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1. Introduction and motivation

In secondary school, students are familiar with the study of equations. If
them are of a particular type, such as polynomial of degree two or special
types of trigonometric, logarithmic or exponential equations, the teacher pro-
vides methods and ideas for obtaining the solutions explicitly. For example,

1. The equation 2x−1 + 2x + 2x+1 = 28 has a unique solution x = 3.

2. The equation x4 − 5x2 +6 = 0, has four solutions:
√
2,−

√
2,
√
3,−

√
3.

3. The equation 4 sinx − cos 2x + 1 = 0, has infinitely many solutions:
x = kπ, k ∈ Z (the set of integers numbers).

In these trivial examples, some basic properties of the considered elementary
functions are used to obtain explicitly the solutions: the change of variable
2x−1 = y, in the first case, the change of variable x2 = y in the second case
and the use of the formula − cos 2x = 2 sin2 x− 1, in the third one.

However, too many equations which arise in the applied sciences can not
be solved explicitly. For example,

1. The simple equation x5 − 5x − 1 = 0 has three real solutions but not
rational solutions, i.e., solutions of the type

x =
a

b
, a ∈ Z, b ∈ Z \ {0}

since according to Fubini’s rule, the only possible rational solutions of
the previous equation are 1 and -1, and none of them is solution of that
equation.
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Figura 1: f(x) = x5 − 5x− 1

2. For any given real number a, the equation ex + x3 + x+ cosx = a, has
a unique solution, but it cannot be obtained explicitly.

y

x

a

Figura 2: f(x) = ex + x3 + x+ cos x

In these situations, the Bolzano’s theorem provides a good method to prove
the existence of solutions. This theorem, together with an additional study of
the monotony of the given function, can provide an adequate and complete
study on the solutions of the considered equation.

Bolzano’s theorem contains all the conditions of a very good theorem:
simple statement, affordable demonstration and a large and wide applicability
in the scientific world (throughout the paper, IR will denote the set of real
numbers).
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Theorem 1.1. (Bolzano, 1817) If for some real numbers a < b, f : [a, b] → IR
is a continuous functions such that f(a) < 0 < f(b), then there exists some
point c ∈ (a, b) satisfying the equation f(x) = 0.

a

c b

f(a)

f(b)

f(x)

y

x

Figura 3:

For example, if f : IR → IR is given by f(x) = xk + h(x), with k an odd

natural number and h : IR → IR continuous and satisfying ĺım
|x|→+∞

h(x)

|x|k = 0,

then the equation f(x) = 0 has solution. This is the case of a polinomial
equation of odd degree xk+ak−1x

k−1+. . .+a1x+a0 = 0 (where ak−1, . . . , a1, a0
are given real numbers) as well as the case where the function h is continuous
and bounded as in the equation xk + sin3(ex

2

+ 7) = 0.

In regard to the existence of solutions, similar ideas can be used if we
consider scalar equations with several variables, i.e., f : IRn → IR. If f is
continuous and there exist some points a, b ∈ IRn such that f(a) < 0 < f(b),
then the equation in several variables f(x1, . . . , xn) = 0 has at least one
solution in the “open segment”of IRn defined as

(a, b)IRn = {(1− λ)a+ λb, λ ∈ (0, 1)}.
The proof of this fact is trivial if we consider the continuous function g :
[0, 1] → IR, defined as g(λ) = f((1 − λ)a + λb) and we observe that g(0) =
f(a) < 0 < f(b) = g(1), and finally we apply the Bolzano’s theorem.
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As an example, if h : IR3 → IR is continuous and bounded, the equation
x1e

x2 +h(x1, x2, x3) = a, has solution for each a ∈ IR. The proof of this fact is
very easy since ĺımx1→+∞ x1e

x2 + h(x1, x2, x3) = +∞ and ĺımx1→−∞ x1e
x2 +

h(x1, x2, x3) = −∞. For example, this is the case of the equation x1e
x2 +

x2
1e

−x2

1 + sin(x1x
5
2 + ln(1 + x2

1)) = a.

At this point, we should note that if we are considering not only the
existence, but also the multiplicity of solutions, the situation may be com-
pletely different from the scalar case (n = 1). Let us clarify this statement:
if f : IR → IR is a differentiable function with f ′(x) > 0, ∀ x ∈ IR, then the
equation f(x) = 0, has at most one solution, because f is strictly increasing.
However if f : IR2 → IR is given by f(x, y) = x+ y, the equation f(x, y) = 0
has infinitely many solutions, although both partial derivatives, fx(x, y) = 1
and fy(x, y) = 1 are strictly positive in IR2. This example must not be sur-
prising, since if f : IRn → IR is a differentiable function, then its derivative f ′

is a function from IRn into IRn and we can not define, in an appropriate way,
what means f ′(x) to be positive for x ∈ IRn.

