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Abstract

In this paper we investigate the existence of rotationally symmetric entire graphs (resp.
entire spacelike graphs) with prescribed k-th mean curvature function in Euclidean space
Rn+1 (resp. Minkowski spacetime Ln+1). As a previous step, we analyze the associated
homogeneous Dirichlet problem on a ball, which is not elliptic for k > 1, and then we prove
that it is possible to extend the solutions. Moreover, a sufficient condition for uniqueness
is given in both cases.
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1 Introduction

Along this paper, Rn+1
a , a = 0, 1, will denote, for a = 0, the (n + 1)-dimensional Euclidean

space Rn+1 endowed with its standard Riemannian metric 〈 , 〉 =
∑n+1

i=1 dx2i and, for a = 1,
the (n + 1)-dimensional Lorentzian spacetime Ln+1 endowed with its standard Lorentzian
metric 〈 , 〉 = −dx21 +

∑n+1
j=2 dx

2
j and with the time orientation defined by ∂/∂x1. For a

two sided hypersurface (a = 0) or spacelike hypersurface (a = 1) in Rn+1
a , the k-th mean

curvatures are geometric invariants which encode the geometry of the hypersurface. From
an algebraic point of view, each one of these functions corresponds to a coefficient of the
characteristic polynomial of the shape operator corresponding to a unit normal vector field
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(a = 0) or to a unit timelike vector field pointing to future (a = 1). In fact, each k-th mean
curvature is described as a certain type of average measure of the principal curvatures of the
hypersurface (see Section 2 for details). In particular, the 1-th mean curvature corresponds
with the usual mean of the principal curvatures if a = 0 or its opposite if a = 1, the 2-
th mean curvature is, up to a constant factor, the scalar curvature, and the n-th mean
curvature is the Gauss-Kronecker curvature if a = 0 and (−1)n+1 times the Gauss-Kronecker
curvature if a = 1. Each k-th mean curvature has a variational nature [21], and in Riemannian
geometry the constant k-th mean curvature case has been extensively studied ([16], [22] for
instance). From a physical perspective, the k-th mean curvatures have a relevant role in
General Relativity. A spacelike hypersurface is a suitable subset of the spacetime where the
initial value problems for the different field equations are naturally stated. Roughly speaking,
a spacelike hypersurface represents the physical space at one time instant. Each k-th mean
curvature function intuitively measures the time evolution towards the future or the past of
the spatial universe (see Remark 2.1).

In the Euclidean context, the pioneer work on the prescribed mean curvature Dirichlet
problem was given by Serrin [23], who found necessary and sufficient conditions for its sol-
vability. In Minkowski spacetime, Cheng and Yau proved in [10] the Bernstein’s property
for entire solutions of the maximal (i.e., zero mean curvature) hypersurface equation and,
later, Treibergs [25] classified the entire solutions of the constant mean curvature spacelike
hypersurface equation. An important universal existence result was proved by Bartnik and
Simon [5], and Bartnik proved the existence of prescribed mean curvature spacelike hyper-
surfaces under certain asymptotic assumptions [2]. The Dirichlet problem in a more general
spacetime was solved by Gerhardt [14]. More recently, there are more contributions (see for
instance, [1]) and the interest is many times focused on the existence of positive solutions, by
using a combination of variational techniques, critical point theory, sub-supersolutions and
topological degree (see for instance [6, 7, 9, 11, 12] and the references therein). Respect to the
scalar curvature, we refer to [8] in the Euclidean context. On the other hand, Bayard proved
the existence of prescribed scalar entire spacelike hypersurfaces in Minkowski spacetime [3],
by using other previous works on the Dirichlet problem ([4] and [26] and references therein)
and Gerhardt [15] obtained important results on the case of more general ambient spacetimes.
Finally, the Gauss-Kronecker curvature has been also quite well studied in both settings. In
Euclidean space, Wang [28] prescribed the Gauss-Kronecker curvature of a convex hypersur-
face. In Minkowski spacetime, we highlight the work of Li [19] on constant Gauss curvature
and Delanoè [13], in which the existence of entire spacelike hypersurfaces asymptotic to a
lightcone with prescribed Gauss-Kronecker curvature function is proved.

Up to the last decade, little attention has been paid to hypersurfaces with prescribed
k-th mean curvature when 3 ≤ k < n. One of the first works in this direction was done by
Ivochkina (see [18] and references therein). More recently, several contributions (for instance,
[27], [17]) especially on the Dirichlet problem has been done. However, the general question
is still open in both settings. The study has usually been focused in the search of some
a priori bounds on the length of the shape operator, assuming that solutions are k-stable
to ensure the ellipticity of some involved differential operators (see [27] for more details).
Then, some special dependence in the prescription function are imposed in order to obtain
partial results. In this paper, we provide several existence and uniqueness results on this open
problem, assuming that the prescription function is rotationally symmetric respect to a unit
parametrized line or an inertial observer γ (i.e., a unit timelike parametrized line pointing to
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the future) in Rn+1
a with a = 0 or a = 1, respectively. Especially, we prove the existence of

rotationally symmetric entire graphs with prescribed k-th mean curvature of the associated
Dirichlet problem when the domain in a n-dimensional ball, by using a suitable fixed point
operator. Besides, we prove that such graph can be extended to the whole space, providing
some information about uniqueness as well.

