
1

I. DETAILED DERIVATION OF EQ. 1 OF THE MANUSCRIPT

A. Description of the four-step reversible cycle

For our purposes, the behaviour of the generic cell is described by the potential V (Q, x) between the electrodes,
and by the mass of adsorbed salt W (Q, x), both considered as functions of the total accumulated charge Q and of
the bulk mass fraction of ions x. In the following, the masses of adsorbed salt, solute and solvent are expressed in
moles, and thus the mass fraction is expressed as the ratio between the moles of solute and the moles of the solvent
(x = N/M).
The cycle starts with a mass fraction x = x0 of the solution in the cell, and with initial values of solvent mass in

the cell M = MI and accumulated charge Q = QL. The phases of the cycle are the following:

1. The electrodes are charged, by making a current flow through the cell, so that the charge Q increases from QL

to QH . Salt is adsorbed from the solution into the electrodes, partially de-ionizing it. The final concentration
becomes x− < x0.

2. The circuit is opened, and the cell is put into contact with the reservoir through the semipermeable membrane.
The osmotic flow decreases the mass of the solvent in the cell, M , from MI to MD, because the concentration in
the cell, x−, is lower than x0. A mechanical work is done by osmosis. At the end of the process, the concentration
x in the cell becomes equal to the concentration in the reservoir x0.

3. The electrodes are discharged, by making a current flow, so that the charge Q decreases from QH to QL.
The desorption of ions from the electrodes increases the concentration of the solution in the cell. The final
concentration becomes x+ > x0.

4. The circuit is opened, and the cell is put again into contact with the reservoir, through the semipermeable
membrane. The mass of the solvent in the cell, M , increases from MD to MI due to the osmotic flow. The
concentration becomes equal to x0.

The reversible cycle is schematically presented below.

Phase Concentration x Charge Q Mass M

1 x0 → x− QL → QH MI

2 x− → x0 QH MI → MD

3 x0 → x+ QH → QL MD

4 x+ → x0 QL MD → MI
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The following graph shows the cycle in the charge-mass-concentration (red line). The other lines represent the
projections on the charge-mass, charge-concentration and mass-concentration planes.
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The plotted cycle is only representative, and does not correspond to a real experimental situation. The phases 1,
2, 3 and 4 are represented respectively by the curves A-B, B-C, C-D, D-A.
Projections of the cycle on the concentration-charge plane and concentration-mass plane are shown in the following

graphs.
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B. Derivation of the relation

None of the phases involves a change of the mass of the solute inside the cell, and thus we can write the following
equations, which express the conservation of the solute mass in the cell at the end of the four phases:

x−MI +W (QH , x−) = S

x0MD +W (QH , x0) = S

x+MD +W (QL, x+) = S

x0MI +W (QL, x0) = S, (1)

where S is the mass in moles of the solute in the cell.
We assume that x0, QL, QH and MI are the independent parameters of the system, that can be chosen indepen-

dently. The quantities x+, x−, MD and S are the dependent parameters of the system, and can be calculated by
means of Eqs. 1.
In the following, we will implicitly assume that all the dependent parameters are functions of QH , and we will call

p′ the derivative of the dependent parameter p with respect to QH . Anyhow, from the last of Eqs. 1, it can be seen
immediately that S actually does not depend on QH , and thus S′ = 0.
The salt concentration in the cell depends on the quantity that is changed during each phase, i.e., Q in phases 1

and 3, and M in phases 2 and 4. The equations expressing the conservation of the solute mass in the cell during the
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four phases are the following:

x1 (Q)MI +W [Q, x1 (Q)] = S

x2 (M)M +W [QH , x2 (M)] = S

x3 (Q)MD +W [Q, x3 (Q)] = S

x4 (M)M +W [QL, x4 (M)] = S. (2)

These equations implicitly define the variation of mass fraction during each phase.
The energies consumed in the four phases are the following:

