Biografías

Leonhard Euler
Matemático (1707 Basilea, Suiza, 1783 San Petersburgo, Rusia)

Leonhard Euler nació el 15 de abril de 1707 en Basilea, Suiza y murió el 18 de septiembre de 1783 en San Petersburgo, Rusia. Fue hijo de un clérigo, que vivía en los alrededores de Basilea. Su padre Paul Euler había estudiado teología en la universidad de Basilea y había asistido a las clases de Jacob Bernoulli. De hecho Paul Euler y Johann Bernoulli habían vivido juntos en la casa de Jacob Bernoulli durante sus estudios en la universidad.

Paul Euler se convirtió en un pastor Protestante y se casó con Margaret Brucker, la hija de otro pastor. Paul Euler le enseñó a su hijo matemáticas elementales y otras materias. Su talento natural para las matemáticas se evidenció pronto por el afán y la facilidad con que estudiaba, bajo la tutela de su padre .

A una edad temprana fue enviado a la Universidad de Basilea, donde atrajo la atención de Johann Bernoulli. Inspirado por un maestro así, maduró rápidamente, a los 17 años de edad, cuando se graduó Doctor, provocó grandes aplausos con un discurso probatorio, el tema del cual era una comparación entre los sistemas cartesiano y newtoniano.

Su padre deseaba que siguiera el estudio de la teología. Pero, cuando vio que el talento de su hijo iba en otra dirección le autorizó a seguir sus estudios favoritos. A la edad de diecinueve años, envió dos memorias a la Academia de París, una sobre arboladura de barcos, y la otra sobre la filosofía del sonido. Estos ensayos marcan el comienzo de su espléndida carrera.

Por esta época decidió dejar su país nativo, a consecuencia de una aguda decepción, al no lograr un profesorado vacante en Basilea. Así, Euler partió en 1727, año de la muerte de Newton, a San Petersburgo, para reunirse con sus amigos, los jóvenes Bernoulli, que le habían precedido allí algunos años antes .

En el camino hacia Rusia, se enteró de que Nicolás Bernoulli había caído víctima del duro clima nórdico; y el mismo día que puso pie sobre suelo ruso murió la emperatriz Catalina, acontecimiento que amenazó con la disolución de la Academia, cuya fundación ella había dirigido. Euler, desanimado, estuvo a punto de abandonar toda esperanza de una carrera intelectual y alistarse en la marina rusa. Pero, felizmente para las matemáticas, Euler obtuvo la cátedra de filosofía natural en 1730, cuando tuvo lugar un cambio en el sesgo de los asuntos públicos. En 1733 sucedió a su amigo Daniel Bernoulli, que deseaba retirarse, y el mismo año se casó con Mademoiselle Gsell, una dama suiza, hija de un pintor que había sido llevado a Rusia por Pedro el Grande.

Hacia 1730, había realizado una serie de trabajos sobre cartograpía, ciencias de la educación, magnetismo, máquinas de vapor y construcción de barcos. Por otro lado, su investiogación teórica fue en Teoría de números, análisis infinitesimal incluyendo ecuaciones diferenciales y cálculo de variaciones. Especialmente estudió ciertas funciones y ecuaciones diferenciales que hoy día llevan su nombre.

Dos años más tarde, Euler dio una muestra insigne de su talento, cuando efectuó en tres días la resolución de un problema que la Academia necesitaba urgentemente, pese a que se le juzgaba insoluble en menos de varios meses de labor. Pero el esfuerzo realizado tuvo por consecuencia la pérdida de la vista de un ojo. Pese a esta calamidad, prosperó en sus estudios y descubrimientos; parecía que cada paso no hacía más que darle fuerzas para esfuerzos futuros. Hacia los treinta años de edad, fue honrado por la Academia de París, recibiendo un nombramiento; asimismo Daniel Bernoulli y Collin Maclaurin, por sus disertaciones sobre el flujo y el reflujo de las mareas. La obra de Maclaurin contenía un célebre teorema sobre el equilibrio de esferoides elípticos; la de Euler acercaba bastante la esperanza de resolver problemas relevantes sobre los movimientos de los cuerpos celestes.