The situation is much more complicated in the case of systems
of equations

f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0,

i.e., the case where f = (f1, . . . , fn) : IR
n → IRn.

Let us consider, for instance, the function f : IR2 → IR2 given by f(x, y) =
((ey+1) sinx, (ey+1) cosx). The function f is continuos and its image f(IR2),
contains points of the four quadrants of IR2, but the equation f(x, y) = 0 has
not solutions, since f(IR2) = {(y1, y2) ∈ IR2 : y21 + y22 > 1} (see Figure 4).

In Bolzano’s theorem, the main hypothesis (besides the continuity of the
considered function) is that the image of the function f takes values into the
two sets IR+ = {x ∈ IR : x > 0} and IR− = {x ∈ IR : x < 0}. But it is clear
from the previous example that the key idea to study systems of equations
is not that the image of the function f takes values into the 2n subsets

{(x1, x2, . . . , xn) ∈ IRn : x1 > 0, x2 > 0, . . . , xn > 0},
{(x1, x2, . . . , xn) ∈ IRn : x1 > 0, x2 < 0, . . . , xn > 0},

. . .

{(x1, x2, . . . , xn) ∈ IRn : x1 < 0, x2 < 0, . . . , xn < 0}
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Figura 4:

Just to prove the existence of solutions for systems of equations, the key
idea is that the function f has an appropriate behavior at the topological
boundary of the considered domain. Let us recall this topological concept.

For x, y ∈ IRn, d(x, y) denotes the euclidean distance. If Ω is a given
subset of IRn, the topological boundary of Ω, ∂Ω, is defined as the set of
points x ∈ IRn such that for each r > 0, the open euclidean ball of center x
and radius r, BIRn(x; r) = {y ∈ IRn : d(x, y) < r}, contains points of Ω and
points of the complementary set IRn \ Ω.

Turning to Bolzano’s theorem, think that the hypotheses are given in
terms of the behavior of the function f on the topological boundary of Ω =
(a, b), since in this simple case, ∂Ω = {a, b}, a set with two points.
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We finish this section with several reflections and questions:

1. The Bolzano’s theorem is when n = 1 and Ω = (a, b), an interval of
real numbers. If, for example, n = 2, the most simple generalization is,
perhaps, Ω = (a, b) × (c, d), a rectangle. Then, ∂Ω is the set given by
the union of its four sides:

∂Ω = {a} × [c, d]
⋃

{b} × [c, d]
⋃

[a, b]× {c}
⋃

[a, b]× {d}.

If f : [a, b] × [c, d] → IR2, (x, y) → (f1(x, y), f2(x, y)) is a continuous
function, can we provide sign type conditions on the components f1, f2
on the corresponding opposite sides of Ω, such that the system of equa-
tions (f1(x, y), f2(x, y)) = (0, 0) has solution in Ω?

2. If Ω is an open euclidean ball in IR2, of center x and radius r, then
there are no sides. Now, ∂Ω is a circumference. Is it possible to give
sufficient conditions in terms of the behavior of the continuous function
f : Ω → IR2 on ∂Ω, such that the system of equations f(x, y) = 0, has
solution in Ω? (here Ω is the closed euclidean ball of center x and radius
r, BIRn(x; r) = {y ∈ IRn : d(x, y) ≤ r}).

3. If Ω is a given “general” subset of IRn, with n an arbitrary natural
number, how can we prove that the system of n equations f(x) = 0,
has solution in Ω?

4. Is there some concept or theory that unifies all these previous cases?

The answers are given in the next section.

2. Systems of equations in rectangles, balls

and . . .

2.1. The case of a rectangle

If we are considering systems of equations in a rectangle, the so called
Poincaré-Miranda’s theorem is an appropriate generalization of the Bolzano’s
theorem. Roughly speaking, it can be stated as follows: if each component

function of the given system has opposite signs on the corresponding opposite

sides of some rectangle, then the system of equations has at least one solution

inside of such rectangle. More precisely,
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Figura 5:

Theorem 2.2 . (Poincaré-Miranda’s Theorem) If

f : [a, b]× [c, d] → IR2, (x, y) → (f1(x, y), f2(x, y)),

is a continuous function and

f1(a, y) < 0 < f1(b, y), ∀ y ∈ [c, d],
f2(x, c) < 0 < f2(x, d), ∀ x ∈ [a, b],

then the system of two equations

f1(x, y) = 0, f2(x, y) = 0,

has at least one solution in (a, b)× (c, d).

