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ABSTRACT
Oscillation modes in fast-rotating stars can be split into several subclasses, each with their
own properties. To date, seismology of these stars cannot rely on regular pattern analysis
and scaling relations. However, recently there has been the promising discovery of large
separations observed in spectra of fast-rotating δ Scuti stars; they were attributed to the island-
mode subclass, and linked to the stellar mean density through a scaling law. In this work, we
investigate the relevance of this scaling relation by computing models of fast-rotating stars
and their oscillation spectra. In order to sort the thousands of oscillation modes thus obtained,
we train a convolutional neural network isolating the island modes with 96 per cent accuracy.
Arguing that the observed large separation is systematically smaller than the asymptotic one,
we retrieve the observational �ν–ρ scaling law. This relation will be used to drive forward
modelling efforts, and is a first step towards mode identification and inversions for fast-rotating
stars.
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1 IN T RO D U C T I O N

1.1 Fast-rotating stars

Through space missions such as MOST, CoRoT, and Kepler, astero-
seismology has proven to be the most powerful tool to probe stellar
interiors. Most of the results obtained through this technique rely on
the regular patterns the mode frequencies follow, which can readily
be linked to the stellar fundamental parameters through scaling laws.
However, this technique works for slowly rotating solar-like oscil-
lators, where mode identification is possible. Deeper insight can
be gained through the analysis of rotational splittings, automated
inferences or inversion techniques. In fast-rotating stars, such iden-
tification is not so easy; while the centrifugal force distorts the stellar
geometry, the Coriolis force complicates mode geometries such that
they can no longer be described in terms of simple spherical harmon-
ics. Currently, it is standard to use a linear combination of spherical
harmonics as a basis to describe the modes, but this prevents mode
identification in terms of the classical quantum numbers (n, �, m).

� E-mail: gm0027@surrey.ac.uk

1.2 Classes of modes

Theoretical works show that pressure modes in fast-rotating stars
can be sorted in different categories. Lignières & Georgeot (2009)
split pressure modes in fast-rotating stars in four sub-classes: two-
period island modes, six-period island modes, whispering gallery
modes, and chaotic modes. Each of these subclasses has its own
regular spacing in frequency. In measured spectra however, those
spacings cannot readily be distinguished and the associated infor-
mation on the stellar structure cannot easily be retrieved. Garcı́a
Hernández et al. (2015, 2017) analysed a sample of 10 stars, and
identified regular patterns in the their high-frequency spectra. They
found a large frequency separation that they attribute to two-period
island modes, and linked this separation to the stellar mean density
through a scaling law, as predicted by Reese, Lignières & Rieutord
(2008). In this work, we provide further validation by exploring
theoretical models and their oscillations to test the proposed scaling
law.

2 ME T H O D

2.1 Codes

We compute rotating star models using the two-dimensional struc-
ture code ESTER (Rieutord & Espinosa Lara 2013; Rieutord, Es-
pinosa Lara & Putigny 2016). Adiabatic oscillations of these models
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are calculated using TOP (Reese et al. 2009, Reese et al. in prepa-
ration). The geometry these codes use rely on the definition of a
pseudoradius ζ that goes from zero at the centre of the star to one at
the distorted stellar surface (see Bonazzola, Gourgoulhon & Marck
1998). The radial grid is split into eight Gauss–Lobatto–Chebyshev
subgrids of 30 points, while the latitudinal components are projected
on 24 spherical harmonics for the structure and 40 spherical har-
monics for the oscillations. This resolution leads to 48 000 modes
in the whole spectrum that are of potential interest.

2.2 Convolutional neural network classifier

2.2.1 Network architecture

Previously, mode sorting was performed manually through plotting
and visually inspecting the TOP eigensolutions. Given that this task
is essentially an image classification problem, the process can be au-
tomated through the use of a convolutional neural network (CNN).
In the last few years machine learning algorithms have become more
widely adopted in stellar astrophysics (Bellinger et al. 2016; Verma
et al. 2016; Angelou et al. 2017) including CNNs (Hon, Stello &
Yu 2017).