Along the paper, we will use the usual cylindrical coordinates (t, r,Θ) in Rn+1
a associated to

γ, namely, t ∈ R is the parameter of γ, r ∈ R+ is the radial distance to γ and Θ = (θ1, ..., θn−1)
are the standard spherical coordinates of the (n − 1)-dimensional unit round sphere Sn−1.
The prescription functions Hk will be assumed to be radially symmetric with respect to γ.
Therefore, it is natural to consider Hk(t, x) = Hk(t, r) where r denotes the distance of x ∈ Rn
to γ.

Hypersurfaces in Euclidean space and spacelike hypersurface in Lorentz-Minkowski space-
time have a different geometry. Therefore, in the related literature, one can make a clear
distinction between two large groups of papers, depending if they consider the Euclidean or
the Lorentzian ambient. However, we have decided to present the results of both contexts in
a single paper because, even if the results are different, the mathematical treatment is similar.
It is interesting to mention that solving the problem in the last case is easier than the in first
one. This is the reason to present in this order the content of the paper.

Below, we summarize the main results on entire graphs in Lorentzian ambient. The first
theorem is a kind of “universal existence result” when k is odd.

Theorem A Let Hk : Ln+1 −→ R, with k an odd positive integer, be a continuous function
which is rotationally symmetric with respect to an inertial observer γ of Ln+1. Then, for each
R > 0, there exists at least an entire spacelike graph, rotationally symmetric respect to γ,
whose k-th mean curvature equals to Hk and such that it intersects the hyperplane orthogonal
to γ at γ(0) in an (n − 1)-sphere with radius R centered at γ(0). In addition, if Hk is non
decreasing with respect to the proper time of γ, then the spacelike graph is unique.

For k even, we have to introduce a natural restriction on the curvature, as it is shown in
the next result.

Theorem B Let Hk : Ln+1 −→ R, with k an even positive integer, be a continuous function
such that ∫ r

0
sn−1Hk

(
v(s), s

)
ds ≥ 0 for all r ∈ R+, and v ∈ C1, |v′| < 1, (1)

and which is rotationally symmetric with respect to an inertial observer γ of Ln+1. If Hk(0, ·) 6≡
0, for each R > 0, then there exists at least two different entire spacelike graphs and rota-
tionally symmetric whose k-th mean curvature equals to Hk and such that it intersects the
hyperplane orthogonal to γ at γ(0) in an (n−1)-sphere with radius R centered in γ(0). More-
over, the radial profile curve of one of them is increasing and the other one is decreasing.
Besides, condition (1) is necessary for the existence of such graphs.

These results are obtained from the local existence results provided by Proposition 3.1
and Proposition 3.3, and the extendibility result given by Lemma 6.1.

On the other hand, in the case of entire graphs in Rn+1 we can not expect a kind of
universal result like Theorem A, for if we want to obtain a rotationally symmetric graph with
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prescribed k-curvature that intersects the orthogonal hyperplane in a n-sphere with radius
R, it is necessary to introduce an additional limit in the size of the prescribed curvature, as
in the following result.

Theorem C Let Hk : Rn+1 = R× Π −→ R, with k an odd positive integer, be a continuous
function which is rotationally symmetric respect to an oriented line γ, orthogonal to Π. Given
a fixed R > 0, assume there is some α ∈ (0, R−k), satisfying

|Hk(t, r)| ≤ α for all r ∈ [0, R] , t ∈ [−Rβ,Rβ], (2)

where β :=
Rα1/k√

1−R2α2/k
, and, for each r > R,

∣∣Hk(t, r)
∣∣ < 1/rk, for all t ∈ R. (3)

Then, there exists at least an entire graph, rotationally symmetric respect to γ, whose k-th
mean curvature equals to Hk and such that it intersects the hyperplane Π in an (n−1)-sphere
with radius R centered in γ(0). In addition, if Hk is non decreasing along the line γ, then the
graph is unique.

Remark 1.1 In fact, hypothesis (3) may be weakened to the more artificial condition,∣∣∣ ∫ r

0
sn−1Hk

(
v(s), s

)
ds
∣∣∣ < rn−k

n
, for all r > R and v ∈ C1.

Later, we will see that the condition (2) is quite natural. In particular, it is necessary
when the prescription function Hk is constant (see the example given in (14)). The last result
considers the case of k even in the Euclidean space.