∆E1 =

∫ QH

QL

V [Q, x1 (Q)] dQ

∆E2 =

∫ MD

MI

{Π [x2 (M)]−Π(x0)} dM

∆E3 =

∫ QL

QH

V [Q, x3 (Q)] dQ

∆E4 =

∫ MI

MD

{Π [x4 (M)]−Π(x0)}dM, (3)

where Π (x) is the osmotic pressure of ions in the bulk solution, with mass fraction x.
As the cycle is thermodynamically reversible and isothermal, i.e. it exchanges heat towards a single heat reservoir,

the relation connecting V (Q, x) and W (Q, x) is obtained by equating to zero the sum of the energies consumed in
each phase:

∆E1 +∆E2 +∆E3 +∆E4 = 0, (4)

We consider the limit QH → QL, where x0 = x+ = x− = x1 (Q) = x2 (M) = x3 (Q) = x4 (M) and MD = MI . In
that limit, both Eq. 4 and its derivative with respect to QH become identically 0.
The first derivatives of Eq. 3 with respect to QH must be calculated. The results are:

∆E′

1 = V [QH , x−] +

∫ QH

QL

∂xV [Q, x1 (Q)]x′

1 (Q) dQ (5)

∆E′

2 =

∫ MD

MI

∂xΠ [x2 (M)]x′

2 (M) dM (6)

∆E′

3 = −V [QH , x0] +

∫ QL

QH

∂xV [Q, x3 (Q)]x′

3 (Q) dQ (7)

∆E′

4 = − [Π (x+)−Π(x0)]M
′

D + (8)
∫ MI

MD

∂xΠ [x4 (M)]x′

4 (M) dM (9)

The first derivatives of Eq. 3 with respect to QH , in the limit QH → QL, are:

lim∆E′

1 = V [QL, x0] (10)

lim∆E′

2 = 0 (11)

lim∆E′

3 = −V [QL, x0] (12)

lim∆E′

4 = 0. (13)

The sum of those four terms is identically 0. The second derivatives of Eq. 3 with respect to QH , in the limit
QH → QL, are:

lim∆E′′

1 = ∂QV (QL, x0) + ∂xV (QL, x0)x
′

−
+ ∂xV (QL, x0)x

′

1 (QL)

lim∆E′′

2 = ∂xΠ(x0)x
′

2 (MI)M
′

D

lim∆E′′

3 = −∂QV (QL, x0)− ∂xV (QL, x0)x
′

3 (QL)

lim∆E′′

4 = −∂xΠ(x0)
[

x′

+ + x′

4 (MI)
]

M ′

D. (14)
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Equating the sum of these four terms to zero leads to the following equation:

∂xV (QL, x0)
[

x′

−
+ x′

1 (QL)− x′

3 (QL)
]

= ∂xΠ(x0)M
′

D

[

x′

+ + x′

4 (MI)− x′

2 (MI)
]

(15)

Now it is necessary to calculate the derivatives of the concentrations and of MD with respect to QH . The first
derivatives of Eqs. 1 are:

x′

−
MI + ∂QW (QH , x−) + ∂xW (QH , x−)x

′

−
= 0 (16)

x0M
′

D + ∂QW (QH , x0) = 0

x′

+MD + x+M
′

D + ∂xW (QL, x+)x
′

+ = 0. (17)

The fourth equation is neglected, because it is an identity. Making again the limit QH → QL and solving, we obtain
M ′

D = −∂QW (QL, x0) /x0, x
′

−
= −χ and x′

+ = χ, where χ = ∂QW (QL, x0) / [MI + ∂xW (QL, x0)].
Similarly, the first derivatives of Eqs. 2 are:

x′

1 (Q)MI + ∂xW [Q, x1 (Q)]x′

1 (Q) = 0 (18)

x′

2 (M)M + ∂QW [QH , x2 (M)] + ∂xW [QH , x2 (M)]x′

2 (M) = 0 (19)

x′

3 (Q)MD + x3 (Q)M ′

D + ∂xW [Q, x3 (Q)]x′

3 (Q) = 0 (20)

x′

4 (M)M + ∂xW [QL, x4 (M)]x′

4 (M) = 0. (21)

If we again take the limit QH → QL and solve, we obtain x′

1 (QL) = x′

4 (MI) = 0, x′

2 (MI) = −χ and x′

3 (QL) = χ.
By substituting these solutions into Eq. 15, we obtain the relation connecting the potential to the salt adsorption:

∂xV (Q, x) = ∂xΠ(x)
∂QW (Q, x)

x
, (22)

The formula is valid for any value of the independent parameters x0 and QL, hence we drop the subscripts L and 0.
In the main text, we will refer to specific (per unit mass or surface of electrode) charge and salt adsorption.