We utilized Google’s Tensorflow libraries (Abadi et al. 2015) to
create a seven layer, two-dimensioanal convolutional network for
the purposes of classifying the TOP oscillation modes. We employ
a network architecture comprising two convolution, two pooling,
and two fully connected layers supplemented by an output layer. A
rectified linear unit activation function is applied to the convolution
and fully connected layers. Max-pooling is used to downsample the
convolutions and drop out is employed as form of regularization for
the fully connected layers. A softmax function is used to activate
the output layer for the purpose of assigning class probabilities.

Before applying the algorithm to mode classification in rapidly
rotating stars we conducted several tests of our CNN. We validated
our network on the MNIST data base of handwritten digits with
99.3 per cent accuracy (Lecun et al. 1998). As per Hon et al. (2017),
we classified the evolutionary phase of Kepler giants in the Vrard,
Mosser & Samadi (2016) sample with 98 per cent accuracy.

2.2.2 Training and development set for mode classification

To visualize the oscillations through the model, we represent the
ratio of the Eulerian pressure perturbation to the square root of the
background density; this quantity brings out surface variations. For
visual inspection purposes, we plot this quantity along a meridional
cross-section. We feed the algorithm 128 x 128 (pixels) grey scale
images of the same quantity, plotted in the pseudoradius-colatitude
(ζ , θ ) plane, for θ going from 0 to π . Fig. 1 shows these two
representations for a given oscillation.

To train the algorithm, we classify by eye 4300 modes divided
into seven classes: (i) spurious modes, (ii) rosette g modes, (iii)
subcritical g modes, (iv) g modes with some envelope extent, (v)
whispering gallery p modes, (vi) island p modes of period 2, (vii)
other p modes.

We only keep modes fitting the canonical description of the modes
given by Lignières & Georgeot (2009), omitting mixed modes and
modes resulting from avoided crossings. Although we do not ex-
ploit the whole set of available mode types, the sorted classes are
sufficient for our purposes.

The 4300 images with known truth labels were divided into a
training set (80 per cent) and a development set (20 per cent). We
performed a 10-fold validation test that yielded a mean accuracy

Figure 1. Island pressure mode at (ñ,˜�, m) = (16, 1, 0), used in the training
set. Left: meridional cross-section of the Eulerian pressure perturbation
divided by the square root of the background density. Right: Same quantity
plotted as a function of the pseudoradius ζ and the colatitude θ .

of 96 per cent on randomly selected development sets. During the
training process we optimized for 3000 iterations after which there
was no significant improvement to our loss metric. We found that for
the current application, the CNN was most responsive to the Adam
optimizer. As our aim is to identify two-period island modes, an
accuracy of 96 per cent was deemed satisfactory. False positives in
this category could be discarded by eye. We note that there is scope
to optimize the CNN performance further, and we will continue to
do so in future work.

3 R E G U L A R PAT T E R N S I N T H E
I SLAND-MODE SPECTRUM

3.1 Theoretical models and oscillations

We consider two series of ESTER models of 2.5 M� main-sequence
stars: a series of ZAMS models for increasing rotation velocities
and a series of models rotating at 70 per cent of their Keplerian
rotation rate with varying core hydrogen abundance Xc to mimic
main-sequence evolution.

Each of these models is computed for metallicities Z = 0.02 and
Z = 0.01. These models cover the rotation and core abundance
parameter space accessible for a 2.5 M� δ Scuti star. Using the
TOP code, we compute the adiabatic, even (symmetric with respect
to the underlying ray path) axisymmetric (m = 0) oscillations of
these models. We consider a high-frequency interval, where we
expect mostly pressure modes, and find about 500 modes in the
chosen range for each model. These modes are then fed into the
CNN described in Section 2.2.1, keeping the modes identified with
a probability of 95 per cent.

3.2 Comparison with the observations

Island modes of period 2 are known to be the rotating counterpart of
low-degree pressure modes (Pasek et al. 2012). In order to identify
and study these modes, we use the description from Reese et al.
(2009); each island mode is described using three quantum numbers,
ñ, �̃, m. The first two quantities are illustrated in Fig. 1: ñ is the
number of nodes along the wave train from the two points where it
reaches the surface, while �̃ being the number of parallels (i.e. the
number of nodal lines parallel to the equator) from pole to equator.
The azimuthal order m does not change definition with respect to
the non-rotating case, and is equal to the periodicity in the azimuthal
direction.