Theorem D Let Hk : Rn+1 −→ R, with k an even positive integer, be a continuous function
which is rotationally symmetric respect to a line γ. Given a fixed R > 0, assume there is
some 0 < α < R−k, satisfying (2), (3) and∫ r

0
sn−1Hk

(
v(s), s

)
ds ≥ 0, for all r ∈ [0, R] and v ∈ BRβ,β, (4)

being BRβ,β = {v ∈ C1 : ‖v‖∞ < Rβ, ‖v′‖∞ < β}. Then, if Hk(0, ·) 6≡ 0, there exists at least
two different entire graphs, rotationally symmetric, whose k-th mean curvatures equal to Hk

and such that they intersect the hyperplane orthogonal to γ in γ(0) in an (n− 1)-sphere with
radius R centered in γ(0). Moreover, the radial profile curve of one of them is increasing and
the other one is decreasing.

The proof of Theorems C and D follows from the local existence results given in Theorem
4.1 and Theorem 4.2, taking into account Proposition 5.1 and Proposition 5.2, respectively,
and Lemma 6.1 for the extendibility.

The remaining content of the paper is structured as follows. Section 2 is devoted to expose
several definitions and preliminary results. Sections 3 and 4 are respectively focused on the
study of the Dirichlet problem in Minkowski spacetime Rn+1

1 and in Euclidean space Rn+1.
In Section 5 several uniqueness results are obtained. Finally, we analyse in Section 6 the
extendibility of the solutions of the previous Dirichlet problems.
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2 Preliminaries

Let us consider a smooth immersion ϕ : Σ −→ Rn+1
a of an n-dimensional manifold Σ in Rn+1

a ,
which is two sided if a = 0 and spacelike (i.e., the induced metric via ϕ is Riemannian) if
a = 1. Assume N is a unit normal vector field along ϕ, which we choose pointing to the
future if a = 1. The shape operator of Σ relative to N , is defined by

A(X) = −∇XN,

where X ∈ TpΣ, p ∈ Σ, and ∇ denote the Levi-Civita connection of Rn+1
a which is given by

∇XN = (X(N1), ..., X(Nn+1)) ,

where N = (N1, ..., Nn+1), contemplated as a map from Σ to Rn+1
a . The linear opera-

tor A of TpΣ, p ∈ Σ, is self-adjoint with respect to the induced metric. Its eigenvalues
κ1(p), κ2(p), ..., κn(p) are called the principal curvatures of the hypersurface. Consider the
the characteristic polynomial of A,

det(tI −A) =

n∑
k=0

ck t
n−k =

n∏
i=1

(t− κi),

where we put c0 = 1. It is not difficult to see that

c1 = −
n∑
i=1

κi

ck = (−1)k
∑

i1<...<ik

κi1 · · ·κik , 2 ≤ k ≤ n.

The k-th mean curvature Sk of Σ is defined as follows,

Sk =
(−1)k(a+1)(

n
k

) ck,

where
(
n
k

)
= n!

k! (n−k)! . For instance, when k = 1, we get S1 = (−1)a+1

n c1 = (−1)a
n trace(A),

the usual mean curvature of Σ. Moreover, S2 is, up to a constant, the scalar curvature of
Σ and, when k = n, we recover the Gauss-Kronecker curvature Sn = (−1)an det(A) of Σ. It
is interesting to note that k-th mean curvatures are in fact intrinsic geometric invariants of
the hypersurfaces when k is even. Precisely, the parity of k plays an important role in the
treatment of the equations, as it will be shown in next sections.

Remark 2.1 For the case of a spacelike hypersurface Σ in a (general) spacetime M , the
geometric information contained in a k-th mean curvature Sk can be locally propagated to
the future and the past in M and, then, physically interpreted. In fact, for each p0 ∈ Σ there
exist an open neighbourhood U of p0 in M and a reference frame Q on U such that Qp = Np

for all p ∈ Σ ∩ U . The operator field X 7→ −∇XQ, X ∈ TqM , q ∈ U , may be restricted
to Q⊥ providing with AQ : Q⊥ → Q⊥ on U . Note that AQ equals to the shape operator
corresponding to N on Σ ∩ U . On U , consider the n + 1 smooth functions S0, S1,...,Sn
defined by

Sk =
1(
n
k

) ck,
5



where the function ck is defined as previously from

det (tI −AQ) =

n∑
k=0

ck t
n−k.

Each Sk is a relative quantity for the observers in Q and it equals to the k-th mean curvature
Sk on Σ ∩U . Assume Sk > 0 (resp. Sk < 0) at some p ∈ Σ ∩U . Then Sk > 0 (resp. Sk < 0)
near p in U . In particular, if the mean curvature H satisfies H > 0 (resp. H < 0) at p
then div(Q) > 0 (resp. div(Q) < 0) near p in U , i.e., for the observers in Q the universe is
expanding (resp. contracting) near p in U .

