properly represented by Model I but not by Model II, which can-
not describe a system with two different a-relaxations. We note
also that for these systems we detected the characteristic fre-
quency of the Maxwell–Wagner-O’Konski relaxation in the MHz
range by means of electro-acoustic techniques [20], so we can af-
firm that the relaxations observed correspond actually to two al-
pha relaxations.

4.3. Electric permittivity and ionic strength

The effect of ionic strength on the electric permittivity of goe-
thite rods is shown in Fig. 6: the dielectric increment increases
with increasing ionic strength, while no changes in the character-
istic frequency are observed. The insets show amplifications of the
zones corresponding to the high-frequency peak, where it is seen
again that, in accordance with Model I, two relaxation processes
appear to be necessary for properly characterizing the dielectric
spectrum of our goethite particles.

From the application of the models to this dataset we obtained
the parameters in Table 1 (in this and subsequent Tables the error
interval is estimated based on the experimental uncertainties –
standard deviations of data corresponding to different runs: 10%
on average). The first thing that we may note is that Model I pre-
dicts two different values for fk and f?, while those obtained by
Model II are almost identical. Furthermore, fits to Model II are com-
pletely independent from the value of a, and because of that no re-
sult is shown for this axis. Concerning the effect of the ionic
strength on the obtained zeta potential, almost constant values
are returned by Model I while a decreasing trend is given by Model
II. This result is expected from the fact that a larger electrolyte con-
Fig. 6. (a) Experimental data (symbols) for the logarithmic derivative of the real
part of the electric permittivity and best fits to models (lines) for a suspension
containing 4% volume fraction of goethite particles, in pH 4 solutions with different
ionic strengths. Solid lines: Model I; dash-dotted lines: Model II. (b) The same as (a),
but for the real part of the electric permittivity.
centration produces a greater compression of the EDL around the
particles, resulting in a reduction of the zeta potential. Such behav-
ior was also observed from dynamic mobility measurements in our
previous work [20], although the reduction in zeta potential was in
fact very small in this range of ionic strengths, in agreement with
the almost constant value of zeta provided by Model I.

Analyzing the values for the characteristic sizes, the point to
consider refers to the unexpectedly large values returned for a by
Model I and for b by Model II, which do not correspond with the
sizes measured by either light scattering or electron microscopy.
It is worth to realize that both values are obtained from the same
experimental information: they refer to the characteristic size gi-
ven by the low-frequency peak, as it is the most important and
the only considered by Model II. Such large values can be attrib-
uted to the fact that aqueous goethite suspension tend to be floc-
culated [28], hence the measured size can be related to the
presence of aggregates and not just individual particles. Concern-
ing the high-frequency peak, the size calculated by Model I prop-
erly agrees with the value of b given by the observation of SEM
pictures. The slight increase of b with ionic strength can be attrib-
uted to an artifact coming from the limited accuracy of the fits due
to the large differences in the amplitudes of both peaks, the high-
frequency one being partially hidden by the low-frequency tail.

It seems hence reasonable to attribute the low-frequency peak
to both the major axis of individual particles, and to flocs, whereas
the high frequency one would correspond to the polarization
around single particles oriented perpendicularly to the applied
field. Having this in mind, it is tempting to interpret the small va-
lue of the high-frequency dielectric increment and its correspond-
ing zeta potential experimentally observed: aggregates comprise
most of the particles in suspension, and few particles remain as
single entities capable to get individually polarized. This means
that Eq. (6), which assumes a random distribution of single sphe-
roidal particles, is not strictly valid. The fact that different zeta
potentials are predicted for different regions of the particle surface
(and, in particular, that the value corresponding to the lateral face
is larger than that on the tips of the rods) confirms the non-uni-
form surface charge distribution.
4.4. pH effects

Prior to analyze these results, we must point out that a huge
quantity of base had to be added to the solution in order to get
the values 6 and 8 for the pH, with the subsequent increase in
the concentration of ions in solution. Thus, in order to properly
control the ionic strength for all the suspensions, we had to in-
crease it up to 5 mM KCl, in an attempt to reduce the contribution
of the ions added with the base. As a consequence, electrode polar-
ization was very significant in such conditions: this is the reason
why the data in Fig. 7 only display the high-frequency relaxation,



Fig. 7. (a) Experimental data (symbols) of the logarithmic derivative of the real part
of the electric permittivity and best fits to models (lines) of suspensions of goethite
particles for different pH values. Other parameters: 4% volume content of solids;
ionic strength 5 mM KCl. Solid lines: Model I; dashed-dotted lines: Model II. (b) The
same as (a), but for the real part of the relative permittivity increment.

