
Department of Electrical and Computer Engineering
University of Maryland at College Park

ENEE 642: Software Systems Implementation
Spring 2000, Prof. D. Stewart

logical

.

ing

e met,
ut, we
g so.

of

ent
Handout #7
Introduction to Real-Time Scheduling Theory

A real-time system is one in which the correctness of the computations not only depends upon the
correctness of the computations but also upon the time at which the result is produced.

• A LATE answer is a WRONG answer.

• Real-time DOES NOT mean fast!

• Real-time DOES mean predictable, deterministic execution.

• Real-time systems DO react with the real-world, and thus failures can be catastrophic.

A real-time system can be classified as eitherhard or soft. The distinction, however, is very fuzzy.

Hard Real-Time: Missing a deadline results in the failure of performance degradation of the system

Soft Real-Time: The system will properly perform as long as deadlines are met most of the time. Miss
a few deadlines will not affect the system.

Most complex real-time systems use preemptive multitasking. To ensure that timing constraints ar
priorities must be assigned according to different rules than typical desktop systems. In this hando
review some real-time scheduling algorithms, along with the advantages and disadvantages of doin

Real-time scheduling algorithms can be

• Fixed priority scheduling; where priority =K

• task priorities specified by user

• rate monotonic

• Dynamic priority scheduling; where priority = f(t)

• earliest deadline first algorithm

• minimum laxity first algorithm

• Mixed priority scheduling; where priority =K+f(t)

• maximum urgency first algorithm

Scheduling Theory Definitions

Transient Overload: The state of a real-time system when at least one task will fail because of a lack
CPU time available.

Guaranteed Task: A task is said to be guaranteed if it will always meet its deadlines, even in a transi
overload situation.

Task Set: The set of all tasks which may execute on the same processor.

Critical Task Set: The set of guaranteed tasks. It must be a subset of the task set

Soft Hard

User
Interface

Robot
ControlSensor Input

Handout #7 Introduction to Real-Time Scheduling Theory Page 2 of 6

sk

s.

meets

t algo-

2. In the

ize
Task Utilization: percentage of CPU utilization required by a task, in the worst case. Utilization of ta
i is
Ui = Ci/Ti , whereTi = period of taski, and Ci = worst case execution time of taski.

Total utilization: U = ΣUi

Schedulable bound: maximum worst-case utilization for which a task set will not miss any deadline
The value is scheduler dependent; the maximum value is 100%.

1. SCHEDULING ALGORITHMS

In this section, we take a look at various scheduling algorithms, and show whether or not each task
its deadline.

Assume the following two tasks,P1 andP2; how do we schedule them?

• T1 = 50 msec,C1 = 25 msec,U1 = 50%

• T2 = 100 msec,C2 = 40 msec,U2 = 40%

• U = U1 + U2 = 90%

The deadline for each task is assumed to be the start of next period. If we use a highest-priority-firs
rithm, there are two possibilities

• Case 1: PriorityP1 > PriorityP2

• Case 2: PriorityP1 < PriorityP2

Let us consider each case separately. Case 1 is shown in Figure 1, while Case 2 is shown in Figure
second case, the task set is not schedulable, even though total utilization is less than 100%.

2. FIXED PRIORITY SCHEDULING : RATE MONOTONIC ALGORITHM

The Rate-Monotonic Algorithm (RMA) is a procedure for assigning fixed priorities to tasks to maxim
the possibility that the task set is schedulable. The basic algorithm is to do the following:

• Assigned fixed priorities proportionally to the tasks frequency

• Highest frequency task gets highest priority

• Lowest frequency task gets lowest priority

0 10 20 30 40 50 60 70 80 90 100 110

P1 meets
1st deadline

1st deadline P1

P1 meets
2nd deadline

P2 meets
1st deadline

2nd deadline P1
1st deadline P2

P1

P2

Case 1

Priority P1 > Priority P2
• T1 = 50 msec, C1 = 25 msec, U1 = 50%
• T2 = 100 msec, C2 = 40 msec, U2 = 40%

Figure 1. Fixed-Priority, P1 > P2. All tasks meet their respective deadlines
D. B. Stewart, University of Maryland

Handout #7 Introduction to Real-Time Scheduling Theory Page 3 of 6

rate

been
is 88%.
r than

FIXED

ss than
edulable
RMA is an optimalfixedpriority algorithm. This means that if a task set cannot be scheduled using the
monotonic algorithm, then it cannot be scheduled usingany fixed priority algorithm.