The prescribed k-th mean curvature problem in Rn+1
a consists in finding, for a given

prescription function Hk, a (embedded) hypersurface if a = 0 or a spacelike hypersurface if
a = 1, Σ in Rn+1

a which satisfies

Sk(p) = Hk(p) for all p ∈ Σ. (5)

We will focus here the problem as follows. Consider a line γ in Rn+1
a (as defined before)

and put Π the hyperplane through p = γ(0) and orthogonal to Rn+1
a . We will look for Σ

as a graph if a = 0 or a spacelike graph if a = 1 for a suitable function v defined on Π,
i.e., Σ = {(v(x), x) : x ∈ Π} ⊂ R × Rn. If the prescription function Hk were assumed
rotationally symmetric with respect to γ, then it would be natural to assume v also has the
same symmetry, i.e., v(x) = v(r) where r = r(x) is the distance in Π from x to γ(0).. On
the other hand, using a cylindrical coordinate system (t, r,Θ), Θ = (θ1, ..., θn−1), as before of
Rn+1
a , the metric of Rn+1

a may be expressed as

〈 , 〉 = ε dt2 + dr2 + rn−1dΘ2, Θ = (θ1, · · · , θn−1),

where ε = (−1)a and dΘ2 the standard Riemannian metric on the unit round sphere Sn−1.
With respect to the coordinate frame {∂t, ∂r, ∂θ1 , ..., ∂θn−1}, the unit normal vector field N
along Σ in Rn+1

a is given by

N =
∂t − εv′∂r√

1 + ε v′2
.

where v′, the derivative of v = v(r), satisfies |v′| < 1 if a = 1.

The value of the principal curvatures is given by the following result.

Lemma 2.2 At each (v(r), r) ∈ Σ, the vectors ∂θi and v′∂t+∂r are eigenvectors of the shape
operator A, with eigenvalues

κ1(v, r) = · · · = κn−1(v, r) =
ε v′

r
√

1 + ε v′2
, and κn(v, r) =

ε v′′

(1 + ε v′2)3/2
.

Proof. In order to check that ∂θi are n− 1 eigenvectors of A, we compute

A(∂θi) = − 1√
1 + ε v′2

[
∇∂θi∂t − ε v

′∇∂θi∂r
]

=
ε v′√

1 + ε v′2
Γθiθir ∂θi .

In the last step, we have taken into account that the only non-zero Christoffel symbols involv-
ing the angles θi are Γθiθir = Γθirθi = 1/r, and Γrθiθi = −r, and the result follows directly. The
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last eigenvector is obtained by imposing the orthogonality respect to N and each eigenvector
∂θi , 1 ≤ i ≤ n− 1. �

The differential operators Sk, 1 ≤ k ≤ n, associated to the k-curvature of rotationally
symmetric graphs in Rn+1

a , can be written as follows,

S+
k : {v ∈ C2(R+) : v′(0) = 0} −→ R,

S+
k [v](r) =


1

n rn−1
(
rn−kψk(v′)

)′
in (0,∞),

0 in r = 0,

where ψ(s) :=
s√

1 + s2
in the case a = 0, and

S−k : {v ∈ C2(R+) : v′(0) = 0, |v′| < 1} −→ R,

S−k [v](r) =


1

n rn−1
(
rn−kφk(v′)

)′
in (0,∞),

0 in r = 0,

where φ(s) :=
s√

1− s2
in the case a = 1.

Then, our first aim is to prove the existence of solutions of the equations

S±k [v](r) = Hk(v(r), r) r ∈ R+, (6)

for a given prescription function Hk : R× R+ −→ R.

Note that, in general, these differential operators are not elliptic. Although we are in-
terested in the existence of entire graphs, we also will deal with graphs defined over a ball
Bγ(0)(R) ⊂ Π, with Dirichlet boundary conditions. This problem is not only a previous step
to face the main purpose, but it has its own interest. Next two sections are devoted to this
aim.

3 Existence results of the Dirichlet problem in Minkowski
spacetime

Associated to equation (6), in the Minkowski spacetime Rn+1
1 , we can consider the correspond-

ing Dirichlet problem on a ball with radius R contained in Π. Passing to polar coordinates,
we get the following boundary value problem,

(
rn−kφk(v′)

)′
= n rn−1Hk(v(r), r) in (0, R),

|v′| < 1 in (0, R), (7)

v′(0) = 0 = v(R),

where φ(s) :=
s√

1− s2
and 1 ≤ k ≤ n.
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It is easy to compute the profile of the rotationally symmetric graphs with constant k-
th mean curvature. If Hk is constant (non negative if k is even), we can integrate directly
equation (7) in order to obtain an hyperboloid,

v(r) =

√
R2 +H

−2/k
k −

√
r2 +H

−2/k
k ,

for each 1 ≤ k ≤ n. On the other hand, if k is even and Hk < 0, it is easy to realize that (7)
has no solution. By this reason, for a more general prescription of the curvature we need to
distinguish two cases, depending if k is an even or odd natural number.

We fix some notation which will be used in the rest of the section. Let C be the Banach
space of the real continuous functions in [0, R], with the maximum norm, and C1 the space
of continuously differentiable functions with its usual norm ‖v‖ = ‖v‖∞ + ‖v′‖∞. We write
BR,1 = {v ∈ C1 : ‖v‖∞ < R, ‖v′‖∞ < 1}.

