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Abstract

We study the points of strong subdifferentiability for the norm
of a real JB∗-triple. As a consequence we describe weakly compact
real JB∗-triples and rediscover the Banach-Stone Theorem for com-
plex JB∗-triples.

1 Introduction

Let X be a Banach space. The norm of X is said to be strongly-subdifferen-
tiable at a morn-one point x ∈ X whenever the limit

lim
α→0+

‖x + αy‖ − 1
α

exists uniformly for y in the closed unit ball of X. The points of strong subd-
ifferentiability for the norm of a C∗-algebra were characterized by Contreras,
Payá and Werner in [6]. Recently, Becerra-Guerrero and Rodŕıguez-Palacios
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have completely described the points of strong subdifferentiability for the
norm of a (complex) JB∗-triple [3]. In the latter work, the authors show
that the norm of a JB∗-triple E is strongly subdifferentiable at a norm-one
point x if and only if 1 is an isolated point of the triple spectrum of x, if
and only if the support tripotent of x in the bidual, E∗∗, of E lies in E .
As a consequence, the authors show that the JB∗-triples whose norms are
strongly subdifferentiable at every point of their unit spheres are precisely
the so-called weakly compact JB∗-triples.

The aim of the present paper is to describe the points of strong subdif-
ferentiability of the norm of a real JB∗-triple (see definition bellow). In our
main result (Theorem 2.4) we prove that the norm of a real JB∗-triple E is
strongly subdifferentiable at a norm-one point x if and only if the (unique)
norm becoming its complexification a complex JB∗-triple is strongly subd-
ifferentiable at x. As a consequence we characterize, in Corollary 2.5, the
points of strong subdifferentiability for the norm of a real JB∗-triple, extend-
ing the description provided by Becerra-Guerrero and Rodŕıguez-Palacios in
the complex setting.

In [23] Werner showed that the characterization of the points of strong
subdifferentiability for the norm of C∗-algebra can be applied to obtain an
alternative proof of the non-commutative Banach-Stone Theorem provided
by Kadison: “The linear surjective isometries from a unital C∗-algebras A
onto another unital C∗-algebra B are precisely of the form x 7→ uΦ(x), where
u is a unitary element of B and Φ is a Jordan isomorphism from A onto B.
In the already quoted paper (see [23, Remarks 3.]) the author establishes
without proof that it is possible to extend the method he applied to the more
general setting of JB∗-triples. In the last section of this paper we include a
complete extension of Werner’s method to the setting of real and complex
JB∗-triples and the appropriated version of the Banach-Stone theorem for
JB∗-triples.

2 Main result

Given a Banach space X, we denote by BX , SX , and X∗ the closed unit
ball, the unit sphere, and the dual space of X, respectively.

Let x be a norm one element in a Banach space X. The set D(X, x) of
all states of X relative to x is define by

D(X, x) := {f ∈ SX∗ : f(x) = ‖x‖}.
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A JB*-triple is a complex Banach space E equipped with a continuous
triple product

{., ., .} : E ⊗ E ⊗ E → E
(x, y, z) 7→ {x, y, z}

which is bilinear and symmetric in the outer variables and conjugate linear
in the middle one and satisfies:

(a) (Jordan Identity)

L(x, y) {a, b, c} = {L(x, y)a, b, c} − {a, L(y, x)b, c}+ {a, b, L(x, y)c} ,

for all x, y, a, b, c ∈ E , where L(x, y) : E → E is the linear mapping
given by L(x, y)z = {x, y, z};

(b) The map L(x, x) is an hermitian operator with non-negative spectrum
for all x ∈ E ;

(c) ‖ {x, x, x} ‖ = ‖x‖3 for all x ∈ E .

Every C∗-algebra is a JB∗-triple with respect to {x, y, z} = 2−1(xy∗z +
zy∗x), every JB∗-algebra is a JB∗-triple with triple product {a, b, c} = (a ◦
b∗) ◦ c + (c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗, and the Banach space B(H,K) of all
bounded linear operators between two complex Hilbert spaces H,K is also
an example of a JB∗-triple with respect to {R,S, T} = 2−1(RS∗T + TS∗R).

Let X be a complex Banach space with a conjugation (conjugate linear
isometry of period two) τ on X. We will denote by Xτ the real Banach
subspace of X of all τ -fixed points in X. In this case we will say that Xτ is
a real form of X.

It is worth mentioning that a real JB∗-triple is a norm-closed real sub-
triple of a JB∗-triple [16, Definition 2.1]. Let E be a real JB∗-triple. By [16,
Proposition 2.8], there exists a unique complex JB∗-triple structure on the
algebraic complexification E ⊕ iE (denoted by Ê) and a conjugation τ on
E + iE such that E = Êτ := {z ∈ Ê : τ(z) = z}, i.e., every real JB∗-triple
is a real form of its complexification, which is a complex JB∗-triple. Every
real C∗-algebra, every real Hilbert space, every complex JB∗-triple (when
is regarded as a real Banach space) and the Banach space of all bounded
linear operators between real Hilbert spaces are examples of real JB∗-triples
(cf. [16]).