As a nontrivial example, if h, g : IR2 → IR2 are bounded and continuous
functions and (a, b) ∈ IR2 is given, the system of equations

x5 + h(x, y) = a,
y

1 + |y|e
y2 + g(x, y) = b,

has at least one solution in the rectangle [−r, r]× [−r, r] for r a positive real
number sufficiently large. To proof this fact, let us note that ĺımx→+∞ x5 +
h(x, y) = +∞, ĺımx→−∞ x5 + h(x, y) = −∞ and that ĺımy→+∞

y

1+|y|
ey

2

+
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g(x, y) = +∞, ĺımy→−∞
y

1+|y|
ey

2

+ g(x, y) = −∞. As a consequence, the
image of the function

IR2 → IR2, (x, y) → (x5 + h(x, y),
y

1 + |y|e
y2 + g(x, y))

is the whole space IR2.

The previous theorem was proved by Poincaré in 1886 and, obviously,
there is a formulation of it for the general case of n equations in a rectangle
contained in IRn (see [6]). In 1940 Miranda proved that it is equivalent to the
Brouwer’s fixed point theorem ([5]).

2.2. The case of a euclidean ball

It can be affirmed that the Poincaré-Miranda’s theorem is very intuitive,
since, on the one hand, the natural generalization of an interval of real num-
bers [a, b], is an interval in the euclidean space IRn given by [a1, b1] × . . . ×
[an, bn] and, on the other hand, the sign type hypothesis of the Bolzano’s
theorem f(a) < 0 < f(b), is replaced by an appropriate sign type hypothesis
on the component functions of f = (f1, . . . , fn) on the corresponding opposi-
te sides of the n-dimensional rectangle. But, what happens if we are treating
with subsets of IRn which are not supposed to have sides? For instance, a
ball. In this case we have the following result.

Theorem 2.3 . (Systems of equations in euclidean balls) Let
f : BIRn(0; r) → IRn continuous such that

〈f(x), x〉 > 0, ∀ x ∈ ∂BIRn(0; r), (2.1)

(〈, 〉 denotes the usual scalar product in IRn). Then the equation f(x) = 0
has solution in the open ball BIRn(0; r).
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Figura 6:

An example. If h1, h2, h3 : IR
2 → IR are bounded and continuous functions,

the systems of equations

x+ h1(y, z) = 0, y + h2(x, z) = 0, z + h3(x, y) = 0,

has solution in BIR3(0; r) for sufficiently large r. To see this, take into account
that

ĺımx2+y2+z2→+∞ 〈(x, y, z), (x+ h1(y, z), y + h2(x, z), z + h3(x, y))〉 =
ĺımx2+y2+z2→+∞ x(x+ h1(y, z)) + y(y + h2(x, z)) + z(z + h3(x, y)) =

ĺımx2+y2+z2→+∞ (x2 + y2 + z2) + xh1(y, z) + yh2(x, z) + zh3(x, y) = +∞.

Let us think that, as in Poincaré-Miranda theorem, the previous one is
also a generalization of the classical Bolzano’s theorem, which is obtained
if n = 1. To clarify this affirmation, take into account that, in Bolzano’s
theorem, it is clearly not restrictive to assume that a = −r, b = r, where
r is a positive real number. Then, we can formulate the Bolzano’s theorem
(Theorem 1.1) in the following equivalent manner:

Theorem 2.4 .(Bolzano’s theorem, again) If f : [−r, r] → IR is conti-
nuous and

f(−r)(−r) > 0, f(r)r > 0
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(which is equivalent to f(−r) < 0 < f(r)), then the equation f(x) = 0 has
solution in (−r, r), the open ball of center zero and radius r in IR.

In the previous lines, we have stated two generalizations of the Bolzano’s
theorem which are, apparently, very different. It seems that they are not
related. Nothing is further from reality, since The Bolzano’s theorem,
the Poincaré-Miranda’s theorem and the Theorem 2.3, on systems
of equations on an euclidean ball, can be view from an unified
point of view by using a powerful tool called the Brouwer degree
theory(see [4]).