Lignières & Georgeot (2009) described the island modes in a
polytropic rotating fluid, and highlighted regular patterns in their
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Figure 2. Identification of island modes obtained through our neural net-
work for a Z = 0.02, 2.5 M� model rotating at 70 per cent of its break-up
velocity, with 60 per cent of its initial hydrogen abundance in the core. Here,
�ν = 49.78 μHz in the asymptotic regime.

frequency spectra. Successive modes at a given value of �̃ are sep-
arated by a frequency distance that reaches an asymptotic value
for high-frequency modes; this value is usually called the large
separation.

Fig. 2 shows an échelle diagram for one of the models we exam-
ined. Each ridge corresponds to a different value of �̃ (obtained here
through visual inspection). A regular separation appears and sta-
bilizes when reaching the high-frequency asymptotic regime, thus
confirming the result obtained on polytropic models by Lignières &
Georgeot (2009).

Garcı́a Hernández et al. (2015, 2017) analysed observed oscilla-
tion spectra for several rotating δ Scuti stars. They identified statis-
tically significant patterns in the frequency spectra. They were then
able to correlate these large separations with the mean density of
the star through a power law that reads

ρ

ρ�
= 1.55+1.07

−0.68

(
�ν

�ν�

)2.035±0.095

, (1)

with ρ� = 1.41 g cm−3 and �ν� = 134.8 μHz (Kjeldsen, Bed-
ding & Christensen-Dalsgaard 2008).

From our models, we obtain a similar scaling law in the asymp-
totic regime, that is

ρ

ρ�
= 1.22 ± 0.02

(
�ν

�ν�

)2.091±0.02

. (2)

Note that the errorbars in equation (1) are observational, while those
of equation (2) come from the fitting process. While the coefficients
in our relation fall within the uncertainties of the observational
relation, we find a difference in the constant factor (corresponding
to the offset between the two trends in Fig. 3).

3.2.1 Effect of the metallicity

The stars observed by Garcı́a Hernández et al. (2017) have metallic-
ities in the range Z ∼ 0.008−0.02, which is covered by our models
at Z = 0.01 or Z = 0.02. As can be seen in Fig. 3, models at Z = 0.01
tend to be slightly denser than their Z = 0.02 counterparts. How-
ever, the large separation derived from their island-mode spectrum
follows closely the same scaling law; the metallicity variations in

Figure 3. Stellar mean density as a function of the island-mode large sep-
aration computed in the asymptotic regime. Coloured data points are from
our calculations. Empty symbols are for Z = 0.01 and filled symbols for Z =
0.02. The blue triangles correspond to varying rotational velocities, orange
circles to varying hydrogen core abundances. The black dotted line is our
fit using all our models. The grey squares are the data points and the grey
dashed line is the corresponding fit from Garcı́a Hernández et al. (2017).

the (narrow) range corresponding to the observations has no impact
on the ρ − �ν relation.

3.2.2 Roche model

Mean densities for eclipsing binary stars are derived by computing
Roche model surfaces, which rely on the simplifying assumptions
that the stellar mass is concentrated in its centre and is rotating
uniformly. The stellar volume is computed supposing, for simple
geometrical reasons, that the radius measured through the eclipse
analysis is the equatorial one. In order to test these assumptions and
their impact on the estimate of the volume, we compute the volume
of both the ESTER model and a Roche model of the same equatorial
radius.

The volume of a given ESTER model is obtained through the
integral

V =
•

r2 sin θdθdφdr = 4π
∫ π/2

0

R3
s (θ )

3
sin θdθ, (3)

where Rs is the surface radius computed consistently with the dis-
tribution of matter inside the star.