Fig. 8. As in Fig. 7, but for different volume fractions of solids in suspension. Other
parameters: pH 4; ionic strength 0.5 mM KCl.

Table 3
Best-fit values of the zeta potentials (fk and f?), and the two semi-axis (a and b)
corresponding to the data in Fig. 8. Ionic strength: 0.5 mM KCl; pH 4.

Volume fraction fkðmVÞ f?ðmVÞ
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as the low-frequency peak of the spectrum is hidden by the polar-
ization. In addition, the tail of the polarization relaxation is also
present in the data and probably leads to an overestimation of
the amplitude of the high-frequency one (note the large difference
between the values of f? provided by Model I in Table 1 and those
given in Table 2). The information in Fig. 7 shows that the peaks
appear at lower frequencies than in previous cases, thus returning
higher values of the calculated sizes (see Table 2). Note that the
maximum of the high frequency peak in Fig. 5 is around 105 Hz,
while here it appears to have shifted to �104 Hz. This shift is due
to the aggregation induced by the lowered surface potential as
we approach the isoelectric point, which has been reported to be
around pH 9 by other authors [28,36,37] and found to be above
pH 8 by us [20]. As a consequence, a decrease in the zeta potential
upon increasing the pH is returned by the fits (Table 2) to both
models.

4.5. Volume fraction effects

Fig. 8 shows how the dielectric spectrum is influenced by the
volume fraction of solids. In the analyzed range, only an increase
of the dielectric increment is observed, without any effect on the
characteristic frequency. This is not surprising, as for the studied
range of volume fractions the theoretical treatment predicts al-
most no influence of volume fraction on the relaxation frequency.
Table 2
Best-fit values of the zeta potential f? and the short semi-axis b corresponding to the
data in Fig. 7. Volume fraction of solids: 4%; ionic strength: 5 mM KCl.

pH f? (mV) b (nm)

Model I Model II Model I Model II

4 18 ± 9 60 ± 8 150 ± 20 220 ± 30
6 15 ± 9 55 ± 6 170 ± 20 310 ± 35
8 15 ± 10 50 ± 7 200 ± 30 330 ± 40
In addition, numerical calculations [12] have shown that the per-
mittivity increment changes from an increasing to a decreasing
trend with volume fraction when this is above around 15% of
solids.

From the fits to Models I and II we obtained the parameters in
Table 3. An almost constant value of the zeta potential is obtained
in all cases except in fk from Model I. This indicates that the formu-
las (10,11) seem to be applicable in this range of volume fractions,
despite all the non-idealities characteristic of the goethite parti-
cles. The slightly larger sizes obtained with increasing volume frac-
tion, an opposite behavior to the theoretically expected one,
reveals an enhancement of the flocculation among particles. This
competition between the effect of volume fraction on the available
space around particles and their tendency to form larger flocs
yields in turn the observed constant value of the relaxation
frequency.
5. Conclusions

In this work we have described experimental results on the
electric permittivity of suspensions of goethite particles with vol-
ume fractions up to 8% in solids. The results have been compared
Model I Model II Model I Model II

0.04 90 ± 10 140 ± 15 3 ± 2 140 ± 15
0.06 100 ± 15 140 ± 20 4 ± 3 130 ± 13
0.08 110 ± 12 140 ± 15 4 ± 2 140 ± 20

a (nm) b (nm)

Model I Model II Model I Model II

0.04 3300 ± 400 – 50 ± 8 1000 ± 200
0.06 3300 ± 400 – 50 ± 7 1000 ± 150
0.08 3300 ± 400 – 50 ± 6 1000 ± 200
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to the predictions of two existing theoretical models for the elec-
tric permittivity of suspensions of spheroidal particles and extend
them in order to account for finite volume fractions. The main dif-
ference observed between the two models is that one of them pre-
dicts two relaxation processes while the other only one. The
experiments have shown that two a-relaxations are clearly ob-
served. The high-frequency one is associated to the short axis of
the single particles, as fits to Model I returns a value for the char-
acteristic size compatible with the obtained from SEM pictures.
The low-frequency one seems to be related to both the larger axis
of individual particles, and to the flocs observed in goethite sus-
pensions by other authors.

