Leonardo Fibonacci
Matemático (1170?- 1250? Pisa, actual Italia)
Leonardo Pisano o Leonardo Filius Bonacci (Fibonacci, hijo de Bonacci) fue un matemático innovador en el s. XIII. Fue un llama solitaria de genio matemático durante la Edad Media. Pasó a la posteridad por la publicación, en 1202, de su célebre Liber Abacci donde entre otras cosas introdujo la numeración indu-árabe. Libro que no fue superado hasta varios siglos después y que se siguió estudiado y ha sido fuente de inspiración matemática hasta la actualidad. Todavía hoy día existe una Fibonacci Association que publica la revista The Fibonacci Quarterly
Fibonacci nació en Italia pero fue educado en el norte de África donde su padre, Guilielmo, tuvo un puesto diplomático. El trabajo de su padre era representar a los comerciantes de la república de Pisa que operaban en Bugia, más tarde llamada Bougie y ahora llamada Bugía. Bugía es un puerto mediterráneo al noreste de Argelia. La ciudad se asienta en la desembocadura del Wadi Soummam cerca del Monte Gouraya y el Cabo Carbon. Fibonacci fue educado en matemáticas en Bugía y viajó mucho con su padre y reconoció las enormes ventajas de los sistemas matemáticos usados en los países que visitó.
Fibonacci terminó sus viajes alrededor del año 1200 y en esa época regresó a Pisa. Allí escribió un número de importantes textos que jugaron un importante papel en el despertar de las antiguas habilidades matemáticas e hizo contribuciones significativas propias. Fibonacci vivió en los días anteriores a la imprenta, por lo que sus libros fueron manuscritos y la única forma de conseguir una copia de uno de ellos era tener hecha otra copia manuscrita. De sus libros aún tenemos copias del Liber abaci (1202), Practica geometriae (1220), Flos (1225), y el Liber quadratorum. Dadas las relativamente pocas copias manuscritas que se habrían producido, somos afortunados de tener acceso a sus escritos en estas obras. Sin embargo, sabemos que escribió algunos otros textos, que , desafortunadamente, están perdidos. Su libro de aritmética comercial Di minor guisa se ha perdido al igual que su comentario sobre el Libro X de los Elementos de Euclides que contenía un tratamiento numérico de los números irracionales a los que Euclides se había aproximado desde un punto de vista geométrico.
Uno puede haber pensado que en una época en la que Europa estaba poco interesada en la erudición, Fibonacci habría sido ampliamente ignorado. Esto, sin embargo, no es así y un amplio interés en su obra sin duda contribuyó fuertemente a su importancia. Fibonacci fue contemporáneo de Jordano pero él fue un matemático bastante más sofisticado y sus logros fueron claramente reconocidos, aunque fueron las aplicaciones prácticas más que los teoremas abstractos los que le hicieron famoso para sus coetáneos.
El emperador del Sacro Imperio Romano Germánico era Federico II. Había sido coronado Sacro Emperador Romano por el Papa en la Iglesia de San Pedro de Roma en Noviembre de 1220. Federico II apoyó a Pisa en sus conflictos con Génova en el mar y con Lucca y Florencia en tierra, y empleó los años hasta 1227 consolidando su poder en Italia. El control del estado fue introducido en el comercio y la industria, y fueron entrenados funcionarios civiles para supervisar este monopolio en la Universidad de Nápoles que Federico fundó para este propósito en 1224.
Federico tuvo noticias de la obra de Fibonacci a través de los eruditos de su corte que habían mantenido correspondencia con él desde su regreso a Pisa alrededor del 1200. Estos eruditos incluían a Michael Scotus que era el astrólogo de la corte, Theodorus Physicus el filósofo de la corte y Dominicus Hispanus que sugirió a Federico que se encontrara con Fibonacci cuando la corte de Federico se reunió en Pisa alrededor del 1225.
El Liber abaci, publicado en 1202 tras el regreso de Fibonacci a Italia, estaba dedicado a Scotus. El libro estaba basado en la aritmética y el álgebra que Fibonacci había acumulado durante sus viajes. El libro, que llegó a ser ampliamente copiado e imitado, presentaba el sistema decimal indo-arábigo de valor posicional y el uso de los números árabes en Europa. De hecho, aunque es principalmente un libro sobre el uso de los números árabes, que llegaron a ser conocidos como 'algorismo', las ecuaciones lineales simultáneas también se estudian en esta obra. Ciertamente muchos de los problemas que Fibonacci considera en el Liber abaci eran similares a los aparecidos en las fuentes árabes.
La segunda sección del Liber abaci contiene una amplia colección de problemas dirigidos a los mercaderes. Están relacionados con el precio de los bienes, cómo calcular el beneficio en las transacciones, cómo convertir entre las distintas monedas en uso en los países del Mediterráneo, y problemas que tenían su origen en China.
Un problema de la tercera sección del Liber abaci condujo a la introducción de los números de Fibonacci y la secuencia de Fibonacci por la que es actualmente más recordado: Cierto hombre puso una pareja de conejos en un lugar rodeado por todas partes por una valla. ¿Cuántas parejas de conejos pueden ser producidos por esa pareja en un año si se supone que cada mes cada pareja engendra una nueva pareja que desde el segundo mes se hace productiva?
La secuencia resultante es 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... (Fibonacci omitió el primer término en el Liber abaci). Esta secuencia, en la que cada número es la suma de los dos números precedentes, se ha probado extremadamente fructífera y aparece en muchas áreas diferentes de las matemáticas y la ciencia.
Otro de los libros de Fibonacci es el Practica geometriae escrito en 1220 que está dedicado a Dominicus Hispanus a quien ya mencionamos anteriormente. Contiene una amplia colección de problemas de geometría organizados en ocho capítulos con teoremas basados en los Elementos y en Sobre las Divisionesde Euclides. Además de los teoremas geométricos con pruebas precisas, el libro incluye información práctica para topógrafos, incluyendo un capítulo sobre cómo calcular la altura de objetos altos usando triángulos similares.
En Flos Fibonacci da una precisa aproximación a la solución de 10x + 2x2 + x3 = 20, uno de los problemas a los que fue retado a resolver por Johannes de Palermo. Este problema no fue inventado por Johannes de Palermo, sino que lo tomó del libro de álgebra de Omar Khayyam en el que se resuelve por medio de la intersección de una circunferencia y una hipérbola8. Fibonacci prueba que la solución de la ecuación no es un entero ni una fracción, ni la raíz cuadrada de una fracción. Da la solución aproximada 1.3688081075, correcta con nueve decimales, un logro admirable.
El Liber quadratorum, escrito en 1225, es la pieza más impresionante de la obra de Fibonacci, aunque no la obra por la que es más famoso. El nombre del libro significa el libro de los cuadrados y es un libro de la teoría de los números10 que, entre otras cosas, examina los métodos para encontrar los triples Pitagóricos. Fibonacci primero destaca que los números cuadrados11 pueden ser construidos como sumas de impares, esencialmente describiendo una construcción inductiva.
La influencia de Fibonacci fue más limitada de lo que uno esperaría y aparte de su papel en la propagación del uso de los números indo-arábigos y su problema del conejo, la contribución de Fibonacci a las matemáticas ha sido ampliamente pasada por alto. La obra de Fibonacci en la teoría de números fue casi totalmente ignorada y virtualmente desconocida durante la edad media. Trescientos años más tarde encontramos los mismos resultados apareciendo en la obra de Maurolico.