3.1 Case 1: k odd

In this case, the existence problem is a straightforward application of the results exposed
in [6] (see Proposition 2.4 therein), taking into account that φk : (−1, 1) −→ R is also an
increasing homeomorphism such that φ(0) = 0. The result is enunciated as follows.

Proposition 3.1 Let be k odd. Let B0(R) be an Euclidean ball centered at 0 with radius
R contained in a spacelike hyperplane Π ⊂ Ln+1 orthogonal to a inertial observers vector
field. For every rotationally symmetric (in the second argument) and continuous function
Hk : [−R,R]×B0(R) ⊂ Ln+1 −→ R, there exists at least one rotationally symmetric spacelike
graph with k-curvature equal to Hk such that its boundary is in the hyperplane Π.

3.2 Case 2: k even

When k is even, φk is not a homeomorphisms between (−1, 1) and R and then, the results of
[6] cannot be applied.

First of all, from equation (7) we have that[
φ(v′)

]k
(r) =

n

rn−k

∫ r

0
sn−1Hk

(
v(s), s

)
ds. (8)

Hence, since k is an even number, we have that the previous integral term is non nega-
tive. Then, it is quite natural to impose the following condition on the mean k-curvature
prescription function,∫ r

0
sn−1Hk

(
v(s), s

)
ds ≥ 0 for all r ∈ [0, R] , v ∈ BR,1. (9)

Note that condition (1) implies in particular condition (9) for any R > 0. Our first step
is to construct a fixed point operator A such that its fixed points are solutions of to problem
(7). We start by defining

K : C1 −→ C1,

K(v)(r) =

∫ R

r
v(t)dt,
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S : C −→ C1,

S(v)(r) =
n

rn−k

∫ r

0
tn−1v(t)dt (r ∈ (0, R]), S(v)(0) = 0.

Besides, consider the Nemytskii operator associated to Hk,

NHk : BR,1 ⊂ C1 −→ C, NHk(v) = Hk(·, v).

Obviously, NHk is continuous and NF (BR,1) is a bounded subset of C. Finally, we define the
operator

A : BR,1 ⊂ C1 −→ C1, A = K ◦ (φ−1)1/k ◦ S ◦NF , (10)

where (φ−1)1/k : R+ −→ [0, 1) means the (positive) k-root composed with the inverse of φ,
i.e., (φ−1)1/k(s) = φ−1(s1/k). Note that A is well-defined thanks to condition (9).

Note that A is a composition of continuous operators, hence it is continuous. Moreover,
from the compactness of K, A is a compact and continuous operator. Note that the image
of the operator A is contained in C2[0, R], so the fixed points (solutions of the equation (7))
will be of class C2.

Fixed points of A always verify the restrictions v′(0) = v(R) = 0, in consequence we
can consider the Banach subspace Ĉ1 ⊂ C1 of the functions that satisfy these boundary
conditions. Let us define the set

B̂R,1 = {v ∈ BR,1 : v′(0) = 0 = v(R)}.

A straightforward checking shows that if a function v ∈ Ĉ1 is a fixed point of the nonlinear
compact operator (10), then v is a solution of equation (7).

More explicitly, operator A can be written as

A(v)(r) = −
∫ R

r
φ−1

[(
n

sn−k

∫ s

0
τn−1Hk(τ, v(τ))dτ

)1/k
]
ds,

and its derivative is

(
A(v)

)′
(r) = φ−1

[(
n

rn−k

∫ r

0
τn−1Hk(τ, v(τ))dτ

)1/k
]
.

By using that φ−1(R+) = [0, 1), one gets

‖
(
A(v)

)′‖∞ < 1 and ‖A(v)‖∞ < R for all v ∈ BR,1. (11)

Such inequalities imply that A(B̂R,1) ⊂ B̂R,1. Since B̂R,1 is closed and contractible to a point,

and A (restricted to B̂R,1) is a continuous and compact operator, the Schauder Point Fixed
theorem applies, leading to the following result.

Proposition 3.2 Assume condition (9) over the prescription function Hk. Then, problem
(7) has at least one radially symmetric solution.
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Note that the solution given in previous result satisfies

v′(r) = φ−1

[(
n

rn−k

∫ r

0
τn−1Hk(τ, v(τ))dτ

)1/k
]
≥ 0,

then, v is increasing and negative.

Nevertheless, it is possible to obtain a second solution of (7) by taking the negative k-root
in equality (8) and proceeding in the same way. In this second case, the solution is decreasing
and positive. Moreover, one solution is not the symmetric respect to the hyperplane Π of the
other one, except when Hk(t, r) = Hk(−t, r) for all t ∈ [−R,R] and r ∈ [0, R].

Summarizing, we have proved the following result.

