Emil Artin
Matemático (1898, Vienna, Austria, 1962, Hamburgo, Alemania)
Emil Artin nació el 3 de marzo de 1898, en Viena, Austria y murió el 20 de diciembre de 1962 en Hamburgo, Alemania. Emil Artin, llevaba el mismo nombre de su padre quién era un comerciante en piezas de arte. Su madre, Emma Laura-Artin, era una cantante de ópera. Quizá, por el antecedente de sus padres, la vida de Artin estuvo marcada por un gran amor por las artes y la música, sólo igualado por su pasión por las matemáticas. Fue criado en la ciudad de Reichenberg, en la Bohemia, que era entonces parte del Imperio Austriaco. Aunque en la actualidad la ciudad de Reichenberg se llama Liberec, y se encuentra ubicada en el norte de la República Checa, en el tiempo en que Emil fue educado allí el principal idioma que se hablaba era el alemán. Como se trataba de una ciudad industrial textil, a menudo se le denominaba como la Manchester de Bohemia.
La niñez de Artin no fue particularmente feliz, ya que siempre lo embargaba, como él lo mencionó más de una vez, una profunda soledad. De niño, no se encontraba atraído por las matemáticas, como generalmente no ocurre con la mayor parte de los matemáticos, y hasta la edad de dieciséis años, no le prestó más atención que la que le otorgaban el resto de sus compañeros de escuela. Más aún, hasta esa edad no mostró ningún talento en particular para esa disciplina; al menos esa era su propia opinión que el mismo exponía sobre su época de escolar. En ese período de escolaridad, Artin mostraba un mayor talento y atracción por la química. Pero el cambio se produce cuando cursa sus dos últimos años de escuela en Francia, los que considera como los días más felices de su escolaridad. Esos años corresponden al período de su vida en que se despierta en él su atracción por las matemáticas.
Cuando Emil Artin acabó su periodo escolar en 1916 en Reichenberg. En Europa habían transcurrido ya dos años de la Primera Guerra Mundial. No obstante, Artin ingresa a la Universidad de Viena. Sin embargo, transcurrido un semestre de estudios, es reclutado por el Ejercito Austriaco, en el cual sirve hasta finalizar la guerra. En 1919, logra retomar sus estudios de matemáticas en la Universidad de Leipzing con Gustav Herglotz. El éxito académico no se hizo esperar y en 1921 obtiene el grado de doctor. El tema de su tesis se refirió a la aplicación de los métodos de la teoría de cuerpos cuadráticos de números a las extensiones cuadráticas del cuerpo de las funciones racionales de una variable con coeficientes en Z_p, para p primo. Después de recibir su doctorado, asiste a la universidad de Göttingen en el curso académico (1921-1922). Finalizada su estancia en Göttigen, en octubre de 1922, se va a la Universidad de Hamburgo como ayudante de cátedra y, en 1923, consigue su habilitación como docente e investigador (Privatdozent).
En Hamburgo Artin diserta sobre una amplia variedad de temas incluyendo matemáticas, mecánica y relatividad. Es promovido como profesor extraordinario en 1925 y, al año siguiente, nombrado profesor titular. Se trata de un período de la vida académica de Artin bastante productivo en sus tareas investigadoras.
Durante el periodo 1921-1931, desarrolló una productividad investigativa difícil de igualar en la vida de un matemático. Durante estos diez años, sus aportes al desarrollo de las matemáticas son más que significativos. Su contribución a las teorías de cuerpos y anillos fue decisiva. Alrededor de 1928, consideró los anillos que satisfacen la condición de mínimo en ideales derecha, hoy llamados "anillos artinianos" en su honor.
En 1927, Artin halla la solución para uno de los 23 famosos problemas que presentó, en 1900, David Hilbert. También en ese mimo año de 1927, desarrolló una ley general de reciprocidad que incluyó todos los leyes de la reciprocidad conocidas previamente y que habían sido descubiertas a partir de la primera que formuló Carl Gauss.
La teoría de cuerpos que había sido creada por Ernst Steinitz en 1910. Tuvo un rápido desarrollo en la siguiente década, posteriormente Artin contribuyó enormemente a su desarrollo. En el año 1924, demostró que dado un cuerpo algebraicamente cerrado E, que contiene a los racionales, existe un subcuerpo suyo K, tal que E/K es una extensión algebraica finita. En 1926, Artin extendió el resultado para cuerpos algebraicamente cerrados de caracteristica cero. Artin probó, con argumentos inteligentísimos extraídos de la teoría de Galois y del teorema de Cauchy, que E es una extensión de K de grado 2 y que el subcuerpo K verifica que –1 no se puede expresar como una suma de cuadrados. Este descubrimiento fue publicado, en el año 1926, en parte de un importante artículo referido a un trabajo que Artin realizó junto con Otto Schreier.
