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ABSTRACT 
 

The profit of low-cost, multispectral imaging systems in estimating spectral power distributions has been 
widely studied. There are various mathematical methods available (PCA, Wiener’s estimation method, spline 
interpolation, MDST, among others) which permit the accurate reconstruction of a spectrum from the response of a 
small set of sensors. One important issue in this task is the influence of noise, its propagation through mathematical 
transformations and how the selection of the sensors of the multispectral system, combined with the spectral estimation 
algorithm chosen, may reduce its influence. We report here on four different spectral recovery methods that reconstruct 
skylight spectra from the responses of three Gaussian sensors (the spectral profile of which is a Gaussian curve). The 
sensors are searched for using a simulated annealing algorithm, and they are optimized so that they give the best 
possible spectral and colorimetric reconstructions, even in the presence of noise. We show here how the accuracy of the 
reconstructions is influenced by the recovery method chosen. 
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1. INTRODUCTION 
 

The use of multispectral colour systems for registering high-information colour images is becoming 
increasingly common. No one nowadays, for example, would attempt to analyze naked-eye atmospheric phenomena 
such as rainbows, halos, glories, or coronas without using some kind of instrument. Daylight and skylight spectra are 
normally measured with spectroradiometers, which are complex and expensive instruments that provide only one 
spectrum per measurement. Thus when one measures skylight, the illumination arrives from either a small or large 
angular subtense of the sky, depending on the instrument’s field of view. Because researchers could benefit from high-
resolution, angular maps of skylight’s spectral power distribution (SPD) we need to measure many skylight spectra 
simultaneously across the sky dome. Multispectral imaging systems let us do so, for instance, in an attempt to replace 
classical spectroradiometers at the atmosphere observation stations with lighter and cheaper multispectral systems, 
which can provide complete spectral information of the skylight impinging upon them at each pixel of the image. This 
would lead the way to calculating important parameters used in the study of the particle size and composition of 
aerosols or their concentration in the air (the Angstrom exponent or the optical depth for example1) or an automatic 
software-based method for cloud detection2. 

 
In recent years the development and design of multispectral color-image-acquisition devices has received much 

attention in colour science.  By extending our past research on sky color3-6, we offer here a theoretical optimum design 
of a 3-channel multispectral system that can recover the SPD of the skylight incident upon it. Our optimum 
multispectral system must estimate the spectral skylight radiance at each pixel of the image based on the response of the 
system’s channels. This is a classic inverse problem that requires a mathematical estimation algorithm. 

 
Various estimation algorithms exist which permit us to obtain approximate skylight spectra from the response 

of sensors. These methods are commonly based on an a priori knowledge of the kind of spectra we want to recover. For 
example, performing a principal component analysis (PCA)7 on a set of previously registered spectral measurements 
(called ‘training spectra’) provides a set of vectors which can be linearly combined to obtain the spectral estimation. The 
weights in this linear combination are chosen to minimize the mean square error of the estimation in the space of 



spectral curves over all the training spectra. Three of the four methods we study here are based on PCA: the Maloney-
Wandell method8 (which has been widely used by other authors9,10), the Imai-Berns method11 and the Shi-Healey 
method12. Another way of including a priori spectral knowledge is to develop a Wiener pseudoinverse13 (also called 
direct-pseudoinverse14,15), where the sensors’ responses to the known training spectra are used later to construct a matrix 
that provides unknown spectra from their measured responses. 

 
The accuracy of the spectral reconstructions obtained from the responses of an optimum set of Gaussian 

sensors included in an hypothetical multispectral imaging system depends on several interrelated factors: the spectral 
sensitivity of its sensors, the type and number of sensors, the estimation method chosen, the number and quality of the 
training spectra and the noise that always affects any electronic device. To include all these factors in an exhaustive 
search is a highly demanding computational task. Our alternative approach greatly reduces computing time using as it 
does a simulated annealing algorithm16 that minimizes a cost function. To this end we propose a single cost function that 
evaluates the quality of our recovered skylight spectra: the colorimetric and spectral combined metric or CSCM 
function10, which has proved to be a good metric for evaluating spectral and colorimetric differences between skylight 
spectra17. 
 