La publicación de muchos artículos sobre matemáticas y la de su libro Mecánica (1736-37), donde presenta la mecánica newtoniana en forma de análisis matemático por primera vez, le distinguen como uno de los mejores matemáticos de su tiempo.

Hacia 1740 Euler tenía una gran reputación, hebiendo ganado el gran premio de la Academia Francesa en dos ocasiones en 1738 y 1740. En el verano de 1741, el rey Federico el Grande invitó a Euler a residir en Berlín. Esta invitación fue aceptada, y Euler vivió en Alemania hasta 1766. Durante su residencia en Berlín, Euler escribió un notable conjunto de cartas, o lecciones, sobre filosofía natural, para la princesa de Anhalt Dessau, que anhelaba la instrucción de un tan gran maestro. Estas cartas son un modelo de enseñanza clara e interesante, y es notable que Euler pudiera encontrar el tiempo para un trabajo elemental tan minucioso como éste, en medio de todos sus demás intereses literarios.

Su madre viuda vivió también en Berlín durante once años, recibiendo asiduas atenciones de su hijo y disfrutando del placer de verle universalmente estimado y admirado. En Berlín, Euler intimó con M. de Maupertuis, presidente de la Academia, un francés de Bretaña, que favorecía especialmente a la filosofía newtoniana, de preferencia a la cartesiana . Su influencia fue importante, puesto que la ejerció en una época en que la opinión continental aún dudaba en aceptar las opiniones de Newton. Maupertuis impresionó mucho a Euler con su principio favorito del mínimo esfuerzo, que Euler empleaba con buenos resultados en sus problemas mecánicos.

Durante los 25 años en Berlín, Euler escribió alrededor de 380 artículos. Escribió libros sobre cálculo de variaciones, órbitas planetarias, artillería y balística, sobre análisis, construcción de barcos y navegación, sobre el movimiento de la luna, lecciones de cálculo diferencial. Además de las cartas didácticas a la princesa de Alemania (3 vols., 1768-72).

En 1766 Euler volvió a San Petersburgo, para pasar allí el resto de sus días, pero poco después de su llegada perdió la vista del otro ojo. Durante algún tiempo, se vio obligado a utilizar una pizarra, sobre la cual realizaba sus cálculos, en grandes caracteres. No obstante, sus discípulos e hijos siguieron copiando su obra, escribiendo exactamente lo que le dictaba Euler. Una obra magnífica, que era en extremo sorprendente, tanto por su esfuerzo como por su originalidad. Euler poseyó una asombrosa facilidad para los números y el raro don de realizar mentalmente cálculos con grandes números.

En 1771, cuando estalló un gran fuego en la ciudad, llegando hasta la casa de Euler, un compatriota de Basilea, Peter Grimm, lo salvó de las llamas. Si bien se perdieron los libros y el mobiliario, se salvaron sus preciosos escritos. Euler continuó su profuso trabajo durante doce años, hasta el día de su muerte, a los setenta y seis años de edad. Después de su muerte en 1783, la Academia de San Petersburgo continuó publicando trabajos inéditos de Euler durante casi 50 años mas.

Euler era como Newton y muchos otros, un hombre capacitado, que había estudiado anatomía, química y botánica. La apacibilidad de ánimo, la moderación y la sencillez de las costumbres fueron sus características. Su hogar era su alegría, y le gustaban los niños. Pese a su desgracia, fue animoso y alegre, poseyó abundante energía; como ha atestiguado su discípulo M. Fuss, "su piedad era racional y sincera; su devoción, ferviente".

El trabajo de Euler en matematicas fue amplísimo. Ha sido el más prolífico escritor de matemáticas de todos los tiempos. Ha hecho importantes contribuciones en geometría analítica y trigonometria, donde fue el primero en considerar al seno, coseno etc. como funciones en vez de como cuerdas siguiendo a Ptolemeo.