Proposition 3.3 Let be k even. Let B0(R) be an Euclidean ball centered at 0 with radius
R contained in a spacelike hyperplane Π ⊂ Ln+1 orthogonal to a inertial observers vector
field. For every rotationally symmetric and continuous function Hk : [−R,R] × B0(R) ⊂
Ln+1 −→ R, satisfying (9) such that Hk(0, ·) 6≡ 0, there exist at least two different rotationally
symmetric spacelike graphs with k-curvature equal to Hk such that its boundary is in the
hyperplane Π. One is above and the other one below the hyperplane Π.

4 Existence results of the Dirichlet problem in Euclidean space

In the Euclidean ambient, the prescribed k-th mean curvature equation for a rotationally
symmetric graph Σv ⊂ Rn with Dirichlet boundary conditions is written as

(
rn−kψk(v′)

)′
= n rn−1Hk(v(r), r) in (0, R), (12)

v′(0) = 0 = v(R),

where ψ(s) :=
s√

1 + s2
and 1 ≤ k ≤ n.

From ψ(R) = (−1, 1), we immediately note that k-th mean curvature function along the
graph must satisfy the inequality

∣∣ ∫ r

0
sn−1Hk

(
v(s), s

)
ds
∣∣ < rn−k

n
for all r ∈ [0, R]. (13)

Analogously to the Minkowski case, if Hk is a constant (non negative if k is even) satisfying
Hk ≤ R−k, a straight integration of (12) gives

v(r) =

√
H
−2/k
k −R2 −

√
H
−2/k
k − r2, (14)

for each 1 ≤ k ≤ n. On the other hand,for Hk > R−k the inequality (13) means that
(12) has no solution. This fact suggests that, contrarily to the Minkovski case, in order to
find solutions one has to impose a restriction on the size of the prescribed curvature function.
This is a common feature of the Euclidean ambient. The following results are based on the
analysis performed in [6].
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4.1 Case 1: k odd

The following result for k odd is proved by adapting the proof of [6, Proposition 2.5] applied
to (12), due to the fact that ψk : R −→ (−1, 1) is an increasing homeomorphism and ψ(0) = 0.
The result is picked up in the following theorem.

Theorem 4.1 Let B0(R) be an Euclidean ball centered at 0 with radius R contained in a
hyperplane Π ⊂ Rn+1, and let Hk : R × B0(R) ⊂ Rn+1 = R × Π −→ R (k odd) be a
rotationally symmetric and continuous function such that, for some 0 < α < R−k, satisfies

|Hk(t, r)| ≤ α for all r ∈ [0, R] , t ∈ [−Rβ ,Rβ],

where β := ψ−1(Rα1/k). Then, there exists at least one rotationally symmetric graph with
k-curvature equal to Hk such that its boundary is in the hyperplane Π.

Proof. Denote by Ωα := [−Rβ ,Rβ]. We show that

B(Ωα) ⊂ Ωα, (15)

where B is the same operator than A but replacing φ by ψ. Let u ∈ Ωα and v = B(u). By
using the assumption |Hk| ≤ α, we have∣∣(ψ(v′(r))

)k∣∣ =
∣∣ n

rn−k

∫ r

0
tn−1Hk(u(t), t)dt

∣∣ ≤ αRk
for all r ∈ (0, R], and the hypothesis α < R−k ensures that the image is less than 1.
Since ψk(v′(0)) = 0, and ψk : R −→ (−1, 1) is an homeomorphism, it follows that

v′(r) ∈ [−ψ−1(Rα1/k), ψ−1(Rα1/k)].

Therefore, v(r) ∈ Ωα, and (15) is proved. Now, using the fact that Ωα is a closed convex
set in Ĉ1 invariant by the compact operator B, from the Schauder fixed point theorem, we
conclude that there exists u ∈ Ωα such that B(u) = u, which is a solution of the initial
Dirichlet problem. �

4.2 Case 2: k even

Our aim here consist in to construct a fixed point operator associated to the equation (12).
In order to do this, we take 0 < α < R−k and we name β := ψ−1(Rα1/k).

As in Minkowski setting, we need to impose some restriction on the prescription function
Hk, ∫ r

0
sn−1Hk

(
v(s), s

)
ds ≥ 0 for all r ∈ [0, R] , v ∈ BRβ,β. (16)

In addition, as in the case with k odd, we introduce a boundedness assumption on Hk,

|Hk(t, r)| ≤ α for all r ∈ [0, R] , t ∈ [−Rβ,Rβ]. (17)

Now, we can proceed in the same way that in the Minkowski setting, using the same
notation, and define the operator

B : BRβ,β ⊂ C1 −→ C1, B = K ◦ (ψ−1)1/k ◦ S ◦NF , (18)
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where (ψ−1)1/k : [0, 1) −→ R+ is defined by (ψ−1)1/k(s) := ψ−1(+s1/k).
Explicitly,

B(v)(r) = −
∫ R

r
ψ−1

[(
n

sn−k

∫ s

0
τn−1Hk(τ, v(τ))dτ

)1/k
]
ds,

Note that B is well defined due to (16) and (2). Now, restricting B to the subset B̂Rβ,β :=
{v ∈ BRβ,β : v′(0) = v(R) = 0}.