By a real or complex JBW∗-triple we mean a real or complex JB∗-triple
which is also a dual Banach space whose triple product is separately weak∗-
continuous [16, §4]. By [20] and [1] we know that the assumption of the sepa-
rate weak∗-continuity is redundant. The bidual E∗∗ of every real or complex
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JB∗-triple is a JBW∗-triple with triple product extending the product of E
(cf. [8] and [16, Lemma 4.2], respectively).

Let U be a real or complex JB∗-triple and let e be a tripotent in U (i.e.
{e, e, e} = e). It is known that U admits the following decomposition in
terms of the eigenspaces of L(e, e),

U = U0(e)⊕ U1(e)⊕ U2(e),

where Uk(e) := {x ∈ U : L(e, e)x = k
2x} is a subtriple of U (k : 0, 1, 2). The

natural projection of U onto Uk(e) will be denoted by Pk(e). This decom-
position is the so-called Peirce decomposition with respect to the tripotent
e and the natural projections are the so-called Peirce projections. The fol-
lowing rules, known as Peirce rules, are also satisfied

{Uk(e), Ul(e), Um(e)} ⊆ Uk−l+m(e),

{U0(e), U2(e), U} = {U2(e), U0(e), U} = 0,

where Uk−l+m(e) = 0 whenever k − l + m 6= 0, 1, 2.
A tripotent e in a real or complex JB∗-triple U is called minimal whenever

U1(e) = Re, where U1(e) = {x ∈ U : Q(e)(x) = x}.
Let E be a real JB∗-triple with complexification Ê and let e be a tripotent

in E. It is clear that the Peirce projections of E with respect to e coincide
with the restrictions to E of the Peirce projections of Ê with respect to e.
Therefore, the following result follows from [14, Lemma 1.3 and Lemma 1.6].

Lemma 2.1. Let e be a tripotent in a real JB∗-triple E. Then we have

(a) ‖P2(e)(x) + P0(e)(x)‖ = max{‖P2(e)(x)‖, ‖P0(e)(x)‖}, for all x ∈ E;

(b) ‖P2(e)∗(f) + P0(e)∗(f)‖ = ‖P2(e)∗(f)‖+ ‖P0(e)∗(f)‖, for all f ∈ E∗.

(c) If x is a norm-one element in E with P2(e)(x) = e, then P1(e)(x) = 0,
thus x = e + P0(e)(x).

Let X be a complex Banach space with a conjugation τ on X. Then τ
can be extended to a conjugation τ̃ on X∗ in the following way

τ̃ : X∗ → X∗

τ̃(f)(x) = f(τ(x)) (f ∈ X∗).
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In this case, it is also known that (X∗)τ̃ is isometric to (Xτ )∗ via f 7→
f |Xτ . Under this identification, X∗ admits the decomposition X∗ = (Xτ )∗+
i(Xτ )∗. Let x ∈ SXτ ⊂ SX and f ∈ D(X, x). Then

τ̃(f)(x) = f(τ(x)) = f(x) = 1,

which shows that τ̃(f) ∈ D(X, x). Therefore τ̃(D(X, x)) = D(X, x) and
hence D(Xτ , x) = D(X, x)τ̃ .

Having in mind that every tripotent in a real JB∗-triple is clearly a tripo-
tent in its complexification and the strong subdifferentiability at a norm-one
point is inherited by real subspaces, the next corollary is a consequence of
Theorem [3, Theorem 2.7].

Corollary 2.2. Let E be a real JB*-triple. Then the norm of E is strongly
subdifferentiable at every tripotent in E.

Let x be a norm-one element in a real or complex JBW∗-triple U . The set
D(U, x)∩U∗ is a (possibly empty) proper closed face of BU∗ , and therefore, by
[11, Theorem 3.7 and Lemma 2.1], there exists a unique tripotent u (possibly
equal to zero) in U so that D(U, x)∩U∗ = D(U, u)∩U∗. Such a tripotent is
called the support tripotent of x and will be denoted by u(U, x). Let E be a
real JBW∗-triple and let x ∈ SE . As we have seen above, E = Êτ where Ê
is the complexification of E and τ is a conjugation on Ê. By [9, Lemma 3.4],
u(Ê, x) is the limit in the weak∗-topology of the sequence (x2n+1), where
x2n+1 is inductively defined by x3 = {x, x, x} and x2n+1 =

{
x, x2n−1, x

}
.