 In this work we study the influence of the estimation method chosen upon the shape of the optimum sensors 
found. We also show the lowest number of training spectra that should be used in each method. Finally, we make a brief 
comparative study of the accuracy of each of the four spectral estimation methods mentioned as a function of the noise 
present in the system and the number of basis vectors used in the linear combinations. 
 
 

2. ESTIMATING SKYLIGHT SPECTRA FROM BROADBAND SENSOR DATA 
 
 In a previous paper10 we simulated the spectral response of CCD camera sensors assuming this response to be 
linear7,9,18. If we make this assumption for our multispectral imaging system, we can model its sensors’ response using 
 

ERt=ρ      (1) 
 
where we have sampled the visible spectrum at N different wavelengths and assumed vector notation for the resulting 
magnitudes (hence the integrals become linear combinations or, equivalently, matrix products). In eq. (1) ρ is the 
column vector representing k sensor responses (k = 3 here), E is the illuminant spectrum (skylight in our case), 
represented by an N x 1 column vector, and R is an N x k matrix containing the spectral sensitivities of the k sensors at N 
sampled wavelengths (superscript t denotes its transpose). The mission here is to recover the skylight spectra, E, from 
the measured sensor responses, ρ. This task cannot be achieved simply by pseudoinverting matrix R, because the 
projection of a spectrum, E, in the ρ responses space leads to a significant loss of information. Different estimation 
methods try to solve this problem. 
 
 Any real imaging system is of course affected by noise7,10, a fact not explicitly accounted for in eq.(1). Yet 
noise can be represented as an additive term that changes the ideal noise-free sensors’ responses to 
 
      σ+ρ=ρnoise      (2) 
 
where σ is a k-row vector of uncorrelated components that affect each sensor separately. There are various sources of 
noise19, with thermal noise being the most common. Another noise source in electronic systems is shot noise, the source 
of which is current fluctuations in semiconductor devices due to the quantum character of electrons. Flicker noise is also 
common, and this varies inversely with camera exposure time. Finally, quantization noise is present in every analog-to-
digital (A/D) conversion and is the loss of least-significant digits when quantizing scene radiances to a given number of 
bits (i.e. to a fixed number of discrete levels). 
 

In this study, we simulate thermal and shot noise as random normally distributed noise with standard deviations 
of 1%, 3%, or 5% of the maximum sensor response (these noise levels correspond to signal-to-noise ratios (SNR) of 



40dB, 30dB, and 26dB respectively). Quantization noise is represented as that due to A/D conversion at a resolution of 
12 bits altough we demonstrated in a previous work10 the slight influence of the quantization noise, using at least 8 bits, 
once the optimum sensors have been selected. This slightly degraded performance closely approximates the behavior of 
a real multispectral imaging system. 

 
 As we said in the introduction, it is common to make use of a priori knowledge of the spectra we want to 
recover, PCA being a widely used strategy. PCA consists of obtaining a set of vectors (called principal components or 
eigenvectors) which can then be used to express a given spectrum as a linear combination in terms of 
 
      ε=VE      (3) 
 
where V is an N x n matrix containing the first n eigenvectors used for reconstructing N wavelengths (n is always less 
than or equal to N and is usually chosen to equal k, the number of sensors, which tends to give the best results11,20). 
Vector ε is a n-rowed vector that contains the coefficients of the linear combination. The first three methods we are 
about to present make use of this linear approximation for the spectra. 
 
2.1 Maloney-Wandell method: 
 This method8 simply makes the substitution of eq. (3) in eq. (1) to obtain 
 

           (4) εΛ=ε=ρ VRt

 
Then Λ is a k x n matrix that directly transforms the coefficients ε into the sensor responses ρ. By calculating Λ’s 
pseudoinverse (denoted by superscript +) we obtain the coefficients for the linear estimate of the spectrum from the 
camera sensors’ responses, and we can then recover the skylight spectrum as 
 

           (5) ρΛ= +VER
 
 In this method the a priori information provided by the training spectra is included in matrix V (which contains 
the eigenvectors or principal components), which also appears in Λ as can be seen in eq.(4). We also notice that it is 
necessary to measure the spectral sensitivities, R, of the k sensors to obtain matrix Λ. 
 
