Course guide of Functional Analysis (270113B)

Curso 2024/2025
Approval date: 12/06/2024

Grado (bachelor's degree)

Bachelor'S Degree in Mathematics

Branch

Sciences

Module

Análisis Matemático

Subject

Análisis Funcional

Year of study

3

Semester

1

ECTS Credits

6

Course type

Compulsory course

Teaching staff

Theory

  • Miguel Martín Suárez. Grupo: A
  • Antonio Miguel Peralta Pereira. Grupo: C
  • Armando Reyes Villena Muñoz. Grupo: B

Practice

  • Miguel Martín Suárez Grupo: 1
  • Antonio Miguel Peralta Pereira Grupo: 3
  • Armando Reyes Villena Muñoz Grupo: 2

Timetable for tutorials

Miguel Martín Suárez

Ver email
  • First semester
    • Monday de 12:00 a 13:30 (Facultad de Ciencias)
    • Tuesday
      • 12:00 a 13:30 (Facultad de Ciencias)
      • 16:30 a 19:30 (Facultad de Ciencias)
  • Second semester
    • Wednesday de 08:30 a 14:30 (Facultad de Ciencias)

Antonio Miguel Peralta Pereira

Ver email
  • First semester
    • Monday de 09:00 a 11:00 (Facultad de Ciencias)
    • Tuesday de 09:00 a 11:00 (Facultad de Ciencias)
    • Wednesday de 09:00 a 11:00 (Facultad de Ciencias)
  • Second semester
    • Tuesday de 11:00 a 13:00 (Facultad de Ciencias)
    • Wednesday de 08:00 a 10:00 (Facultad de Ciencias)
    • Thursday de 11:00 a 13:00 (Facultad de Ciencias)

Armando Reyes Villena Muñoz

Ver email
  • First semester
    • Monday de 17:00 a 18:30 (Facultad de Ciencias)
    • Tuesday de 17:00 a 18:30 (Facultad de Ciencias)
    • Wednesday de 17:00 a 18:30 (Facultad de Ciencias)
    • Thursday de 17:00 a 18:30 (Facultad de Ciencias)
  • Second semester
    • Monday de 17:00 a 18:30 (Facultad de Ciencias)
    • Tuesday de 17:00 a 18:30 (Facultad de Ciencias)
    • Wednesday de 17:00 a 18:30 (Facultad de Ciencias)
    • Thursday de 17:00 a 18:30 (Facultad de Ciencias)

Prerequisites of recommendations

Students are recommended to have successfully completed the basic and obligatory subjects of the first two years of the Degree in Mathematics.

Brief description of content (According to official validation report)

  • Normed spaces
  • Hilbert spaces
  • Compact linear operators on Hilbert spaces
  • Duality in normed spaces
  • Weak topologies

General and specific competences

General competences

  • CG01. Poseer los conocimientos básicos y matemáticos de las distintas materias que, partiendo de la base de la educación secundaria general, y apoyándose en libros de texto avanzados, se desarrollan en esta propuesta de título de Grado en Matemáticas 
  • CG02. Saber aplicar esos conocimientos básicos y matemáticos a su trabajo o vocación de una forma profesional y poseer las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de las Matemáticas y de los ámbitos en que se aplican directamente 
  • CG03. Saber reunir e interpretar datos relevantes (normalmente de carácter matemático) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética 
  • CG04. Poder transmitir información, ideas, problemas y sus soluciones, de forma escrita u oral, a un público tanto especializado como no especializado 
  • CG06. Utilizar herramientas de búsqueda de recursos bibliográficos 

Specific competences

  • CE01. Comprender y utilizar el lenguaje matemático. Adquirir la capacidad de enunciar proposiciones en distintos campos de las matemáticas, para construir demostraciones y para transmitir los conocimientos matemáticos adquiridos 
  • CE02. Conocer demostraciones rigurosas de teoremas clásicos en distintas áreas de Matemáticas 
  • CE03. Asimilar la definición de un nuevo objeto matemático, en términos de otros ya conocidos, y ser capaz de utilizar este objeto en diferentes contextos 
  • CE04. Saber abstraer las propiedades estructurales (de objetos matemáticos, de la realidad observada, y de otros ámbitos) y distinguirlas de aquellas puramente accidentales, y poder comprobarlas con demostraciones o refutarlas con contraejemplos, así como identificar errores en razonamientos incorrectos 
  • CE05. Resolver problemas matemáticos, planificando su resolución en función de las herramientas disponibles y de las restricciones de tiempo y recursos 
  • CE06. Proponer, analizar, validar e interpretar modelos de situaciones reales sencillas, utilizando las herramientas matemáticas más adecuadas a los fines que se persigan 
  • CE07. Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, visualización gráfica, optimización u otras para experimentar en matemáticas y resolver problemas 

Transversal competences

  • CT01. Desarrollar cierta habilidad inicial de "emprendimiento" que facilite a los titulados, en el futuro, el autoempleo mediante la creación de empresas 
  • CT02. Fomentar y garantizar el respeto a los Derechos Humanos y a los principios de accesibilidad universal, igualdad ante la ley, no discriminación y a los valores democráticos y de la cultura de la paz 

Objectives (Expressed as expected learning outcomes)

General goals:

  • Abstraction capacity for the study of standard problems in Mathematical Analysis from the point of view of functional analysis, by understanding the advantages of functional analysis methods for solving various problems.
  • Becoming familiar with some spaces of functions that are commondly employed in Mathematical Analysis and in its applications, like spaces of continuous (respectively, differentiable, analytic or harmonic, integrable, etc.) functions.
  • Preparation for further studies, both in Mathematical Analysis and in other branches of Mathematics.