Since the canonical conjugation on Ê is weak∗-continuous and preserves
the triple product we have τ(u(Ê, x)) = u(Ê, x). Now, [11, Theorem 3.7]
ascertains that u(E, x) = u(Ê, x).

Having the above facts in mind, the same arguments given in [3, Theorem
2.5] can be adapted to obtain the following corollary.

Corollary 2.3. Let E be a real JBW∗-triple, and let x be in SE. The norm
is strongly subdifferentiable at x if and only if D(E, x) ∩ E∗ is weak∗-dense
in D(E, x).

We can now establish our main result.

Theorem 2.4. Let E be a real JB*-triple with complexification Ê and let x
be in SE. Then the norm of E is strongly subdifferentiable at x if and only
if the same conclusion holds for the norm of Ê.
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Proof. We have already mentioned that the strong subdifferentiability of the
norm at a norm-one point is inherited by real subspaces. In order to see the
other implication let us suppose that the norm of E is subdifferentiable at
x ∈ SE .

Let u = u(E∗∗, x) be the support tripotent of x in E∗∗. Then

D(E, x) = D(E∗∗, u) ∩ E∗.

Since the norm of E is strongly subdifferentiable at x we deduce that the
same conclusion remains true for the norm of E∗∗ [15, Corollary 2.1], and
hence, by Corollary 2.3, we get

D(E, x)
w∗

= D(E∗∗, x). (1)

By Corollary 2.2 and Corollary 2.3 we also have

D(E∗∗, u) ∩ E∗w
∗

= D(E∗∗, u). (2)

It follows by (1) and (2) that D(E∗∗, x) = D(E∗∗, u). By [11, Theorem 3.9]
it follows that x ∈ u + BE∗∗

0 (u). We claim that ‖P0(u)(x)‖ < 1. Otherwise,
by Lemma 2.1 and the Hahn-Banach theorem, there exist an element in
D(E∗∗, x)\D(E∗∗, u), which is impossible. Therefore x = u+P0(u)(x) with
‖P0(u)(x)‖ < 1. Finally, by Peirce rules, x2n+1 = u + (P0(u)(x))2n+1 , thus,

‖x2n+1 − u‖ ≤ ‖P0(u)(x)‖2n+1 → 0.

Therefore u ∈ E. Since u = u(E∗∗, x) = u((Ê)∗∗, x) ∈ E ⊆ Ê, Theorem [3,
Theorem 2.7, (4) ⇒ (1)] implies that the norm of Ê is strongly subdifferen-
tiable at x.

Let x be an element in a complex JB∗-triple E , and denote by E(x) the
JB∗-subtriple of E generated by x. It is known that there exists a locally
compact subset Sx of (0,+∞) such that Sx ∪ {0} is compact and E(x) is
JB∗-triple isomorphic to the C∗-algebra C0(Sx) under a triple isomorphism
Ψ, which satisfies Ψ(x)(t) = t (t ∈ Sx) (cf. [17, 4.8], [18, 1.15] and [14]).
The subset Sx is called the triple spectrum of x. When x is an element in a
real JB∗-triple E, the complex triple spectrum of x is the triple spectrum of
x when x is regarded as an element in the complexification, Ê, of E.

In the case of a real JB∗-triple we can obtain the following characteri-
zations of the strong subdifferentiability of its norm at a point of the unit
sphere, similar to those obtained for (complex) JB∗-triples in [3, Theorem
2.7].
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Corollary 2.5. Let E be a real JB∗-triple. The following assertions are
equivalent for an element x in the unit sphere of E:

(a) The norm of E is strongly subdifferentiable at x,

(b) The norm of the complexification of E is strongly subdifferentiable at
x,

(c) 1 is an isolated point of the complex triple spectrum of x,

(d) There exists a unique tripotent u in E such that x ∈ Eu, where

Eu = {y ∈ SE : {u, u, y} = u, {u, y, u} = u and ‖y − u‖ < 1},

(e) u(E∗∗, x) belongs to E,

Proof. Let Ê denote the complexification of E (which is a complex JB∗-
triple) and let τ the canonical conjugation on Ê satisfying Êτ = E. By
Theorem 2.4 we already know that (a) ⇔ (b) and [3, Theorem 2.7, (1) ⇔ (2)]
shows the equivalence (b) ⇔ (c).