Again, if a function v ∈ Ĉ1 is a fixed point of the nonlinear compact operator (18), then
v is a solution of equation (12). Following the arguments of the Minkowski setting, with k
even, we conclude that there exist one increasing solution and other decreasing solution. We
may enunciate this result,

Proposition 4.2 Let B0(R) be an Euclidean ball centered at 0 with radius R contained in
a hyperplane Π ⊂ Rn+1. For every rotationally symmetric and continuous function Hk :
R × B0(R) ⊂ Rn+1 −→ R, (k even), satisfying (16) and (2) such that Hk(0, ·) 6≡ 0, there
exists at least two different rotationally symmetric graph with k-curvature equal to Hk such
that its boundary is in the hyperplane Π. One is above and the other one below the hyperplane
Π.

5 Uniqueness results

It is possible to ensure the uniqueness of certain rotationally symmetric solutions of equation
(7) under some hypothesis on the prescription function. As before, these results depend again
of the parity of k, but the treatment will be the same in the Minkowski and the Euclidean

cases. Therefore, we will denote both,
s√

1− s2
and

s√
1 + s2

, by χ(s).

Proposition 5.1 (Case k odd ) If Hk(·, r) is a non decreasing prescription function for each
fixed r ∈ [0, R], then equation(

rn−kχk(v′)
)′

= n rn−1Hk(v(r), r) in (0, R), (19)

v′(0) = 0 = v(R),

has at most one solution.

Proof. Suppose that u and v are different solutions of equation (7). Since u(R) = v(R) = 0,
the set F = {r ∈ [0, R] : u′(r) 6= v′(r)} has positive measure. Multiplying by (u − v) the
identity [

rn−k
(
χk(u′)− χk(v′)

)]′
= nrn−1 [Hk(u(r), r)−Hk(v(r), r)]

and integrating over [0, R], and using the boundary conditions we have

−
∫
F

[
χk(u′(r))− χk(v′(r))

] [
u′(r)− v′(r)

]
rn−kdr

= n

∫ R

0
rn−1 [Hk(u(r), r)−Hk(v(r), r)] [u(r)− v(r)] dr. (20)

12



From the increasing character of χk, the first term is strictly negative, while the second one
is non negative due to the increasing assumption over Hk. This is a contradiction and the
result follows. �

Now we deal with the case with k even. The proof of the following proposition is similar
to the previous one, but taking into account that χk is only increasing on the positive real
numbers in which it is defined.

Proposition 5.2 (Case k even )

• If Hk(·, r) is a non decreasing prescription function for each fixed r ∈ [0, R], then
equation (19) has at most one increasing solution.

• If Hk(·, r) is a non increasing prescription function for each fixed r ∈ [0, R], then
equation (19) has at most one decreasing solution.

6 Extendibility of the solutions as entire graphs

In order to end the proof of Theorems A,B,C and D, it suffices to guarantee that every
solution v, given by Theorems 3.1, 3.3, 4.1, 4.2, once R is fixed, can be continued until +∞
as a solution of equations (6). We need the following lemma.

Lemma 6.1 Every solution v ∈ C2[0, %] of (7) verifies that |v′| < 1 on [0, %]. Analogously,
each solution v ∈ C2[0, %] of (12) satisfies that |v′| < +∞ on [0, %].

Proof. From (19), we have

v′(r) = χ−1

[(
n

rn−k

∫ r

0
τn−1Hk(τ, v(τ))dτ

)1/k
]
,

and, taking into account (3) in the Euclidean case, the result follows immediately. �

Remark 6.2 Graphs defined by the solution of Equation (7) are spacelike on the open ball.
However, there could exist solutions which are of lightlike on the boundary, ∂B. The previous
lemma ensures a priori that each possible solution v of (7) is spacelike on the boundary too.

The rest of the proof does not essentially depend on the ambient space (Euclidean or
Minkowski), thus we follow with the notation of the previous section. However, we have to
distinguish odd and even cases again.

First, assume that k is odd. Let v be a solution of equation (19), and let [0, b[ be the
maximal interval of definition of v. Suppose that b < +∞. We can rewrite equation (19) as
a system of two ordinary differential equations of first order

v′(r) = χ−1
[
(
z(r)

rn−k
)1/k

]
z′(r) = n rn−1H(v(r), r),

which we can abbreviate [
v′

z′

]
= F

(
r, v, z

)
,
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where F : R+ × R × J −→ R2, and J is R or (−bn−k, bn−k) if the ambient is Minkowski or
Euclidean space respectively.

By the standard prolongability theorem of ordinary differential equations (see for instance
[24, Section 2.5]), we have that the graph

{(
r, v(r), z(r)

)
: r ∈ [R/2, b[

}
goes out of any

compact subset of R+ ×R× J . However, by Lemma 6.1, |v′(r)| < ρ (of course, ρ depends on
the chosen solution v), then |v(r)| < bρ. Therefore, the graph can not go out of the compact
subset [R/2 , b]× [−bρ, bρ]× [−bn−kχk(ρ), bn−kχk(ρ)] contained in the domain of F . This is a
contradiction, then b = +∞.