Fitting the experimental data to the models allows a coherent
characterization of the employed particles regarding the effects
of ionic strength, pH and volume fraction. It is worth to note that,
although the correction used to incorporate finite volume fractions
was not a priori applicable to our system, it has been shown to
accurately model the observed behavior.
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Appendix A

Here we give a short account of the expressions required for the
calculation of de0rð0Þ as obtained from Model I. We restrict our-
selves to the main results. Readers interested in a wider discussion
are referred to the original paper [16].

The dielectric increment (per unit volume fraction) of a dilute
suspension of prolate spheroids and the characteristic frequency
of the a-relaxation are given by (i � k;?):

Dei
r;dð0Þ ¼

3ermj2

16pab2 ðc
þ;i � c�;iÞ2Ii ðA:1Þ

xi
a;d ¼

16pab2ðCi
1 � Cið0ÞÞ

j2ðcþ;i � c�;iÞ2Ii

Km

e0erm
ðA:2Þ

and the limiting values for the dipolar coefficient:

Cið0Þ ¼ cþ;iþc�;i

2ab2

Cið1Þ ¼ Kþ;ip þK�;ip �Km

3 KmþðKþ;ip þK�;ip �KmÞLið Þ
ðA:3Þ

Other quantities depending on the orientation of the spheroid
(i ¼ k;?) are expressed as follows for a prolate one:

Ik ¼ 3p
5h6 �a3b2ln2 aþh

a�hþ 2hb2ða2 þ b2Þ ln aþh
a�hþ 4ah2ða2 � 2b2Þ

h i
I? ¼ 3p

20h6 �ab4ln2 aþh
a�hþ 4hða4 þ h4Þ ln aþh

a�h� 4ah2ð3a2 � 2b2Þ
h i

ðA:4Þ

c	;i ¼ ab2

3
K	;ip � Km=2

Km=2þ ðK	;ip � Km=2ÞLi
ðA:5Þ

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
ðA:6Þ

K	;kp ¼ 3Kr;	a
2bh

a2�2b2

h2 � arctan h
b þ b

h

� �
K	;?p ¼ 3Kr;	a

2bh
a2

2h2 arccot b
hþ

bða2�2b2Þ
2a2h

� � ðA:7Þ
Lk ¼ ab2

h3 arctanh h
a � h

a

� �
L? ¼ 1�Lk

2

ðA:8Þ

Here K	;ip are the contribution of cations (+) and anions (�) to
the equivalent conductivity of the particles and Li are the depolar-
ization factors for prolate spheroids.

Appendix B

Based on Model II [17], the electric permittivity is obtained from
the dipolar coefficient, which is expressed as:

CiðxÞ¼
K�p�K�mþ3ð1�LiÞ½Kk þKU 
þ3LiK?

3K�mþ3LiðK�p�K�mÞþ9Lið1�LiÞ Kkðb=r0Þ3þKUðb=r1Þ3�K?
h i

ðA:9Þ

For the sake of brevity, only the definitions of the parameters
involved are defined below. For a wider discussion on their deriva-
tion and physical meaning, see original paper [16].

K�m ¼ Km þ jxerme0

K�p ¼ jxerpe0
ðA:10Þ

Kk ¼ �KmIn;eq �
2J1Km I2

c;eq�I2
n;eq½ 


J2ðr0=bÞ3 exp½knðr0�bÞ


K? ¼ 2J1KmIn;eq

J2ðr0=bÞ3 exp½knðr0�bÞ


ðA:11Þ

In;eq ¼ �1
b2

R r0
b x cosh eWeq

kBT

� �
� 1

h i
dx

Ic;eq ¼ 1
b2

R r0
b x sinh eWeq

kBT

� �
� 1

h i
dx

ðA:12Þ

r0 ¼ bþ j�1 1þ 3
jb expð�ef=2kBTÞ

� �
r1 ¼ bþ j�1 2:5

1þ2 expð�jbÞ
ðA:13Þ

In these integrals WeqðrÞ is the equilibrium electric potential at
distance r of the center of a spherical particle of radius b, and
x = (r � b). Other parameters needed are:

kn ¼
ffiffiffiffi
jx
D

q
J1 ¼ 1þ knr0

J2 ¼ 2þ 2knbþ k2
nb2

ðA:14Þ

Finally, it is important to write correctly the following equation,
which appeared with two misprints in the original paper1:

KU ¼ �Kmm ef
kBT Ic;eq

In;eq�cIc;eqþ1=2
ðIn;eq�cIc;eqÞ�J2=ð2J1Þðr0=bÞ3 expðknðr0�bÞÞ

� 1
h i

ðc ¼ In;eq=Ic;eqÞ
ðA:15Þ
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