To see (b) ⇒ (d), let us suppose that the norm of the complexification, Ê,
of E is strongly subdifferentiable at x. By [3, Theorem 2.7, (1) ⇔ (3)] there
exists a tripotent u in Ê such that {u, u, x} = {u, x, u} = u and ‖x−u‖ < 1.
We claim that such a tripotent is unique. Indeed, suppose that w is another
tripotent in Ê satisfying {w,w, x} = {w, x,w} = w and ‖x − w‖ < 1. By
[14, Lemma 1.6] we have x = u+P0(u)(x) and x = w+P0(w)(x). Moreover,
we also have ‖P0(u)(x)‖ = ‖x − u‖ < 1 and ‖P0(w)(x)‖ = ‖x − w‖ < 1.
By Peirce rules it may be concluded that x2n+1 = u + (P0(u)(x))2n+1 and
x2n+1 = w + (P0(w)(x))2n+1. Then we conclude that

‖u−w‖ ≤ ‖u−x2n+1‖+‖w−x2n+1‖ ≤ ‖P0(u)(x)‖2n+1+‖P0(w)(x)‖2n+1 → 0,

which shows that u = w. Therefore, there exists a unique tripotent u ∈ Ê
such that satisfying {u, u, x} = {u, x, u} = u and ‖x − u‖ < 1. Since
τ is a conjugate-linear triple isomorphism, it follows that τ(u) is also a
tripotent in Ê satisfying the same conditions of u, thus, by the uniqueness,
we have u = τ(u). This shows that u is a tripotent in E and x ∈ Eu. A
similar reasoning to that just developed for the complexification shows the
uniqueness of the tripotent u in E.

(d) ⇒ (e) Let u be a tripotent in E such that x ∈ Eu and let v =
u(E∗∗, x) be the support tripotent of x in E∗∗. By the same reasonings
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given in the proof of Theorem 2.4 and the implication (b) ⇒ (d) above it
may be concluded that

‖v − u‖ ≤ ‖v − x2n+1‖+ ‖u− x2n+1‖ → 0,

which shows that v = u(E∗∗, x) = u ∈ E.
(e) ⇒ (b) As we have seen in the comments preceding Corollary 2.3,

u(E∗∗, x) = u(Ê∗∗, x), which belongs to E ⊆ Ê by hypothesis. Now [3,
Theorem 2.7 (4) ⇒ (1)] ascertains that the norm of Ê is strongly subdiffer-
entiable at x.

We recall that a Banach space X is said to be smooth at a norm-one point
u whenever D(X, u) reduces to a singleton, and X is Frechet-smooth at u

whenever exists the limit limα→0
‖u+αx‖−1

α for every x ∈ X and is uniformly
for x ∈ BX . It is known that X is Frechet-smooth at u if and only if the
norm of X is strongly subdifferentiable at u and X is smooth at u.

The following corollary is an extension to real JB∗-triples of the main
result of [10] for complex JB∗-triples.

Corollary 2.6. Let E be a real JBW∗-triple and let x ∈ SE. Then E is
Frechet-smooth at x if and only if E is smooth at x.

Proof. Suppose that E is smooth at x and let C denote the real JBW∗-
subtriple of E generated by x. By [5, Theorems 3.3, 3.6 and 3.7] there exist
two compact hyperstonean Ω1 and Ω2 such that C is isometric to

C(Ω1, R)⊕`∞ C(Ω2, C)R.

Since C is smooth at x = (x1, x2) (with x1 ∈ C(Ω1, R) and x2 ∈ C(Ω2, C)R)
then it is easy to see that C(Ω1, R) is smooth at x1 and ‖x1‖ = 1 > ‖x2‖ or
C(Ω2, C)R is smooth at x2 and ‖x2‖ = 1 > ‖x1‖, which implies that C(Ω1, C)
is smooth at x1 and ‖x1‖ = 1 or C(Ω2, C) is smooth at x2 and ‖x2‖ = 1. By
[24, Theorem] we conclude that C(Ω1, C) (and hence C(Ω1, R)) is Frechet-
smooth at x1 or C(Ω2, C) (and hence C(Ω2, C)R) is Frechet-smooth at x2.
It can be easily seen that C is Frechet-smooth at x. Finally the equivalence
(a) ⇔ (d) in Corollary 2.5 shows that E is Frechet-smooth at x.

Remark 2.7. It should be noticed that when X is a complex Banach space
with a conjugation τ and x is a norm-one element in Xτ satisfying that Xτ

is smooth at x then X does not need to be smooth at x. For example let Xτ

denote the real spin factor of type IV n,0
n in the terminology of [19, Theorem
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4.1], where we consider X, the complexification of Xτ , equipped with triple
product and norm given by

{xyz} := (x|y)z + (z|y)x− (x|σ(z))σ(y)

and
‖x‖2 := (x|x) +

√
(x|x)2 − |(x|σ(x))|2,

respectively, for all x, y, z in X, where σ(a+ib) = a−ib (a, b ∈ Xτ ) (compare
[18, Theorem 4.1]). It is easy to see that any norm-one element in Xτ is a
minimal tripotent in Xτ and hence Xτ is smooth at such a point. However,
every norm-one point x in Xτ is a tripotent that is not minimal in X (the
complexification of Xτ ), that is, there exist two orthogonal tripotents e and
f in X such that x = e + f . This implies that X is not smooth at x.