2.2 Imai-Berns method: 
 Imai and Berns developed a method11 for reflectance recovery based directly on a relation14 between the sensor 
responses, ρ, and coefficients ε, which now includes a column in ρts and εts for each of the m training spectra (we will 
use m = 20, 156 and 1567 in this study, as we will explain later). Thus 
 
      tsts Gρ=ε      (6) 
 
In this new equation the system matrix G is an n x k matrix which is formally similar to Λ+ in eq.(5), but now is 
determined empirically by a least-squares analysis from the training-vector measurements. Hence it is not necessary to 
measure the spectral sensitivities, R, of the camera to use this method with real sensor-response measurements14. We can 
estimate the matrix, G, as a result of a least-squares analysis, by pseudoinverting the k x m matrix, ρts: 
 

+ρε= tstsG      (7) 
 
In our case, the recovered skylight spectrum is simply calculated in this method from the measured sensor responses, ρ, 
as 
 
      ρ=VGER      (8) 



 
Here, the information provided by the training spectra is included in V and in G. Cheung et.al.20 use this same 

method by pseudoinverting εts in eq.(6) instead of ρts. The resulting matrix is the pseudoinverse of our G, which should 
be pseudoinverted again in eq.(8). Although theoretically the recovered spectra, ER, should be the same, the additional 
pseudoinverse operation introduces artificial noise in the algorithm, and the results are poorer. 
 
2.3 Shi-Healey method: 
 Shi and Healey12 presented a new method which permits them to use higher dimensional models for reflectance 
and illuminant spectra in eq.(3). Although the methods of Maloney-Wandell and Imai-Berns can be used with more 
eigenvectors than sensors (n > k), this does not lead to the best results -as we will see later- because a model with n > k 
does not determine a unique mapping between ρ and ε, since E vectors having different ε values can generate the same 
ρ vector12 as a result of a loss of information when registering an n > k linear model with only k parameters (the  
sensors’ responses). We call the set, SE, of vectors, E, generated when varying the n coefficients ε (more than the 
number of sensors k) and having the same responses ρ. In order to associate a unique ER recovered illuminant vector 
with a ρ measurement vector we can select a single vector, E*, from the set, SE, with the constraint of requiring that E* 
be the vector in SE that minimizes the mean-square error calculated over all the training spectra. In other words, we will 
choose E* from a given ρ as that vector which is most similar to a training spectrum among those vectors of SE that are 
consistent with both the linear model and the sensor vector, ρ.  
 
 Since we have three sensors (k = 3) in this preliminary study of our planned multispectral system, given a 
dimensionality n for the linear model, we separate the contributions of the last three principal components (denoted by 
subscript 2) and the remaining n-3 first principal components (subscript 1) in eq.(4) and thus 
 

     ( )2211 ε+ε=ρ VVRt      (9) 
 
where V1 contains the eigenvectors 1,…,n-3 and V2 contains the eigenvectors n-2,…,n. The vectors ε1 and ε2 contain the 
corresponding coefficients for the linear estimation. In fact Cheung et.al.20 use this method, but they separate the first 
three basis vectors from the remaining n – 3 last basis vectors, which leads to poorer reconstructions in all the cases we 
studied in section 4, and thus we have omitted here the results obtained with this variation of the Shi-Healey method. 
From eq.(9) we can resolve ε2 in terms of ε1 according to 
 

     ( ) ( )11
1

22 ε−ρ=ε
−

VRVR tt     (10) 
 
and substituting in eq.(3) 
 

     ( ) ( )11
1

2211 ε−ρ+ε=
−

VRVRVVE tt    (11) 
 
From this equation, we can construct an N x m matrix, E*, of column vectors of SE that minimizes the mean-square-error 
over all the training spectra. This can be achieved by using pseudoinversion in eq.(11) to find ε1, thus 
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11

