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Saharan dust inputs affect present day ecosystems and biogeochemical cycles at a global scale. Previous Saharan
dust input reconstructions have beenmainly based onmarine records from the Africanmargin, nevertheless dust
reaching western-central Europe is mainly transported by high-altitude atmospheric currents and requires high
altitude records for its reconstruction. The organic and inorganic geochemical study of sediments froma southern
Iberia alpine lacustrine record has provided an exceptional reconstruction of Saharan dust impact and regional
climatic variations during the Holocene. After the last deglaciation, results indicate that Saharan dust reached
Western Europe in a stepwise fashion from7.0 to 6.0 cal. kyr BP and increased since thenuntil present, promoting
major geochemical changes in the lacustrine system. Effective humidity reconstruction indicates wetter condi-
tions during the early Holocene and progressive aridification duringmiddle–late Holocene time, boosting abrupt
changes in the lacustrine system. Cyclostratigraphic analyses and transport mechanisms both point to solar irra-
diance and aridity as major triggering factors for dust supply over Western Europe during the Holocene.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Saharan–Sahel soil dust aerosols, exported to both Atlantic Ocean
andMediterranean regions, affect the biogeochemical and ecological cy-
cles from oceans and continents and thus have an important impact on
the global environment and human health (Moulin et al., 1997; Shinn
et al., 2000; Goudie and Middleton, 2001; Griffin and Kellogg, 2004;
Bonnet et al., 2005; Mush, 2013, among others). Due to its CaCO3 con-
tent, Saharan dust significantly increases the pH of rain-water (Loÿe-
Pilot et al., 1986) and influences the chemistry of soils andwatermasses
over European regions (Goudie and Middleton, 2001; Waeles et al.,
2007; Erel and Torrent, 2010). Paleo-dust deposition has been demon-
strated to be a proxy for aridity (Petherick et al., 2009), climate variabil-
ity (Jung et al., 2004), air mass circulation (Rohling et al., 2003) and
wind strength (Mush, 2013). For this reason, understanding past evolu-
tion of Saharan dust deposition over Europe is vital to furthering our
knowledge about present day ecosystems (Maher et al., 2010), and
modern climate (e.g., Antón et al., 2012).
Remote alpine lakes are recognized as being very sensitive environ-
ments to aeolian input and climate changes (e.g., Adrian et al., 2009).
The high biogeochemical sensitivity to Saharan aeolian dust has been
previously documented in high-elevation alpine lakes of glacial origin
from the southern Iberian Peninsula (e.g., Pulido-Villena et al., 2005;
Morales-Baquero et al., 2006; Reche et al., 2009; Mladenov et al.,
2011; Oliva andGómez-Ortiz, 2012). The sensitivity of these lakes to ex-
ternal inputs, i.e., aeolian dust, pollutants and other aerosols, can be as-
cribed to their location at high altitudes (N3000 masl) above the tree
line, thus being characterized by very small and poorly vegetated catch-
ments. These lakes are located above the atmospheric boundary layer
(N1500 masl) in the mainstream (1500–4000 masl) of Saharan dust
transport (Talbot et al., 1986). Laguna de Rio Seco (LdRS), an alpine
lake in Sierra Nevada located at the southern Iberia (Fig. 1), is one of
these sites.

Abundances of specific major, minor and trace elements, com-
bined with organic geochemical proxies have a great potential for
reconstructing past depositional and environmental conditions
(e.g., Blanchet et al., 2013). Nevertheless, the use of trace elements as
geochemical proxies in lake sediments has not been fully exploited be-
cause each lacustrine system is a unique biogeochemical environment,
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Fig. 1. Setting of LagunadeRío Seco (SierraNevada) in the Iberian Peninsula and othermarine and terrestrial climate records discussed and located innearby regions. Black arrows indicate
the North Saharan Air Layers (NSAL) wind system.
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making the interpretation very complex (Das et al., 2008). Element
enrichment in shallow lake sediments is controlled by several factors,
for example, terrigenous input, pH, phytoplankton abundance, and or-
ganic matter, among others (e.g., Bilali et al., 2002). Any fluctuation in
these ruling factors can promote a series of geochemical processes,
which affect the element accumulation. These geochemical changes
can be preserved in peat and lacustrine records, allowing the recon-
struction of past environmental conditions, in general, (Shotyk et al.,
2002; Moreno et al., 2011; García-Alix et al., 2013) and dust input vari-
ations in particular (e.g., An et al., 2012; Allan et al., 2013).