To finish with this section we will describe those real JB∗-triples whose
norms are strongly subdifferentiable at every point of their unit sphere. As
in the complex case, we will show that such real JB∗-triples are well-studied
and characterized by several previous authors (compare [3, Theorem 1.12
and Remmark 2.13]).

Lemma 2.8. Let Ω be a locally compact Hausdorff space and let τ be a
conjugation on C0(Ω), the complex C*-algebra of continuous complex-valued
functions on Ω vanishing at infinity. Then the norm of C0(Ω)τ is strongly
subdifferentiable at every point of SC0(Ω)τ if and only if Ω is discrete.

Proof. Let us assume that the norm of C0(Ω)τ is strongly subdifferentiable
at every point of SC0(Ω)τ .

By the classical Stone Theorem there exists a homomorphism σ : Ω → Ω
and a continuous function u : Ω → C with |u(t)| = 1 (t ∈ Ω) such that

τ(f)(t) = u(t)f(σ(t)),

for all t ∈ Ω, f ∈ C0(Ω). Since τ2 = Id we have

u(t)u(σ(t))f(σ2(t)) = f(t), (3)

for all t ∈ Ω, f ∈ C0(Ω).
Let t0 ∈ Ω and let f0 ∈ C0(Ω) satisfying f0(t0) = f0(σ2(t0)) = 1. By

replacing f0 and t0 in (3) we deduce that

u(t0)u(σ(t0)) = 1.
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Since t0 is arbitrary it follows that

u(t) = u(σ(t)) (t ∈ Ω) (4)

From (3) and (4) we have σ2 = IdΩ.

Suppose first, that t0 is a non-isolated point of Ω. We assume first that
σ(t0) = t0. Let (Un) be a sequence of compact neighbourhoods of t0 with
int (Un) % Un+1, σ(Un) = Un and, by the continuity of u, we may also
assume |u(t) − u(t0)| < 1

n for all t ∈ Un. Let en ∈ C0(Ω) with en(t) = 1
for all t ∈ Un and en(t) = 0 for all t ∈ Ω \ Un−1. If u(t0) 6= −1 we define
x =

∑
n

1
2n 2−1(en + τ(en)) ∈ C0(Ω). It is clear that τ(x) = x(∈ C0(Ω)τ ). We

claim that λ =
∑+∞

n=1
1

2n+1 (1+u(t0)) is a cluster point of the triple spectrum
of x in C0(Ω). Indeed, for every m ∈ N we can take tm ∈ Um \ Um+1, then
λm := x(tm) =

∑m
n=1

1
2n+1 (1 + u(tm)), is an element in the triple spectrum

of x. We will show that λm converges to λ. For every ε > 0 there exists
m0 ∈ N such that for every m ∈ N with m ≥ m0 we have∣∣∣∣∣λ−

m∑
n=1

1
2n+1

(1 + u(t0))

∣∣∣∣∣ < ε

2
,

and∣∣∣∣∣
m∑

n=1

1
2n+1

(1 + u(t0))−
m∑

n=1

1
2n+1

(1 + u(tm))

∣∣∣∣∣ ≤
(

m∑
n=1

1
2n+1

)
|u(tm)− u(t0)|

<

(
m∑

n=1

1
2n+1

)
1
m

<
1
m

<
ε

2
.

Therefore, for every m ≥ m0 it follows that |λ− λm| < ε, which shows that
λ is a cluster point of the triple spectrum of x in C0(Ω).

When u(t0) = −1 we define x =
∑

n
1
2n 2−1(ien + τ(ien)) ∈ C0(Ω)τ .

Following the same method applied in the case u(t0) 6= −1 we can conclude
that λ =

∑+∞
n=1

1
2n+1 i(1 − u(t0)) = i

∑+∞
n=1

1
2n is a cluster point of the triple

spectrum of x in C0(Ω).

Suppose now that σ(t0) 6= t0. Let (Un) be a sequence of compact neigh-
bourhoods of t0 with int(Un) % Un+1, σ(Un)∩Un = ∅ and |u(t)−u(t0)| < 1

n
for all t ∈ Un. Let en ∈ C0(Ω) with en(t) = 1 for all t ∈ Un and en(t) = 0
for all t ∈ Ω \ Un−1 and define x =

∑
n

1
2n+1 (en + τ(en)) ∈ C0(Ω). Clearly

τ(x) = x. The same ideas developed in the case σ(t0) = t0 allow us to assure
that λ =