3. PROBLEMS WITH RATE MONOTONIC ALGORITHM

One major problem for the RMA is that the schedulable bound is less than 100%. Specifically, it has
proven that the worst case schedulable bound is as low as 69%, while the average schedulable bound
This means that even though the total processor utilization is less than 100%, if that utilization is highe
the schedulable bound, then there is no guarantee that the task set will meet all deadlines.

Example, Case 3 in Figure 3 is a modification of Case 1

• T1 = 50 msec,C1 = 25 msec,U1 = 50%

• T2 = 75 msec,C2 = 30 msec,U1 = 40%

• U = U1 + U2 = 90% (same as Case 1)

Using rate monotonic algorithm, assign PriorityP1 > PriorityP2

Even though utilization = 90% is the same as Case 1, this task set cannot be scheduled using any
priority assignment.

4. DYNAMIC SCHEDULING

An alternative to fixed priority scheduling isdynamic priority scheduling, where priority is a function of
time. There exist the following optimal dynamic priority algorithms:

• Earliest Deadline First (EDF)

• earliest deadline gets highest priority

• Minimum Laxity First (MLF)

• laxity = deadline - present - cpu_still_needed; smallest laxity gets highest priority.

If a task set cannot be scheduled with one of these algorithms, then it cannot be scheduled withanyalgo-
rithm. The schedulable bound in each of these cases is 100%. Thus, as long as total utilization is le
100%, then task set is schedulable. As an example, consider the task set in Case 3, that was not sch

0 10 20 30 40 50 60 70 80 90 100 110

 1st deadline P1

 P1 meets
 2nd deadline

P2 meets
1st deadline

2nd deadline P1
1st deadline P2

P1 meets
1st deadline

P1 misses
1st deadline
P1 restarts

Case 2

Priority P1 < Priority P2
• T1 = 50 msec, C1 = 25 msec, U1 = 50%
• T2 = 100 msec, C2 = 40 msec, U2 = 40%

P1

P2

Figure 2. Fixed-Priority, P1 < P2. -- P2 misses half of its deadlines
D. B. Stewart, University of Maryland

Handout #7 Introduction to Real-Time Scheduling Theory Page 4 of 6

e when

over-
using a fixed-priority scheduling algorithm. In Case 4, we see that the task set is indeed schedulabl
using EDF.

5. ADVANTAGES/DISADVANTAGES OF FIXED AND DYNAMIC SCHEDULING

Rate Monotonic Algorithm
Advantage: A critical set can be specified, thus tasks can be selectively chosen during a transient

load
Disadvantage: Worst case schedulable bound is 69% (average case 88%)
Disadvantage: Deadline Failures are difficult to detect

P1 meets P1 meets

2nd deadline P1

0 10 20 30 40 50 60 70 80 90 100 110

1st deadline

1st deadline P1
 1st deadline P2

2nd deadline

P2 misses
1st deadline

P1

P2

Case 3

Priority P1 > Priority P2
• T1 = 50 msec, C1 = 25 msec, U1 = 50%
• T2 = 75 msec, C2 = 30 msec, U2 = 40%

Figure 3. Fixed-Priority, P1 > P2. P2 misses some deadlines

10 20 30 40 50 60 70 80 90 100 110

P1 meets
1st deadline

1st deadline

P2 meets
1st deadline

 P1
1st deadline
 P2

P1 meets
2nd deadline

2nd deadline
 P1

 P2 meets
2nd deadline

Case 4

Earliest deadline first scheduling
• T1 = 50 msec, C1 = 25 msec, U1 = 50%
• T2 = 75 msec, C2 = 30 msec, U2 = 40%

P1

P2

Figure 4. EDF -- Tasks meet all deadlines.
D. B. Stewart, University of Maryland

Handout #7 Introduction to Real-Time Scheduling Theory Page 5 of 6

ient

ed and

e same
task must
source

a
ts of 3

ample:
Earliest Deadline First and Minimum-Laxity First:
Advantage: Schedulable bound is 100%
Advantage: Deadline Failures can be detected
Disadvantage: Cannot specify a critical task set, thus no control of which tasks fail during a trans

overload
Disadvantage: Require more overhead during a reschedule

There also exist mixed-priority scheduling algorithms, that combine some of the advantages of the fix
mixed priority algorithms.