II. DETAILS OF THE EXPERIMENTS WITH ACTIVATED CARBON ELECTRODES

The comparison presented in Fig. 2 of the main paper is based on data already reported in literature [1], concerning
a CDI experiment with activated carbon electrodes.
The data presented Ref. [1] have been extracted from the graphs presented in Fig. 2 of that paper. The salt

adsorption and the charge stored in the electrodes have been measured for sodium chloride solutions at CA = 5 mM
and CB = 20 mM, for various potentials. They are summarized in the following table.

Voltage (V) Charge (C/g) 5mM Charge (C/g)
20mM

Salt adsorption
(mmol/g) 5mM

Salt adsorption
(mmol/g) 20mM

0.2 2.0 2.3 0.007

0.3 3.2 0.012

0.4 4.4 5.2 0.025 0.016

0.5 6.1 7.1 0.038 0.026

0.5 5.5 6.1 0.038 0.026

0.6 6.9 8.6 0.043 0.052

0.7 8.3 9.3 0.069 0.059

0.8 9.9 11.7 0.087 0.072

0.9 12.3 13.6 0.103 0.089

1 13.9 14.3 0.118 0.100

1.1 17.6 0.128

1.2 17.7 19.7 0.151 0.143

In order to calculate the data in Fig. 2, we used the following procedure:
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1. The curves charge versus potential, for the two concentrations, are read as potential versus charge curves.

2. The curves potential versus charge, for the two concentrations, are interpolated with the polynomials V5mM (Q) =
a1Q+ a2Q

2 + a3Q
3 and V20mM (Q) = b1Q+ b2Q

2 + b3Q
3.

3. The potential rise ∆V of Eq. 3 of the main paper is calculated as ∆V = V5mM (Q) − V20mM (Q). Here, the
interpolation is needed because the experimental data at different concentrations do not have the same charge
Q.

4. From the table, the adsorption versus charge curve is extracted. The curve for the lower concentration is
interpolated with the polynomial W (Q) = w1Q+ w2Q

2 + w3Q
3.

5. In order to calculate the differential charge efficiency of Eq. 3, the derivative with respect to Q of this last
polynomial was taken: η(Q)/F = w1 + 2w2Q + 3w3Q

2. Here, the interpolation with the polynomial is used as
a trick to perform differentiation on experimental data.

The zero-order term of the polynomials used for the interpolation is deliberately set to zero, because all the functions
must cross the origin. The other coefficients of the polynomials are reported in the following table.

V5mM (Q) a1=0.10 V/C a2=-0.0035 V/C2 a3=7.4×10−5 V/C3

V20mM (Q) b1=0.084 V/C b2=-0.0012 V/C2 b3=0

W (Q) w1=2.7×10−6 mol/C w2=8.4×10−7 mol/C2 w3=-2.9×10−8 mol/C3

III. OTHER EDL MODELS

A. Thick EDLs

The modified-Donnan model [2], is applicable inside small micropores, where the EDLs are strongly overlapped and
a constant electric potential can be assumed to be present. In this situation, we obtain the following expressions for
the dimensionless voltage-charge and salt-charge relations inside the micropores:

∆φD = sinh−1

(

−qmi

c

)

(23)

wexcess
mi = c

[

cosh

(

sinh−1

(

−qmi

c

))

− 1

]

(24)

In this case, the charge qmi and salt wexcess
mi adsorptions are defined as quantities per unit volume, and therefore the

total charge and salt stored in the electrodes are Q = 2eqmipmiVelectrode and W = 2wexcess
mi pmiVelectrode, respectively.

Here, Velectrode and pmi are the total volume of the electrode and its fraction occupied by micropores, respectively.
Eqs. 23 and 24 also verify the relation given by Eq. 4 in the main text when ν → 0.
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