∑+∞
n=1

1
2n+1 is a cluster point of the triple spectrum of x in C0(Ω).
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To finish the proof we claim that if a (norm-one) τ -symmetric element
in C0(Ω) has a non discrete triple spectrum in C0(Ω) then the norm of
C0(Ω) is not strongly subdifferentiable at an element in SC0(Ω)τ . Indeed,
let x be norm-one element in C0(Ω) with τ(x) = x and with non-discrete
triple spectrum Sx ⊆ [0, 1]. It is known that the JB∗-subtriple of C0(Ω)
generated by x (denoted by C) is JB∗-triple isomorphic to the C∗-algebra
C0(Sx) under a triple isomorphism Ψ, which satisfies Ψ(x)(t) = idSx(t) =
t (t ∈ Sx). If Sx is not discrete then there exists a non-isolated point
α ∈ Sx. The function g(t) := t

t+|t−α| ∈ C0(Sx) has an odd extension to
Sx ∪ −Sx, and can be approximated uniformly by real linear combinations
of odd powers of t. Since Ψ−1(idSx) = x is τ -symmetric and Ψ is a triple
isomorphism then Ψ−1(g) is norm-one and τ -symmetric. It is easy to see
that α is the unique t ∈ Sx satisfying g(t) = 1. Since α is not isolated in Sx

it follows by [10, Lemma 2.2] that the norm of C0(Sx) (and hence the norm
of C) is not strongly subdifferentiable at g (at Ψ−1(g)), which contradicts
the assumption since the strong subdifferentiability is inherited by closed
subspaces.

Following [4], a real or complex JB∗-triple U is defined to be weakly
compact if the operator Q(a) : U → U defined by Q(a)(x) := {a, x, a} is
weakly compact for every a ∈ U and to be compact if Q(a) is compact for
all a ∈ U . Let E be a real JB∗-triple with complexification Ê. Clearly,
E is weakly compact whenever Ê is. On the other side, if E is weakly
compact, i.e. Q(a) : E → E is weakly compact for every a in E, we have
Q(a) : Ê → Ê is weakly compact for every a ∈ E, by [21, Theorem 10].
Let Q(a, b) : Ê → Ê be the mapping given by Q(a, b)(x) := {a, x, b}. The
expression 2Q(a, b) = Q(a+b, a+b)−Q(a)−Q(a) implies that Q(a, b) : Ê →
Ê is weakly compact. Since Ê = E + iE and for every x, y ∈ E the equality
Q(x + iy) = Q(x) − Q(y) + 2iQ(x, y) holds, we conclude that Ê is weakly
compact. Therefore, E is weakly compact if and only if its complexification
is.

Compact and weakly compact complex JB∗-triples were completely de-
scribed in [4, §3 and §4]. More recently, in [3, Theorem 2.12 and Remmark
2.13], the authors show that a complex JB∗-triple is weakly compact if and
only if its norm is strongly subdifferentiable at every point of its unit sphere.
Our next goal is to describe those real JB∗-triples whose norm is strongly
subdifferentiable at every point of its unit sphere.

Theorem 2.9. Let E be a real JB*-triple. The following assertions are
equivalent:
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1. The norm of the complexification, Ê, of E is strongly subdifferentiable
at every point of S

Ê
.

2. The norm of E is strongly subdifferentiable at every point of SE.

3. For every x in E, the complex triple spectrum of x is discrete.

4. Ê is weakly compact.

5. E is weakly compact.

Proof. Since the strong subdifferentiability at a norm-one point is inherited
by subspaces, the implication (1.) ⇒ (2.) is clear.
(2.) ⇒ (3.) Let Ê denote the complexification of E and let τ be the canon-
ical conjugation on Ê satisfying Êτ = E. By Theorem 2.4 we conclude
that the norm of Ê is strongly subdifferentiable at every point x in SE

(‖x‖ = 1 and τ(x) = x). Let x be a norm-one element in E and let Ê(x)
denote the complex JB∗-subtriple of Ê generated by x. Since τ(x) = x
we deduce that τ |

Ê(x)
is a conjugation on Ê(x). Since the strong subdif-

ferentiability is inherited by subspaces we conclude that the norm of Ê(x)
is strongly subdifferentiable at every point x ∈ S

Ê(x)τ . It is known that

Ê(x) is JB∗-triple isomorphic to the C∗-algebra C0(Sx), therefore Lemma
2.8 implies that Sx is discrete.

(3.) ⇒ (4.) Since the implication (3.) ⇒ (2.) follows by Corollary 2.5, we
deduce that (3.) ⇔ (2.). We therefore assume that the norm of E is strongly
subdifferentiable at every point of SE .