6. COMMUNICATION AND SYNCHRONIZATION

As with processes in non-real-time systems, real-time tasks must often share resources, using th
mechanisms, such as shared memory, semaphores, messages, and locks. Sometimes, a real-time
block until the shared resource is available. What happens if a high-priority process needs the re
immediately in order to not miss a deadline, but a lower-priority process is holding the resource?

We definePriority Inversionas the blocking of a high priority task due to a lower priority task locking
shared resource. For example, Figure 5 illustrates the priority version problem. The task set consis
tasks:

• PH: A high priority task

• PM: A medium priority task

• PL: A low priority task

For this example, we are not concerned with their period or execution time.

Assume a resource R1 shared between PH and PL, and PL acquires the resource first.

There have been many solutions proposed for addressing problems such as priority inversion. For ex

• Priority Inheritance Protocol

• Lower priority tasks inherit higher priority when holding a shared resource

• Priority Ceiling Protocol

holding R1

PH

PM

PL

PL
starts

PL

PH
starts

gets R1
PH
needs R1

PL
starts

PH is blocked, while a
lower priority task PM is not
using resource R1 is
running. Hence, we have
a priority inversion.

^^^

suspended
ready to run
running
blocked, waiting for R

state of task

^^^^^
Figure 5. Example of Priority Inversion
D. B. Stewart, University of Maryland

Handout #7 Introduction to Real-Time Scheduling Theory Page 6 of 6

tion
e since

tice,
• Maximum blocking time can be predetermined

• Used mostly with fixed priority scheduling

• Deadlock free

• Resource scheduling

• Schedule resources as well as tasks

• Various algorithms proposed

• Often used in client/server environments.

• Prioritized Message Passing

• Higher priority messages are treated first

• Messages can specify maximum response time

Figure 6 illustrates the priority inheritance solution to the priority inversion problem. Although this solu
has some merits, it is usually used because the method is deadlock-prone, and it is difficult to analyz
the number of times a task can be preempted due to resource usage is not bounded.

A better solution is the priority ceiling protocol. Theoretically it provides the desired result. In prac
however, it is expensive to implement, as significant setup time and overhead is required.

PL
starts

PL
gets R1

PH
starts

PH
needs R1

PM
starts

PL
releases
R1

PH
releases
R1

PH
ends PM

ends
PL
ends

PH

PM

PL

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

due to priority inversion
PL assumes priority of PH

PM does not execute, because priority
of PL is temporarily higher

holding R1

suspended
ready to run
running
blocked, waiting for R1

state of task

^^^^^

Figure 6. Priority inheritance protocol for solving priority inversion problem
D. B. Stewart, University of Maryland

	Handout #7 Introduction to Real-Time Scheduling Theory
	1.� Scheduling Algorithms
	Figure 1.� Fixed-Priority, P1 > P2. All tasks meet their respective deadlines
	Figure 2.� Fixed-Priority, P1 < P2. -- P2 misses half of its deadlines

	2.� Fixed Priority Scheduling: Rate Monotonic Algorithm
	3.� Problems with Rate Monotonic Algorithm
	Figure 3.� Fixed-Priority, P1 > P2. P2 misses some deadlines

	4.� Dynamic Scheduling
	Figure 4.� EDF -- Tasks meet all deadlines.

	5.� Advantages/Disadvantages of Fixed and Dynamic Scheduling
	6.� Communication and Synchronization
	Figure 5.� Example of Priority Inversion
	Figure 6.� Priority inheritance protocol for solving priority inversion problem

