Cálculo I

Tema 5: Convergencia y acotación. Subsucesiones. Operaciones con sucesiones convergentes.

Definición

Una sucesión de números reales es una función $f: \mathbb{N} \longrightarrow \mathbb{R}$.

En lugar de notarlas de esta forma, se suelen escribir de la forma $\{x_n\}$ o $\{x_n\}_n$, donde $x_n=f(n)$ para cada natural n. Al elemento x_n se llama término n-ésimo de la sucesión $\{x_n\}$.

Ejemplos

- $\{1\}_n$
- $\{(-1)^n\}_n$
- $\bullet \ \left\{\frac{1}{n}\right\}$

Sucesiones acotadas

Sucesiones acotadas

• Una sucesión $\{x_n\}$ está mayorada si existe $M \in \mathbb{R}$ tal que

$$x_n \le M, \quad \forall n \in \mathbb{N}$$

ullet Una sucesión $\{x_n\}$ está minorada si existe $m\in\mathbb{R}$ tal que

$$m \le x_n, \quad \forall n \in \mathbb{N}$$

• Una sucesión $\{x_n\}$ es acotada si es minorada y mayorada. Es fácil comprobar que esta condición equivale a que exista $M\in\mathbb{R}$ tal que

$$|x_n| \le M, \quad \forall n \in \mathbb{N}$$

Ejemplos

- $\{1\}_n$ es acotada.
- $\{(-1)^n\}_n$ es acotada.
- $\left\{\frac{1}{n}\right\}$ es acotada.
- $\bullet \ \{n\}$ está minorada y no mayorada, luego no está acotada.
- ullet $\{-n^2\}$ está mayorada y no minorada, luego tampoco es acotada.
- $\{(-1)^n n\}$ no está mayorada ni minorada.

Sucesión convergente

Una sucesión de números reales $\{x_n\}$ es convergente si existe un número real x que verifica la siguiente condición:

$$\forall \varepsilon > 0, \ \exists m \in \mathbb{N} : n \geqslant m \quad \Rightarrow \quad |x_n - x| < \varepsilon$$

En tal caso, el número real x es único y se llama límite de la sucesión $\{x_n\}$. Diremos también que la sucesión $\{x_n\}$ converge a x, y suele notarse de alguna de las siguientes formas

$$x = \lim_{n} \{x_n\}, \quad \{x_n\} \to x$$

Para un subconjunto de naturales equivalen ser finito y estar mayorado. Por tanto, la condición que aparece en la definición de convergencia equivale a que, para cada real y positivo ε , el conjunto

$$A_{\varepsilon} = \{ n \in N : |x_n - x| \ge \varepsilon \}$$

sea finito

Ejemplos

- $\{1\}_n \to 1$
- $\{\frac{1}{n}\} \rightarrow 0$
- $\{(-1)^n\}$ no converge

Proposición

Toda sucesión convergente está acotada

El recíproco no es cierto. Por ejemplo, la sucesión $\{(-1)^n\}$ está acotada y no es convergente.

Subsucesiones

Definiciór

Una aplicación $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$ es estrictamente creciente si $\sigma(n) < \sigma(m)$ para cualesquiera naturales n,m tales que n < m.

Es inmediato comprobar por inducción que una aplicación $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$ es estrictamente creciente, si, y sólo si, se verifica

$$\sigma(n) < \sigma(n+1), \quad \forall n \in \mathbb{N}.$$

Ejemplos

- 1) $\sigma(n) = 2n, \forall n \in \mathbb{N}.$
- **2)** $\sigma(n) = 2n 1$, $\forall n \in \mathbb{N}$.
- 3) $\sigma(n) = 2^n$, $\forall n \in \mathbb{N}$.

Definición

Una sucesión $\{y_n\}$ es una subsucesión (o una sucesión parcial) de $\{x_n\}$ si existe una aplicación $\sigma:\mathbb{N}\longrightarrow\mathbb{N}$ estrictamente creciente tal que $y_n=x_{\sigma(n)}$ para cada natural n.

Subsucesiones

Ejemplos

- $\bullet \ \left\{\frac{1}{2n}\right\} \ \text{es una subsucesión de} \ \left\{\frac{1}{n}\right\}$
- $\{3^n\}$ es una subsucesión de $\{n\}$
- Si $\{x_n\}$ es una sucesión, entonces $\{x_{2n}\}$ es la subsucesión de los términos pares de $\{x_n\}$ y $\{x_{2n-1}\}$ es la subsucesión de los términos impares.

Por inducción es muy sencillo comprobar la siguiente afirmación.

Proposición

Si $\sigma: \mathbb{N} \to \mathbb{N}$ es estrictamente creciente, entonces $\sigma(n) \geqslant n$ para todo $n \in \mathbb{N}$.

Del resultado anterior podemos deducir fácilmente:

Proposición

Si $\{x_{\sigma(n)}\}$ es una subsucesión de una sucesión convergente $\{x_n\}$, entonces $\{x_{\sigma(n)}\}$ también es convergente, con $\lim\{x_{\sigma(n)}\}=\lim\{x_n\}$.

Subsucesiones

Es inmediato comprobar la siguiente afirmación:

Proposición

Si una sucesión es acotada, toda subsucesión suya también es acotada.