Hizo decisivas contribuciones a la geometría, cálculo y teoría de números. Dió una visión conjunta del cálculo diferencial de Leibniz y del método de fluxiones de Newton. Introdujo las funciones beta y gamma, y estudió algunas ecuaciones diferenciales. También mecánica continua, el movimiento de la luna, el problema de los tres cuerpos, elasticidad, acústica, teoría de ondas de luz, hidráulica y música. Estableció los fundamentos de la mecánica analítica, especialmente en su Teoría de los movimientos de cuerpos rígidos (1765).

Debemos a Euler muchas de las notaciones hoy día populares en matemáticas: f(x) para una función (1734), e para la base de los logaritmos naturales (1727), i para la raiz cuadrada de -1 (1777), π para pi, la notación abreviada de sumatorios (1755), para diferencias finitas y muchas otras hoy día comunes.

Euler echó abajo la conjetura de Fermat de que los números de la forma 2^2^n eran primos, verificando que si lo eran para n = 0,1,2,3 y 4 pero que el siguiente n = 5, 2^32 + 1 = 4294967297 es divisible por 641 y por tanto no es primo. Euler también estudió otras conjeturas de Fermat e introdujo la función phi, φ, que cuenta el número de números menores que uno dado que son primos con el.

En 1735, con 28 años, halló la suma de la serie convergente Σ1/n^2=π^2/6 en la que habían trabajado sin conseguirlo matemáticos de la talla de Jacob Bernoulli, Johann Bernoulli, Daniel Bernoulli, Leibniz, Stirling, de Moivre y muchos otros.

Euler también demostró que Σ1/n^4=π^4/90, Σ1/n^6=π^6/945, Σ1/n^8=π^8/9450, Σ1/n^{10}=π^{10}/93555 y Σ1/n^{12}=691π^{12}/638512875. En 1737, probó la conexión entre la función zeta con la serie de números primos obteniendo la famosa igualdad ζ(s) = Σ(1/n^s) = Π(1 - p^{-s})^{-1} donde la suma es en todos los números naturales n mientras que el producto es en todos los números primos.

También en 1735, halló el valor hasta 16 lugares decimales de la constante gasmma γ, hoy conocida con su nombre. Euler estudió las series de Fourier y en 1744 fue el primero en expresar una función algebraica por medio de una serie de este tipo.

Encontró la fórmula de sumación hoy conocida como de Euler-McLaurin. Demostró el último teorema de Fermat para n = 3, donde introdujo cálculo con números algebraicos. Se puede afirmar que el análisis matemático comienza con Euler. En 1748, publica Introductio in analysin infinitorum haciendo precisas ideas de Johann Bernoulli more precise para definir una función. Este trabajo se fundamenta en las funciones elementales en vez de curvas geométtricas, como era común antes. También aparece por primera vez la famosa fórmula e^ix = cos x + i sin x.

En 1751, publicó su teoría de logaritmos de números complejos. También investigó funciones analíticas de una variable compleja. En 1777, descubrió las ecuaciones hoy conocidas como de Cauchy-Riemann, que también fueron descubiertas por d'Alembert en 1752.

Euler hizo contribuciones fundamentales en diferencias finitas, cálculo de variaciones, estudió las funciones β y γ. También en geometria diferential, investigando la teoría de superficies y su curvatura. Muchos de sus resultados fueron redescubiertos por Gauss. Introdujo en topología la característica de Euler de un poliedro. Publicó sobre mecánica donde introdujo los métodos analíticos.

Dió una versión definitiva sobre hidrostática que había sido estudiada desde Archimedes. Euler contribuyó al conocimeinto de muchas áreas y en todas ellas empleó su conocimiento y habilidad matemática. En astronomia su teoría lunar fue usada por Tobias Mayer para determinar sus tablas del movimiento de la luna. De hecho Euler recibió una recompensa económica del gobierno inglés en 1765 por su contribución teórica al cálculo de longitudes. También escribió sobre música y sobre cartografía donde ayudó a Delisle en su mapa del imperio ruso.