An interpretation of observed truncations in the NIR

Estrella Florido, Eduardo Battaner, Ana Guijarro, Francisco

Garzón, Almudena Zurita

Observation and theory

Observations: CAIN NIR camera on the CST (1.5m)
 Extinction effects minimized.
 old stellar populations.
 Data reduction with REDUCE (R. Peletier)
 Edge-on galaxies deprojected with numerical inversion.
 J, Ks, some H
 $4+18$ galaxies
 Theory: Magnetic model of truncations.

Observations are kept uncontaminated by theoretical prejudidges. Theory is fully contaminated by observational results

$$
\begin{aligned}
& \text { The truncation curve } \\
& T(R)=\mu(R)-\mu_{\text {inner disk }}(R) \\
& T(R)=\frac{a}{\left(R_{t}-R\right)^{n}} \approx \frac{a}{\left(R_{t}-R\right)} \\
& n=1.25 \pm 0.4 \quad(16 \text { curves }) \\
& n=0.85 \pm 0.3 \quad(40 \text { curves })
\end{aligned}
$$

The profile

- The $\left(\mathrm{R}_{\mathrm{t}}-\mathrm{R}\right)^{-1}$ profile is a smooth version of the early sharp cut-off description.
- We cannot discard a two-slope description.
- Some of our profiles could be fitted to a two-slope profile
- Some profiles are anti-truncated (as in Pohlen, Beckman, Pérez...)
- The smooth complete truncation seems to be the simplest fit to our data
- From a theoretical point of view, NIR and optical profiles could be different, as optical profiles are more affected by star formation. (Stars could migrate from the birth place or escape)

Frequencies

- Truncated: $7 / 18$
- Untruncated: $4 / 18$
- (two of them anti-truncated)
- Other galaxies are too noisy to obtain firm conclusions about frequencies.
- "Many" galaxies have truncated stellar disks.

Statistical properties

- Are late tape galaxies more oftenly truncated?
- $\mathrm{R}_{\mathrm{t}}(\mathrm{J})>\mathrm{R}_{\mathrm{t}}\left(\mathrm{K}_{\mathrm{s}}\right)$
- At longer wavelengths the truncation is more important (from 40 points)
- Clear evolutionary phenomenon.
- Clear relation between R_{t} and $\mathrm{V}_{\text {rotation }}$ (large radii), first notized by Pohlen et al.
- (for a comparison take into account that some authors give the break radius, and others the truncation radius)

$$
\begin{aligned}
& R_{t}(J) / h(J)=3.19 \pm 0.95 \\
& R_{t}\left(K_{s}\right) / h\left(K_{s}\right)=3.60 \pm 1.04 \\
& R_{t}(J) / h\left(K_{s}\right)=3.63 \pm 1.12
\end{aligned}
$$

$$
\begin{aligned}
& R_{t}=\left(V_{\text {rotation }}(\infty)\right)^{c} \\
& c=1.46 \pm 0.18 \approx 3 / 2
\end{aligned}
$$