Let z be in E and let E(z) denote the real JB∗-subtriple of E generated
by z. By Zorn’s lemma there is an abelian subtriple C containing E(z) which
is maximal with respect to inclusion. Let Ĉ denote the complexification of
C. Since C is abelian then Ĉ is an abelian JB∗-triple. It is well known
that Ĉ is triple isomorphic (and hence isometric) to C0(Ω) for some locally
compact Hausdorff space Ω. Since the strong subdifferentiability is inherited
by subspaces it follows that the norm of Ĉ is strong subdifferentiable at every
point in SC , by Theorem 2.4. Now Lemma 2.8 implies that Ω is discrete and
hence there exists a family, {eα}, of mutually orthogonal minimal tripotents
in C such that every element in C can be approximated in norm by linear
combinations of {eα}. We claim that every eα is also a minimal tripotent
in E. Suppose on the contrary that there exists 0 6= x ∈ E1(eα0) \ Reα0 ,
for some α0. Let C

′
denote the real JB∗-subtriple generated by C and x.

Since for every α 6= β we have eα ⊥ eβ we conclude that C
′

is an abelian
real JB∗-triple containing C which contradicts the maximality of C.
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Therefore, every element in E can be approximated in norm by linear
combinations of minimal tripotents in E. Since Ê = E + iE we conclude,
by [22, Lemma 3.2] (see also [2, Corollary 3.5]), that every element in Ê can
be approximated in norm by linear combinations of minimal tripotents in
Ê. By [4, Theorem 3.4, (i) ⇔ (vi)] it follows that Ê is weakly compact.
As we have seen in the comments preceding this Theorem, (4) ⇔ (5). Finally
(4) ⇔ (1), by [3, Theorem 2.12 and Remmark 2.13].

3 Applications

The aim of this section is to obtain an alternative proof of Kaup’s Banach-
Stone Theorem for JB∗-triples by applying the characterization of the points
of strong subdifferentiability for the norm of a JB∗-triple. This provides a
complete proof to the statement settled by W. Werner in [23, Remarks 3.]
and extend the method developed in the already quoted paper to the more
general setting of JB∗-triples.

Having in mind that the bidual of every real or complex JB∗-triple E
is a real or complex JBW∗-triple, and since every tripotent in E is also a
tripotent in its bidual, the proof of the following Lemma could be derived
from [11, Lemma 2.1] and [11, Theorem 3.7] in the complex and real case,
respectively.

Lemma 3.1. Let E be a real or complex JB∗-triple, and let e, u be tripotents
in E. If D(E, e) coincides with D(E, u), then e = u.

The following lemma generalizes [23, Lemma 3] to the setting of real and
complex JB∗-triples.

Lemma 3.2. Let E be a real or complex JB∗-triple, let e be a tripotent in
E and a ∈ SE. The following statements hold:

(a) a ∈ Ee if, and only if, D(E, a) = D(E, e).

(b) If x ∈ Ee satisfies ‖x− b‖ < 1 for all b ∈ Ee then x = e.

Proof. Suppose first that E is a complex JB∗-triple.
(a) (⇒) Suppose a ∈ Ee. In particular we have {e, a, e} = {e, e, a} = e,
which implies P2(e)(a) = e. Since ‖a‖ = 1, [14, Lemma 1.6] assures that
P1(e)(a) = 0, and hence a = e + z0, where z0 ∈ E0(e). Let f ∈ D(E, e). By
[14, Proposition 1] we have f = fP2(e) and f(a) = fP2(e)(a) = f(e) = 1.
This implies f ∈ D(E, a), and hence D(E, e) ⊆ D(E, a).
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To see the other inclusion, let C be the JB∗-subtriple generated by e and
a = e + z0 (z0 ∈ E0(e), ‖z0‖ < 1). Since, by the Peirce arithmetic, e and z0

are orthogonal and e is a tripotent, it follows that C coincides with Ce⊕∞D,
where D is the JB∗-subtriple generated by z0 which is triple isomorphic (and
hence isometric) to C0(Sz0). Therefore, C is triple isomorphic (and hence
isometric) to an abelian C∗-algebra.

According with the notation of [23, Theorem 4] we can see that

a ∈ Ce = Fe,0(C) := {y ∈ SC : ye∗ = ee∗ and ‖y − e‖ < 1}.

Therefore, by [23, Lemma 3], we have D(C, e) = D(C, a). Finally, let f in
D(E, a). It is clear that f |C lies in D(C, a) = D(C, e) and hence f(e) = 1.
This assures that D(E, a) ⊆ D(E, e).

(⇐) Suppose now that D(E, a) = D(E, e). By [3, Theorem 2.7] we
conclude that the norm of E is strongly subdifferentiable at every tripotent
element of E. Since the strong subdifferentiability of the norm of E at a
norm-one element x depends only on the set D(E, x) (compare [13, Theorem
1.2 and Proposition 3.1]) it follows that the norm of E is also strongly
subdifferentiable at a.

From [3, Theorem 2.7] we conclude that there is a tripotent u in E such
that a lies in Eu. By the first part of the proof we have D(E, u) = D(E, a) =
D(E, e). By Lemma 3.1 we get u = e, which gives a ∈ Ee.