Specific goals:

  • Employ the concepts of convergent sequence and Cauchy sequence in normed spaces, and understanding the notion of completeness.
  • Being able to use the Hölder and Minkowski inequalities in concrete cases.
  • Getting the skills to prove the continuity of some linear operators between normed spaces and compute their norms.
  • Describe the dual space of some normed spaces.
  • Being able to handle the orthogonal projection of a Hilbert space onto a closed subspace, and to compute the Fourier expansion with respect to the trigonometric system and Bessel's (in)equality.
  • Study some examples of compact operators related to differential and integral equations.
  • Compute the adjoint operator of some concrete operators on Hilbert spaces.
  • Applications of the Hahn-Banach theorem.
  • Check the reflexivity of some Banach spaces.
  • Apply the Uniform boundedness principle.
  • Formulate and understand the weak and weak-* topologies on some Banach spaces.

Detailed syllabus

Theory

Chapter 1. Normed spaces.

Basic concepts and examples. Completeness. Banach's fixed point theorem. Continuous linear operators and functionals. Complemented subspaces. Quotients of normed spaces. Dual space of a normed space. Examples. Finite-dimensional normed spaces.

Chapter 2. Hilbert spaces.

Scalar Products and (pre-)Hilbert Spaces. Projection onto a closed convex set. Orthogonal projection theorem. Riesz-Fréchet representation theorem. Dual of a Hilbert space. Orthonormal bases. Operators on Hilbert spaces. Compact operators.

Chapter 3. Hahn-Banach theorem and Applications.

Analytical and geometric versions of the Hahn-Banach theorem. Separation of convex sets.

Chapter 4: Duality in normed spaces.

Duality for quotients and subspaces. Bidual of a normed space. Reflective spaces. The weak topology of a normed space and the weak-* topology of its dual space.

Chapter 5: The uniform boundeness principle and the closed graph theorem.

Baire category theorem. Banach-Steinhaus theorem. Applications. Open mapping theorem or Banach-Schauder theorem. Closed graph theorem. Applications.

Practice

The practices of this course will consist of workshops to solve exercises and problems related to the theoretical contents.

Bibliography

Basic reading list

BREZIS, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2011.

CONWAY, J.K.: A Course in Functional Analysis, Springer-Verlag. New York, 1990.

MacCLUER, B.D.: Elementary Functional Analysis. Springer, 2009.

KADETS, V.; A Course in Functional Analysis and Measure Theory, Springer, 2018.

RINNE, P.R.; YOUNGSON,M.A.: Linear Functional Analysis. 2nd ed. Springer, 2008.

WILLEM, M.: Functional Analysis. Fundamentals and Applications. Birkhäuser, 2010.

Complementary reading

BERBERIAN, S.K.: Lectures in Functional Analysis and Operator Theory.Springer-Verlag, New York, 1974.

DIEUDONNÉ,J.: History of Functional Analysis. North-Holland,Amsterdam,1981.

RUDIN, W.: Functional Analysis. McGraw-Hill, New York, 1973.

Lecture notes by Prof. Rafael Payá: https://www.ugr.es/~rpaya/cursosanteriores.htm (in Spanish)
Lecture notes by Prof. Javier Pérez: https://www.ugr.es/~fjperez/apuntes.html (in Spanish)

Teaching methods

  • MD01. Lección magistral/expositiva 
  • MD03. Resolución de problemas y estudio de casos prácticos 
  • MD06. Análisis de fuentes y documentos 
  • MD07. Realización de trabajos en grupo 
  • MD08. Realización de trabajos individuales 

Assessment methods (Instruments, criteria and percentages)

Ordinary assessment session

The evaluation will be conducted through a diversified evaluation system based on the following criteria:

- Attendance and active participation in theoretical and practical class sessions.
- Resolution of problems and proposed exercises.
- Participation in problem workshops - Written tests of a theoretical and practical nature.

The result of this diversified evaluation process will represent 30% of the final grade.

For the overall assessment of the knowledge assimilated and the skills acquired by the students, a final written test will be carried out, of a mandatory nature, which will consist of a practical part and a theoretical part. The score for this test will represent 70% of the final grade.

Extraordinary assessment session

There will be a single final exam of a theoretical and practical nature, which will include all the contents of the subject. It must be done in person. The score obtained in this exam will represent 100% of the grade.

Single final assessment

Students who, following the regulations of the UGR in the terms and deadlines required therein, take advantage of the "Single Final Assessment modality" for their evaluation, will take a single final exam that will consist of theory and problems covering all the contents of the subject. It must be done in person. The grade obtained in said exam will represent 100% of the final grade.