Fig. 4 shows the relative difference �Volume, defined as
(V(Roche) − V(ESTER)) /V(ESTER). We find a systematic dif-
ference: Roche models always underestimate the volume, com-
pared to models allowing for a more realistic distribution of matter
and rotation profile. We see that the volume is underestimated by
∼1.6 per cent on average, and does not seem to depend on the model
core hydrogen abudance. It remains low for all models, except at
the most extreme rotation rate (at 90 per cent of the critical velocity,
where the difference can reach 6.6 per cent). While this difference
may impact the determination of stellar mean densities and interfer-
ometric radii, for instance, it still is one order of magnitude too small
to account for the offset between the scaling relations equation (1)
and equation (2).
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Figure 4. Relative difference in volume between Roche and ESTER mod-
els, in percentage, as a function of the rotation rate (top panel) or the core
hydrogen abundance (bottom panel). The symbols are the same as in Fig. 3.
The negative values show that Roche models tend to systematically under-
estimate the stellar volume, compared to ESTER models.

3.2.3 Below the asymptotic regime

We contend that the discrepancy between the scaling relation ob-
tained through modelling and that inferred from the observations
lies with the frequency regime in which we compute the large sepa-
ration. Indeed, in order to compare our results with the predictions of
Lignières & Georgeot (2009), we computed high-frequency modes
so as to place ourselves in the asymptotic regime, where the large
separation is expected to be constant.

However, Garcı́a Hernández et al. (2009) showed that the fre-
quency domain in which stars are observed is far below the asymp-
totic domain. They also showed that the large frequency separation
increases with frequency: the leftward drift of the ridges shown in
Fig. 2 is a signature of this phenomenon. Their calculations show
that computing the large separation in the asymptotic domain can
lead to a 10 to 15 per cent overestimate with respect to the observa-
tions.

To investigate this explanation, we compute island modes at lower
frequencies. The stars observed by Garcı́a Hernández et al. (2017)
pulsate in different frequency ranges that we compare to the break-
up rotation rate of each star; those pulsation domains overlap in the
range of six-to-nine times the equatorial Keplerian velocity. The
island modes in this range have orders ñ = 8–12; these values are
consistent with the range of excitable modes predicted by Dupret
et al. (2005) (note that, for even �̃ = 0, m = 0 modes, ñ = 2n).
In comparison, the asymptotic regime is reached at frequencies
roughly three times larger in our models, for ñ = 32–40.

Fig. 5 shows the separation computed in this domain, and quali-
tative agreement. The corresponding trend follows the relation

ρ

ρ�
= 1.30 ± 0.06

(
�ν

�ν�

)1.905±0.03

. (4)

We find that the relation obtained using island modes fits the ob-
servations better than that computed in the asymptotic regime. The
small difference with the observed relation may come from the re-
duced number of models we used. Indeed, not all the models we
computed were included, as numerical errors prevented us from
finding enough low-frequency island modes to compute a reliable
separation in the most evolved cases. A wider domain in densities
could be explored by computing models of different masses.

In Fig. 6, we plot the ratio �ν/
√

(ρ) as a function of the rotation

Figure 5. Stellar mean density as a function of the island-mode large sep-
aration in the frequency range corresponding to observations. The symbols
are identical to those of Fig. 3.

Figure 6. �ν/
√

ρ as a function of the rotation velocity (in units of the
critical velocity). We use the values of �ν obtained outside of the asymptotic
(as in Fig. 5). We show the values obtained with Z = 0.02 and Z = 0.01
ESTER models (full blue symbols and solid line, and empty blue symbols and
dashed line, respectively), and compare them with SCF models from Reese
et al. (2009) (purple, see the main text) and the observations from Garcı́a
Hernández et al. (2017) (grey). The lack of a clear trend confirms that the
scaling does not depend explicitly on rotation.

velocity. It shows the results obtained from ESTER models, along
with simpler 2 M� SCF models (Reese et al. 2009) and observa-
tional data (Garcı́a Hernández et al. 2017). In order to match the
results for ESTER models, the data points for SCF models have been
recomputed in the frequency domain corresponding to observations
(the outlier at � = 0.5 �crit is due to an avoided crossing between
some of the computed modes). Some differences can be expected
between the results for ESTER and SCF models, given that the for-
mer fully solve the structural and energy conservation equations,
thus resulting in a two-dimensional rotation profile and a baroclinic
structure, whereas the latter only solves a horizontal average of the
energy equation and uses imposed cylindrical (or in our case, uni-
form) rotation profiles, thus resulting in a simpler barotropic stellar
structure. None the less, the differences on �ν remain relatively
small. The lack of a trend with rotation shows that rotation has no
additional impact on the large separation.
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4 C O N C L U S I O N S

4.1 Summary

In this work, we computed two-dimensional models of fast-rotating
stars and the corresponding oscillations by interfacing the ESTER and
TOP codes. In order to compare to observations and conduct scien-
tific analysis, it was necessary to first sort through the numerous
modes calculated for every model. We trained a CNN to automate
this process and classified the modes based on their geometry. Our
network architecture was designed to be versatile and allowed us to
achieve high accuracy while expediting the process dramatically.