Proposición

Se verifican las siguientes afirmaciones:

- 1) $\{x_n\} \to x$ si, y sólo si, para cada natural k, $\{x_{n+k}\} \to x$
- 2)

$$\{x_n\} \to x \iff \{x_{2n}\} \to x \quad \text{y} \quad \{x_{2n-1}\} \to x$$

Operaciones con sucesiones convergentes

Proposición

Sea $\{x_n\}$ una sucesión de números reales. Las siguientes afirmaciones son ciertas:

- 1) $\{x_n\} \to x \Leftrightarrow \{x_n x\} \to 0 \Leftrightarrow \{|x_n x|\} \to 0$
- 2) $\{x_n\} \to 0 \Leftrightarrow \{|x_n|\} \to 0$
- 3) $\{x_n\} \rightarrow x \Rightarrow \{|x_n|\} \rightarrow |x|$

Es fácil ver que el recíproco de la última afirmación no es cierto:

Ejemplo

La sucesión $\{(-1)^n\}$ no converge. Sin embargo, $\{|(-1)^n|\}=\{1\}_n\to 1$.

Operaciones con sucesiones convergentes

Proposición

Sea $\{x_n\}$ e $\{y_n\}$ sucesiones de números reales. Se verifica:

- 1) Si $\{x_n\} \to x$ e $\{y_n\} \to y$, entonces $\{x_n + y_n\} \to x + y$.
- **2)** Si $\{x_n\} \to 0$ e $\{y_n\}$ está acotada, entonces $\{x_ny_n\} \to 0$.
- **3)** Si $\{x_n\} \to x$ e $\{y_n\} \to y$, entonces $\{x_ny_n\} \to xy$.
- **4)** Si $\{x_n\} \to x$ e $\{y_n\} \to y$, y supongamos además que $y \neq 0$ y que $y_n \neq 0$, para cada $n \in \mathbb{N}$. Entonces $\left\{\frac{x_n}{y_n}\right\} \to \frac{x}{y}$.

Convergencia de sucesiones y orden de ${\mathbb R}$

Proposición Propos

Sean $\{x_n\}$ e $\{y_n\}$ sucesiones de números reales. Se verifica:

- 1) Si $\{x_n\}$ e $\{y_n\}$ son convergentes y $\lim\{x_n\} < \lim\{y_n\}$, entonces existe $m \in \mathbb{N}$ tal que $x_n < y_n$ para cada $n \ge m$.
- **2)** Si $\{x_n\}$ e $\{y_n\}$ convergen y $\{n\in\mathbb{N}:x_n\leq y_n\}$ es infinito, entonces $\lim\{x_n\}\leq \lim\{y_n\}$.
- **3)** Si $\alpha \in \mathbb{R}$, $\{x_n\}$ converge y el conjunto $\{n \in \mathbb{N} : \alpha \leqslant x_n\}$ es infinito, entonces $\alpha \leqslant \lim \{x_n\}$.
- **4)** Si $\beta \in \mathbb{R}$, $\{x_n\}$ converge y el conjunto $\{n \in \mathbb{N} : x_n \leq \beta\}$ es infinito, entonces $\lim \{x_n\} \leqslant \beta$.
- 5) En particular, si $\{x_n\}$ es convergente se tiene:

$$\inf \{x_n : n \in \mathbb{N}\} \leqslant \lim \{x_n\} \leqslant \sup \{x_n : n \in \mathbb{N}\}.$$

6) Supongamos que $\{x_n\}$ e $\{y_n\}$ convergen al mismo límite y $\{z_n\}$ es una sucesión de reales tales que $x_n\leqslant z_n\leqslant y_n$ para todo $n\in\mathbb{N}$. Entonces $\{z_n\}$ también converge al mismo límite.

Supremo, ínfimo y sucesiones

A veces resulta cómodo usar las siguientes caracterizaciones de supremo y de ínfimo:

Proposición

Sea $A\subset\mathbb{R}$ un conjunto no vacío y $\alpha,\beta\in\mathbb{R}.$ Entonces

i)

$$\alpha = \operatorname{Inf} A \Leftrightarrow \left\{ \begin{array}{l} \alpha \leq a, \forall a \in A \\ \mathbf{y} \\ \exists \{a_n\} \rightarrow \alpha, \quad a_n \in A, \ \forall n \in \mathbb{N} \end{array} \right.$$

ii)

$$\beta = \operatorname{Sup} A \iff \left\{ \begin{array}{l} a \leq \beta, \forall a \in A \\ \mathbf{y} \\ \exists \{a_n\} \to \beta, \quad a_n \in A, \ \forall n \in \mathbb{N} \end{array} \right.$$

Supremo, ínfimo y sucesiones

En vista de la densidad de \mathbb{Q} y de $\mathbb{R}\setminus\mathbb{Q}$ en \mathbb{R} obtenemos:

Corolario

Sea $x \in \mathbb{R}$. Entonces

a) Existen sucesiones $\{r_n\}$ y $\{s_n\}$ de números racionales, tales que:

$$r_n < x < s_n \quad \forall n \in \mathbb{N}, \quad x = \lim\{r_n\} = \lim\{s_n\}$$

b) Existen sucesiones $\{\alpha_n\}$ y $\{\beta_n\}$ de números irracionales, tales que:

$$\alpha_n < x < \beta_n \quad \forall n \in \mathbb{N}, \quad x = \lim \{\alpha_n\} = \lim \{\beta_n\}$$