Antes de referirnos al tema central de esa publicación de 1926, es importante mencionar que Artin y Schreier llegaron a la conclusión que el problema que anteriormente hemos descrito puede también ser manejado en los casos de cuerpos de característica prima. En un trabajo que ambos matemáticos publicaron en 1927, introdujeron lo que hoy se conoce como extensiones cíclicas de grado p de Artin-Schreier. En efecto, probaron que para el caso de característica prima, el cuerpo E no puede ser una extensión finita de un subcuerpo K.
Artin y Schreier, definieron y estudiaron totalmente lo que se conoce hoy como cuerpos reales, o sea, aquellos en los que –1 no puede expresarse como suma de cuadrados. También, definieron y estudiaron los cuerpos reales cerrados. El mismo Artin probó que cuando E es el cuerpo de todos los números algebraicos, el subcuerpo K de los números algebraicos reales soluciona el problema y, en cierto sentido, es la solución única. Artin y Schreier en 1926, describieron además un orden natural en el cuerpo K. Una vez logrado esto, Artin pudo presentar completas soluciones matemáticas a distintos problemas, como es el caso del famoso problema veintitrés de Hilbert. Artin lo resolvió en 1927, en el artículo Uber die Zerlegung definiter Funcktionen in Quadrate. La teoría para cuerpos reales cerrados influenciaron en particular a Abraham Robinson en sus conocidas investigaciones.
Otro de los aportes importantes del trabajo realizado por Artin, durante su primer período en la Universidad de Hamburgo, fue el desarrollo de la teoría de trenzas que él presentó en 1925. En ello, demostró, una vez más, su originalidad al introducir un nuevo campo de investigación que en la actualidad está siendo estudiado con detención y profusamente por un número cada vez mayor de físicos-matemáticos que trabajan en la formulación de la gravedad cuántica (teorías de grupo y semigrupo, y topología).
Emil Artin formuló algunas importantes conjeturas, que han desempeñado un papel relevante en el desarrollo de las matemáticas. Dos de ellas, son los que han concitado el mayor interés. La primera, es el análogo de la conjetura de Riemann para la función zeta de una curva sobre cuerpos finitos. En su tesis doctoral, Artin lo confirmó numéricamente para varios casos. En 1933, Hasse tuvo éxito en ratificar la afirmación para las curvas elípticas y, en 1942, lo consiguió Weil para curvas arbitrarias, lo que posteriormente, fue generalizado por Deligne. Así fue, como ese tipo de afirmaciones de Artin dio origen a una amplia gama de actividades conocidas en la actualidad como geometría de números o aritmética.
En segundo lugar, está la conjetura de Artin sobre raíces primitivas. Dado cualquier número entero g, distinto de 1 y -1 y que no sea una potencia de otro entero, entonces hay una cantidad infinita de números primos p, tal que g es una raíz primitiva módulo p. Más precisamente, el conjunto de esos números primos tiene densidad positiva que se puede describir y calcular de manera explícita. Esta conjetura de Artin, es uno de sus legados, que ha originado interesantes trabajos en teoría de números.
Artin se casó en 1929, con una de sus alumnas, Natalie Jasny, quién profesaba la religión judía. Esa condición religiosa de su esposa, le obligó en 1937, a abandonar Alemania cuando el régimen Nazi dictó la ley del 'Nuevo Funcionario Público'. Emigró a los EE.UU., donde recorrió varias universidades. Primero llegó a la Universidad de Notre Dame, posteriormente a la Universidad del Estado de Indina y, finalmente, a la Universidad de Princenton.
En 1958, Artin regresa a Alemania y se reintegra a su cátedra en la Universidad de Hamburgo, lugar de donde había salido veinte años atrás, dado las infelices circunstancias que se vivieron en esa época de la Alemania Nazi. Entre sus principales obras se encuentran La Geometría Algebraica (1957) y La teoría de Clases de Cuerpos (1961).
La Sociedad Americana de Matemáticas le otorgó el premio Cole por su trabajo en teoría de números. Artin fue un excepcional docente en el nivel de pre-grado así como un extraordinario profesor guía de muchos estudiantes de distintos niveles de post-grado. Pero no sólo las matemáticas le interesaban a Artin, también fue un estudioso de la química, la astronomía y de la biología. Además, la música fue otra de sus pasiones ya que tocaba varios instrumentos.