3. Some applications of Bolzano type theo-

rems

The previous Bolzano type theorems are not only of interest to mathe-
maticians. In this section, we briefly discuss some elementary applications
of them. The first one uses the classical Bolzano’s Theorem in one and two
variables to prove the simultaneous bisection of two given polygons ([3]). The
second one is about how to use the Poincaré-Miranda’s theorem to demons-
trate the existence of fixed points of a pair of functions of two variables. The
fixed point theory has been of a fundamental importance in the development
of general equilibrium theory in Economy ([7]).

In the next theorem, we consider for simplicity the case of two polygons,
but the same ideas may be used to treat with two bounded subsets of IR2

with well defined area.

Theorem 3.5 . For any pair of given convex polygons P1 and P2, there exists
a line Ax+By = C, which bisects them simultaneously, i.e., if

P+
1 = P1

⋂{(x, y) ∈ IR2 : Ax+By > C}, P−
1 = P1

⋂{(x, y) ∈ IR2 : Ax+By < C},

P+
2 = P2

⋂{(x, y) ∈ IR2 : Ax+By > C}, P−
2 = P2

⋂{(x, y) ∈ IR2 : Ax+By < C},

then area(P+
1 ) = area(P−

1 ), area(P+
2 ) = area(P−

2 ).



Antonio Cañada and Salvador Villegas, May 2013 11

Main ideas of the proof. In the first step, we apply Bolzano’s theorem
1.1, for functions of one variable. It is clear that there exists a unique line in
each direction which bisects the polygon P1. Mathematically, for each given
(a, b) ∈ S1 = {(a, b) ∈ IR2 : a2 + b2 = 1, } there exists a unique c = c(a, b) :

area(P+

1 )(a, b, c) = area(P−
1 )(a, b, c), where

P+

1 (a, b, c) = P1

⋂
{(x, y) ∈ IR2 : ax+by > c}, P−

1 (a, b, c) = P1

⋂
{(x, y) ∈ IR2 : ax+by < c}

In fact, if (a, b) ∈ S1 is fixed, then the function h : IR → IR, defined as

h(c) = area(P+
1 )(a, b, c)− area(P−

1 )(a, b, c)

is continuous and takes positive and negative values.
In the second step, we apply Bolzano’s theorem for functions of two va-

riables. More precisely, the function H : S1 → IR, defined as

H(a, b) = area(P+

2 )(a, b, c(a, b))− area(P−
2 )(a, b, c(a, b))

is continuous and takes positive and negative values. Therefore, there exists
(A,B) ∈ S1 such that H((A,B)) = 0, i.e., the line Ax+By = c(A,B) bisects
P2, and this line also bisects P1, by the definition of c(A,B).

P1

P2

P+
1

P−
1

P+
2

P−
2

Figura 7:
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Finally, general equilibrium is a unified framework for studying the ge-
neral interdependence of economic activities: consumption, production, ex-
change. Proofs of the existence of equilibrium traditionally rely on fixed-point
theorems such as Brouwer fixed-point theorem ([1]). In this regard, we can
say that it is very intuitive that if f : IR → IR is continuous and bounded,
then the fixed point equation x = f(x) has at least one solution, since we
can apply Bolzano’s Theorem 1.1 to the function F : IR → IR defined as
F (x) = x− f(x).

y = x

y = cos(x)

b

Figura 8:

Perhaps, the intuition is difficult to use when we are in the case of systems
of equations. In this case we show how to use the Poincaré-Miranda Theorem
2.2 to prove, very easily, the existence of a fixed point. Indeed, if (f, g) : IR2 →
IR2, (x, y) → (f(x, y), g(x, y)) are continuous and bounded functions, then for
some sufficiently large r ∈ IR+, we can apply the Poincaré-Miranda’s Theorem
2.2 to the function (F,G) : [−r, r] × [−r, r] → IR2, defined as (F,G)(x, y) =
(x − f(x, y), y − g(x, y). As a consequence, (F,G)(x0, y0) = (0, 0), for some
(x0, y0) ∈ [−r, r] × [−r, r], and therefore (x0, y0) = (f(x0, y0), g(x0, y0)), for
some (x0, y0) ∈ [−r, r]× [−r, r].

Finally, we comment that Theorem 2.3 is only a special case of the cele-
brated Gale-Nikaido-Debreu lemma ([1]), which, according to many authors,
has been of great interest in the development of general equilibrium theory
(specially in market equilibrium).
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