If k is even, we know that at least there exist one increasing and one decreasing solutions
of equation (19). For instance, let v be a increasing solution (the argument of the proof is
similar for a decreasing solution), and let b < +∞ its maximal interval of definition. In
this way, v′(r) > 0 for all r ∈ (0, R]. Moreover, if condition (1) (or (3) in the Euclidean
setting) holds, then extension of v will be also increasing on (0, b). Hence, v and z, where
z(r) := rn−kχk(v′(r)), verify the ODE system (21), taking the positive k-root in the first
equation. From this point, the proof continues being the same that case k odd, and we
deduce that v can be extended to +∞ as an increasing solution of (6).
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Non Linéaire, 26, 903–915 (2009).

[5] R. Bartnik, L. Simon, Spacelike hypersurfaces with prescribed boundary values and
mean curvature, Commun. Math. Phys., 87, 131–152 (1982).

[6] C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions for some nonlinear problems
involving mean curvature operators in Euclidean and Minkowski spaces, Proc. Amer.
Math. Soc., 137, 161–169 (2009).

[7] C. Bereanu, P. Jebelean and P.J. Torres, Positive radial solutions for Dirichlet prob-
lems with mean curvature operators in Minkowski space, J. Funct. Anal., 264, 270–
287 (2013).

[8] L. Cafarelly, L. Nirenberg and J. Spruck, Nonlinear second-order elliptic equations.
V. The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math.,
41, 47–70 (1988).

[9] I. Coelho, C. Corsato and S. Rivetti, Positive radial solutions of the Dirichlet problem
for the Minkowski-curvature equation in a ball, Lett. Math. Phys, 93, 85–105 (2012).

14



[10] S.Y. Cheng, S.T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski
space, Ann. of Math., 104, 407–419 (1976).

[11] C. Corsato, F. Obersnel, P. Omari, S. Rivetti, Positive solutions of the Dirichlet
problem for the prescribed mean curvature equation in Minkowski space, J. Math.
Anal. Appl., 405, 227–239 (2013).

[12] C. Corsato, F. Obersnel, P. Omari and S. Rivetti, On the lower and upper solution
method for the prescribed mean curvature equation in Minkowski space, D.C.D.S.
Supplements, Special Issue, 159–168 (2013).

[13] F. Delanoè, The Dirichlet problem for an equation of given Lorentz-Gauss curvature
Ukranian. Math. J., 42, 1538–1545 (1990).

[14] C. Gerhardt, H-surfaces in Lorentzian Manifolds, Comm. Math. Phys., 89, 523–553
(1983).

[15] C. Gerhardt, Hypersurfaces of prescribed scalar curvature in Lorentzian Manifolds,
J. Reine Angew. Math., 554, 157–199 (2003).

[16] J. Hounie, M.L. Leite, Uniqueness and Nonexistence Theorems for Hypersurfaces
with Hr = 0, Ann. Global Anal. Geom., 17, 397–407 (1999).

[17] Y. Huang, Curvature estimates of hypersurfaces in the Minkowski space, Chin. Ann.
Math. Ser. B, 34, 753–764 (2013).

[18] N. M. Ivochkina, Solution of the Dirichlet problem for curvature equations of order
m, Math. USSR, 67, 317–324 (1990).

[19] A.M. Li, Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the
Minkowski space, Arch. Math., 64, 534–551 (1995).

[20] O’Neill B., Semi-Riemannian Geometry with applications to Relativity, Pure and
Appl. Math. 103 Academic Press, 1983.

[21] R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces
in space forms. J. Differ. Geom., 8, 465–477 (1973)

[22] A. Ros, Compact hypersurfaces with constant higher order mean curvatures, Rev.
Mat. Iberoam., 3, 447-453 (1987).

[23] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with
many independent variables, Philos. Trans. Roy. Soc. London, 264, 413–496 (1969).

[24] G. Teschl, Ordinary Differential Equations and Dynamical Systems, Graduate Studies
in Mathematics 140, Amer. Math. Soc., Providence, 2012.

[25] A. Treibergs, Entire spacelike hypersurface of constant mean curvature in Minkowski
space, Invent. Math., 66, 39–56 (1982).

[26] J. Urbas, The Dirichlet problem for the equation of prescribed scalar curvature in
Minkowski space, Calc. Var. Partial Differential Equations, 18, 307–316 (2003).

15



[27] J. Urbas, Interior curvature bounds for spacelike hypersurfaces of prescribed k-th
mean curvature, Comm. Anal. Geom., 11, 235–261 (2003).

[28] X.J. Wang, Existence of convex hypersurfaces with prescribed Gauss-Kronecker cur-
vature, Trans. Amer. Math. Soc., 348, 4501–4524 (1996).

16