1
22
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VRVRVVE tt    (12) 
 

where the (n-3) x m matrix  is given by the following relation (*
1ε ρ̂  is a 3xm matrix which contains the sensors’ 

responses, ρ, to the measured spectra, E, repeated in its m columns): 
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Ets is an N x m matrix containing one training spectrum per column. We have constructed an N x m matrix, E*, of 
estimated spectra from the sensor responses, ρ, of a measured spectrum, E. Each column of E* is related to each column 
of Ets, which contains the training spectra. If we calculate the distance between each column of E* to each column of Ets, 
we can choose the estimated spectrum, ER, as that column of E* for which that distance is minimum: 
 

           (14) *
iR EE =

 

i selects the column of E* for which the distance 
itsi EE −*  is minimum. The most important disadvantage of this 

method is that for every given vector response, ρ, we have to calculate m estimated spectra for E* and choose the 
minimum of m distances. If m is large, the algorithm is extremely slow. We also need to measure accurately the spectral 
sensitivities, R, of the camera. This method will be used here with n = 4 and 5 basis vectors, since if we use just 3 basis 
vectors the matrix V1 would be zero and eq.(12) would be exactly eq.(5) for the Maloney-Wandell method for 3 sensors 
and 3 basis vectors (Λ would be a square 3x3 matrix). 
 
2.4 Wiener estimation method 
 The Wiener estimation method13-15 is formally similar to Imai and Berns’ method although now it relates the 
sensor responses, ρ, directly with the spectral estimations, ER, using a matrix, W, on the way, and so 
 
      ρ=WE      (15) 
 
We can estimate W using a least-squares approach, calculating the pseudoinverse of ρ for the training spectra: 
 

           (16) +ρ= tstsEW
 
The recovered spectrum will be given by a relation identical to eq.(15) using the previously constructed W matrix with 
eq.(16). It is not necessary to measure the spectral sensitivities of the camera. The information of the training spectra is 
included in W, but we do not construct a linear basis for representing the spectra; we just try to build a “robust” matrix, 
W, and introduce the sensors’ responses into eq.(15) to obtain the spectral estimations. 
 
 

3. SEARCHING FOR OPTIMUM SENSORS 
 

Various methods have been proposed for selecting the optimum filters or sensors for a multispectral imaging 
system7,9,15,18. No consensus of opinion exists, however, about what “optimum” means in such a system. For us, one set 
of sensors is clearly better than another if its reconstructed skylight spectra are more accurate when tested by some 
metric. The key question is what metric to use. For our problem, essentially two kinds of metric exist: colorimetric and 
spectral17,21. Colorimetric metrics such as those proposed by the CIE (CIELUV, CIELAB, CIE94, or CIEDE2000) 
approximate color differences observed by the human eye. Spectral metrics are those which measure the distance 
between two spectral curves, such as RMSE or GFC4 (which uses Schwartz’s inequality, a widely accepted17,21,22 index 
of similarity between two spectra). These metrics distinguish between metamers but do not consider human vision. 
Some new metrics have been proposed for comparing spectra that take into account properties of the human visual 
system, such as weighted RMSE (WRMSE) with the diagonal of Cohen’s matrix R21. Viggiano proposed a spectral 
comparison index (SCI)22, the properties of which have been studied by others17,21,22. Another metric widely used in 
solar radiation measurements is the percentage of the integrated irradiance error23 [IIE(%)] across the visible spectrum. 

 
Some authors9 have searched for optimum sensors using only one of the metrics described above. Because their 

results depend on the metric used they are not particularly useful in selecting sensors for our planned multispectral 
system. Imai et al. suggest that “mononumerosis” should be avoided when evaluating the quality of spectral matches21. 
By this term they mean that several metrics should be used to assess color reconstruction from both colorimetric and 



spectral standpoints. Day15 used thresholds for RMSE and CIEDE2000 metrics when searching for optimum sensors; 
Hernández-Andrés et al.3  used GFC, CIELUVand IIE(%) in a similar way. 