(b) Let C be the JB∗-subtriple generated by e and x = e+z0 (z0 ∈ E0(e),
‖z0‖ < 1). As we have seen in the first part of the proof, C is an abelian
C∗-algebra. By hypothesis we have x ∈ Ce = Fe,0(C) and ‖x − b‖ < 1 for
every b ∈ Ce = Fe,0(C). By [23, Lemma 3 (ii)] we get x = e.

Suppose now that E is a real JB∗-triple. Having in mind that [14, Lemma
1.6, and Proposititon 1] remain true for real JB∗-triples, the proof of (a) is
a repetition of the one given in the complex case but replacing [3, Theorem
2.7] by Corollary 2.5. To see (b) let Ê denote the complexification of E
(which is a complex JB∗-triple) and let τ denote the canonical conjugation
on Ê such that Êτ = E. Suppose x ∈ Ee satisfies ‖x− b‖ < 1 for all b ∈ Ee.

As we have seen several times x = e + z0, where z0 ∈ E0(e), and clearly
x ∈ Êe. Let c ∈ Êe then c = b1 + ibi for some b1, b2 ∈ E. The equalities
{e, c, e} = {e, e, c} = e = τ(e) give us

{e, b1, e} = {e, e, b1} = e, {e, e, b2} = {e, b2, e} = 0.

Therefore b1 ∈ E1(e) = Ê1(e) ⊂ Ê2(e) and b2 ∈ E0(e) ⊂ Ê0(e). By [14,
Lemma 1.3] it follows

1 = ‖c‖ = ‖b1 + ib2‖ = max{‖b1‖, ‖b2‖},
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1 > ‖e− c‖ = ‖e− b1 − ib2‖ = max{‖e− b1‖, ‖b2‖},

and then ‖e− b1‖, ‖b2‖ < 1. It is easy to see that

1 = ‖e‖ = ‖ {e, b1, e} ‖ ≤ ‖b1‖,

which shows b1 ∈ Ee. By hypothesis ‖x− b1‖ < 1. Finally

‖x− c‖ = ‖x− b1 − ib2‖ = max{‖x− b1‖, ‖b2‖} < 1,

for every c ∈ Êe. Now, the proof in the complex case assures that x = e.

Corollary 3.3. Let Φ : E → F be a surjective isometry between two real or
complex JB∗-triples. Then Φ preserves tripotents.

Proof. Let e be a tripotent in E. By Corollary 2.5, it follows that the norm
of E is strongly subdifferentiable at e. Since the strong subdifferentiability
is preserved by surjective isometries, we can conclude that the norm of F is
strongly subdifferentiable at Φ(e). By Corollary 2.5 (d), there is a (unique)
tripotent u in F such that Φ(e) ∈ Fu.

Let x ∈ Ee. By Lemma 3.2 (a) we deduce that

D(F,Φ(x)) = (Φ∗)−1D(E, x) = (Φ∗)−1D(E, e) = D(F,Φ(e)) = D(F, u).

Again Lemma 3.2 (a), implies x ∈ Fu. Therefore Φ(Ee) ⊆ Fu. Similar
arguments show the reciprocal inclusion and the equality Φ(Ee) = Fu.

Given y ∈ Fu = Φ(Ee), there is x ∈ Ee with Φ(x) = y, thus

‖y − Φ(e)‖ = ‖Φ(x)− Φ(e)‖ = ‖Φ(x− e)‖ = ‖x− e‖ < 1.

Now, Lemma 3.2 (b), gives us Φ(e) = u. This shows that Φ preserves
tripotents.

It is well known that the fact that any surjective isometry between com-
plex JB∗-triples preserves tripotents can be applied to give an alternative
proof to Kaup’s Banach-Stone Theorem (see for instance [7] or [12, Proof of
Theorem 2.2]).

Corollary 3.4. Let Φ : E → F be a surjective isometry between two complex
JB∗-triples. Then Φ is a triple isomorphism.
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[21] A. M. Peralta and A. Rodŕıguez Palacios, Grothendieck’s inequalities
for real and complex JBW*-triples, Proceedings of the London Math.
Soc. (3) 83, 605-625 (2001).

[22] A. M. Peralta and L.L. Stacho, Atomic decomposition of real JBW∗-
triples, Quart. J. Math. Oxford 52, 79-87 (2001)

[23] W. Werner, Subdifferentiability and the Noncommutative Banach-
Stone Theorem, In Function spaces (Edwardsville, IL, 1994), 377–386,
Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, 1995.

[24] K. F. Taylor and W. Werner, Differentiability of the norm in von Neu-
mann algebras, Proc. Amer. Math. Soc. 119, no. 2, 475–480 (1993).

17