In this first application of the deep-learning classification algo-
rithm, we focused on identifying a specific subclass of pressure
modes present in fast rotators, namely island modes of period 2.
Those modes are expected to be the most visible in the p-mode
frequency range, and to follow regular frequency patterns in the
high-frequency asymptotic regime. We recover such patterns with
state-of-the-art models, confirming both previous theoretical and
observational works. Previous work has linked the large frequency
separation of observed modes with the stellar mean density through
a scaling law. We find a similar relation using the island-mode
large separation, with an offset. We find that this difference cannot
be attributed to metallicity effects nor to the estimate of the stel-
lar volume, but arises from ‘the difference in the frequency domain
sampled by the observed modes and the asymptotic domain in which
we study the synthetic oscillations. Indeed, the modes observed in
actual stars are not in the asymptotic regime and therefore present
large separations roughly 10 per cent smaller; this difference can
also be used to obtain an estimate of the radial order of the detected
oscillations in a given star. This ρ–�ν relation obtained from the
observations is a very useful guide in modelling p-mode pulsators,
such as δ Scuti stars, and will in turn help mode identification and
the matching between models and observed stars.

4.2 Future prospects

We note that there is scope to optimize the CNN performance fur-
ther, and we will continue to do so in future work. We can also
modify the CNN to use quarter-plane plots, thus increasing the den-
sity of pixels by a factor of 2. Such an improvement would require
the creation of separate training sets for the odd and even modes,
which we are developing for future work.

Once the CNN had identified the two-period island modes, they
were manually sorted according to their spherical degree �̃. This
subsequent classification step can also be automated with a CNN
and indeed this work has provided us with a substantial training set
to do so. We report an accuracy of >99 per cent from our validation
tests and have since added this automated classification step in our
analysis pipeline for future use.

Exploring a wider range of models, varying other parameters (and
most notably the stellar mass) will allow us to determine a more
accurate and general ρ–�ν relation. There are other features of the
computed oscillation spectra that can be exploited, such as the sep-
aration of modes at same ñ and consecutive �̃ values. Varying the
azimuthal order m will also allow us to bring out rotational splittings
(i.e. the frequency separation between modes with the same (̃�, ñ)
values but different m values, which carry the signature of the stel-
lar rotation), allowing for a description of the internal (differential)
rotation of the star (Reese et al. in preparation). The last remaining
step is the automatic determination of the radial order ñ, which

would allow the derivation of accurate asymptotic formulae for
fast-rotating stars. We note that the conclusions of this work have to
be linked with previous efforts towards mode identification in fast-
rotating stars, such as the calculation of mode visibilities (Reese
et al. 2013) or two-dimensional non-adiabatic pulsation computa-
tions (Mirouh et al. 2017). Finally, expanding the number of stars
on which this technique can be applied through current and future
asteroseismology missions such as BRITE, TESS, or PLATO, will
be of great help to confirm and elucidate any hidden dependence in
the obtained scaling relation.
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Reese D. R., Pascual-Granado J., Garrido R., 2015, ApJ, 811, L29
Garcı́a Hernández A. et al., 2017, MNRAS, 471, L140
Hon M., Stello D., Yu J., 2017, MNRAS, 469, 4578
Kjeldsen H., Bedding T. R., Christensen-Dalsgaard J., 2008, ApJ, 683, L175
Lecun Y., Bottou L., Bengio Y., Haffner P., 1998, Proc. IEEE, 86, 2278
Lignières F., Georgeot B., 2009, A&A, 500, 1173
Mirouh G. M., Reese D. R., Rieutord M., Ballot J., 2017, in Reylé C., Di
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