 
We must use a single cost function when developing a simulated annealing algorithm. This approach may seem 

to contradict the recommendations of Imai et al.21 Yet it does not, because we actually use a simple single-cost function 
or metric that combines several metrics at once. We use GFC as a spectral metric, CIELAB  as a colorimetric cost 
function, and IIE(%) as a metric for comparing the spectral curves of natural illuminants. In principle, this metric should 
approach zero for near-perfect matches (in contrast with GFC, which tends to unity for perfect matches) and give 
approximately the same weight to the GFC, CIELAB , and IIE(%) metrics. Our combined CSCM metric has 
proved to be a good metric for comparing skylight spectra, and is calculated

*
abE∆

*
abE∆

10,17 by 
 

(%)))1(10001( * IIEEGFCLnCSCM ab +∆+−+=    (17) 
 

Now that Eq. (17) defines our optimum sensor quantitatively, we can turn to developing a search algorithm. 
Whenever possible one should make an exhaustive search to find the optimum sensors for any multispectral system. Yet 
such a search can demand excessive computer time because the number of possible sensor combinations can be 
enormous. We perform our study using 3 sensors that are Gaussian functions of wavelength9,10,18. We vary sensor peak 
sensitivities from 380-780 nm in 5nm steps, a spectral resolution suitable for both colorimetry and radiometry.  We also 
vary the sensors’ FWHM (full width at half maximum) from 10-300 nm in 5-nm steps and the peak value of the sensors 
from 0.5 to 1 in 0.1 steps. Finally, we perform linear spectral recoveries using 3, 4, and 5 eigenvectors. To appreciate 
the computational burden involved, note that ~ 1013 different sets must each be evaluated to find the optimum set for a 
3-sensor system, a search that requires several days on existing personal computers. Faced with such daunting 
computational challenges, we turn to simulated annealing algorithms10,16, which have been widely used as search 
algorithms in physics and greatly speed up the finding of optimum solutions to a system with many different sets of 
sensors. If we slightly relax our requirements for recovery accuracy, an annealing algorithm can give a nearly optimum 
solution after testing only ~ 105 sets of sensors10. 
 
 

4. RESULTS 
 
 In this section we compare the accuracy obtained with each of the four methods presented for various sizes of 
the set of training spectra, for various noise situations and different numbers of basis vectors (in those methods where 
PCA is necessarily performed). 
 
 For this study we used a previously obtained set of 1567 skylight spectral measurements taken in Granada4, 
Spain (37º10'N, 3 36'W, elevation 680m) at many different solar elevations; each spectrum ranged from 380-780 nm in 
5-nm steps. We used this complete set as a test set in all the recovery experiments. This same set served us as a training 
set for the system in three different situations: we chose the complete set of 1567 measurements, and two subsets of 156 
and 20 measurements respectively to compare the efficiency of the algorithms related to the number of training spectra. 
The subsets of 156 and 20 skylight spectra were selected from the original set of 1567 spectra by selecting one of each 
ten and seventy-eight measurements respectively (the original set was arranged according to the date in which the 
measurements were taken). This selection was made just once, and proved to assure a high variety in the shape of the 
training spectra in all the cases. 
 
4.1 Optimum sensors 
 We found that the shape (peak locations and FWHM) of the optimum sensors was almost always the same in 
every noise situation and for every number of basis vectors used within each recovery method. This behavior is 
desirable for developing a practical multispectral system. As other authors have noted9,10,18, sensor sensitivity curves 
tend to sharpen when the noise is high (i.e., low SNR; except for the Imai-Berns method). In the three methods using 
PCA, there was no significant difference in the shape of the optimum sensors when varying the number of basis vectors 
used. We also found that the optimum sensors obtained with the Maloney-Wandell method and the Wiener method are 



very similar in every situation. The optimum sensors obtained with the Shi-Healey method are very peculiar, they seem 
to be equally spaced in the visible and are very narrow-band. 
 
4.2 Accuracy in the reconstructions 
 In this section we present the results obtained when recovering our 1567 skylight spectra of the original set 
with the optimum sensors found using each of the four methods presented as a function of the size of the training set of 
spectra m. We show the results using the CSCM metric explained in the previous section. Table 1 sets out the results of 
this study for the Maloney-Wandell method. We show in each row the results obtained using a different number of basis 
vectors. We separate into columns the three cases of simulated noise (corresponding to SNRs of 40dB, 30dB and 26dB) 
and the number of training spectra used in every noise situation. Each table cell contains mean values and their 
corresponding standard deviations (SD) for the CSCM metric. Analogous tables are presented for the other recovery 
methods: Table 2 for the Imai-Berns method, Table 3 for the Wiener method (in this case no basis vector is needed) and 
Table 4 for the Shi-Healey method. 
 

 40dB 30dB 26dB 
 m = 1567 m = 156 m = 20 m = 1567 m = 156 m = 20 m = 1567 m = 156 m = 20 

3 basis 
vectors 

2.0±1.1 2.1±1.1 2.0±1.2 4.1±2.1 4.1±2.1 4.1±2.1 6.1±3.3 6.3±3.3 6.1±3.4 

4 basis 
vectors 

2.2±1.2 2.2±1.2 2.2±1.2 4.3±2.0 4.2±2.0 4.2±2.0 6.0±3.0 6.3±3.0 6.2±3.2 

5 basis 
vectors 

2.3±1.3 2.5±1.4 2.4±1.3 4.6±2.1 4.7±2.1 4.6±2.1 6.4±3.0 6.7±3.0 6.6±3.2 

Table 1. Mean values ± standard deviations for the Maloney-Wandell method and the CSCM metric 
 
 

 40dB 30dB 26dB 
 m = 1567 m = 156 m = 20 m = 1567 m = 156 m = 20 m = 1567 m = 156 m = 20 

3 basis 
vectors 

2.0±1.1 2.1±1.1 2.1±1.2 3.6±1.8 3.6±1.8 3.7±1.8 5.2±2.9 5.3±2.8 5.5±2.7 

4 basis 
vectors 

2.0±1.1 2.0±0.9 2.1±1.2 3.9±1.8 4.0±2.1 3.8±1.8 5.9±2.8 5.9±3.0 5.4±2.9 

5 basis 
vectors 

2.0±1.1 2.0±0.9 2.0±1.0 3.9±1.8 4.0±1.8 4.1±1.8 5.9±3.0 6.0±3.0 6.0±2.9 

Table 2. Mean values ± standard deviations for the Imai-Berns method and the CSCM metric 
 

 
40dB 30dB 26dB 

m = 1567 m = 156 m = 20 m = 1567 m = 156 m = 20 m = 1567 m = 156 m = 20 
2.0±1.1 2.1±1.1 2.1±1.2 3.9±2.1 3.9±1.8 3.9±1.9 6.0±3.2 6.2±3.1 6.0±3.2 

Table 3. Mean values ± standard deviations for the Wiener method and the CSCM metric 
 
 

 40dB 30dB 26dB 
 m = 1567 m = 156 m = 20 m = 1567 m = 156 m = 20 m = 1567 m = 156 m = 20 

4 basis 
vectors 

1.3±0.8 1.6±1.0 2.0±1.4 2.5±1.3 2.7±1.4 3.3±1.9 3.9±2.1 4.0±2.2 4.8±2.7 

5 basis 
vectors 

1.3±0.7 1.5±1.0 2.0±1.1 2.4±1.3 2.6±1.6 3.0±1.7 3.8±2.1 3.8±2.1 4.0±2.1 

Table 4. Mean values ± standard deviations for the Shi-Healey method and the CSCM metric 
 
 We can see how for the Maloney-Wandell and the Imai-Berns methods the best choice is to use 3 basis vectors 
when recovering skylight spectra from three-sensor responses, as other authors have found before8-12,20. The Maloney-
Wandell and Wiener methods achieve similar results in all cases whilst the Imai-Berns method improves a little as noise 
increases. There is a noticeable improvement in the quality of the recoveries for high noise if we use the complete 
training set of spectra. The Shi-Healey method has clearly turned out to be the best method for recovering spectra from 



three-sensor responses, and we can see how increasing its dimensionality results in lower values for the CSCM 
metric12,20. 
 
 

5. CONCLUSIONS 
 
 We have shown the similarities and differences between the optimum sensors found for recovering skylight 
spectra from noisy broadband sensor data with four different methods. The Maloney-Wandell and Wiener methods, 
although very different mathematically, present a similar behaviour in the shape of the optimum sensors and the quality 
of the recoveries. The Imai-Berns method improves a little upon these two methods when noise is high. The Shi-Healey 
method has proved to be the best for the task of recovering skylight spectra from the responses of three sensors, 
although it is extremely slow when using a large training set. 
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