Recently, an unprecedented pollen record in the South Iberian alpine
region has been obtained from a sediment core recovered from LdRS
(Anderson et al., 2011). Here we have studied this sediment record and
analyzed a number of geochemical proxies in order to reconstruct re-
gional water availability, effective humidity and aeolian input variations
during the Holocene. The datasets were subjected to a detailed statistical
analysis in order to identify theirmain sources and sedimentary process-
es ruling their temporal oscillations. Furthermore, cyclostratigraphic
analyseswere applied on the paleoclimate time series in order to identify
periodicities and spectral signatures that might provide insights on the
major forcing mechanisms that triggered climate periods of aeolian
dust deposition and regional water availability over Western Europe.
2. Methods

2.1. Geographical context, core location, age model and sampling

Sierra Nevada is the highest mountain range located in the Iberian
Peninsula. During the Late Pleistocene numerous depressions formed
through glacial erosion between 2600 and 3100 masl in this mountain
range. Later on, during the deglaciation, small lakes developed
(Schulte, 2002). LdRS (37° 02.43′ N, 3° 20.57′ W) is one of these glacial
lakes located at ~3020 masl, with a surface of 0.42 ha and a maximum
depth of ~2 m (Morales-Baquero et al., 1999) (Fig. 1). It is placed in a
south-facing cirque, and its catchment, constituted by a siliceous mica
schist substrate, is reduced to about 9.9 ha (Morales-Baquero et al.,
1999). This lake is covered in snow most of the year, with the snow
free period typically occurring from June to October.
LdRS is an oligotrophic lake with a significant influence of Saharan
dust inputs on present day lake biogeochemistry (Morales-Baquero
et al., 2006; Pulido-Villena et al., 2006; Reche et al., 2009). A 150 cm-
long sediment core was collected in September 2006 from the center
of LdRS (Fig. 1). The core lithology of the uppermost 133 cm is charac-
terized by banded peaty and silty clays whereas the lowermost 17 cm
corresponds to bluish-gray glacial clay and gravels (Anderson et al.,
2011). The age model applied in this study follows Anderson et al.
(2011) and it is based on 9 calibrated AMS radiocarbon dates using
CALIB 5.0.2 (Stuiver et al., 1998). The age of the intermediate sam-
ples has been calculated by linear interpolation. Sediment accumula-
tion rates (SAR) are described in Anderson et al. (2011) and vary
between 0.13 cm/yr above 15 cm and 0.007–0.0063 cm/yr below
15 cm. The average SAR for the whole record is 0.013 cm/yr. The sedi-
mentary record of this lake continuously covers most of the Holocene,
from ~11 cal. kyr BP to present (Anderson et al., 2011).

2.2. Sample preparation and statistical analysis

Carbon stable isotopes, atomic C/N ratios and major and trace ele-
ments were analyzed from 68 sediment samples, taken at ~2-cm inter-
vals (an average of ca. 165 years between samples) in the 133 cmupper
part of the sediment core. For the isotopic analyses of the organic mat-
ter, samples were decalcified with 1:1 HCl in order to eliminate the car-
bonate fraction. Carbon isotopes (δ13C), and the atomic C/N ratios were
measured bymeans of an elemental analyser (Carlo Erba Ba 1500 series
2) connected to a Thermo Finnigan DELTAplus XL mass spectrometer.
Samples were measured in duplicate. The carbon isotopic composition
of the studied samples were specified by two internal standards with
values of −30.63‰ and −11.65‰ (V-PDB), contrasted with the IAEA
international references NBS-22, IAEA-CH-7, and IAEA-CH-6. Carbon
isotope results are expressed in δ notation, using the standard V-PDB.
The calculated precision, after correction for mass spectrometer daily
drift, using standards systematically interspersed in analytical batches,
was better than ±0.1‰ for δ13C.

Major element measurements (Mg, Al, Ca, Mn and Fe) were obtain-
ed by atomic absorption spectrometry (AAS) using a Perkin-Elmer 5100
spectrometerwith an analytic error of 2%. Trace element analyses (Sc, V,
Cr, Co, Ni, Cu, Zn, Ga, Y, Nb, Ta, Zr, Hf, Mo, Sn, Tl, Pb, U, Th, La and Lu)
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were performed using Inductively Coupled Plasma–Mass Spectrometry
(ICP–MS) after HNO3 (65% Panreac PA-AR)+HF (40% Suprapur) diges-
tion of 0.1004 to 0.1008 g of sample powder in a Teflon-lined vessel for
150 min at high temperature and pressure, evaporation to dryness, and
subsequent dissolution in 100 ml of 4 vol.% HNO3. Measurements were
taken in triplicate through spectrometry (Perkin Elmer Sciex Elan 5000)
using Re and Rh (25 ppb) as internal standards. Data were contrasted
with the following reference geostandards: UBN, PMS, WSE, BEN, BR,
AGV, DRN, GSN GA and GH (Govindaraju, 1994). The instrumental
error is ±2% for elemental concentrations b50 ppm and ±5% for con-
centrations between 50 to 5 ppm respectively (Bea, 1996).

Statistical treatment of analytical datawas performed using the soft-
ware package R (Development Core Team, 2013). Stratigraphically-
constrained cluster analyses were applied to identify the periods with
homogeneous geochemical behavior and the outliers (isolated samples
with anomalous values) (Fig. 2). The normalized geochemical dataset
was also clustered. For this purpose, unconstrained hierarchical cluster
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Fig. 2.Age profile of organicmatter δ13C, total organic content (TOC) (%), Carbon/Nitrogen (C/N)
represent the different seven consecutive environmental phases obtained from the stratigraph
Zr/Th. Orange arrows represent earliest dust input to the lake.
analysis was also applied on the dataset in order to determine the
main geochemical families (Fig. 3). Approximately unbiased (au)
p-value and bootstrap probability (bp) value were calculated to estab-
lish the significant clusters. This second cluster analysis was calculated
to establish the significant clusters and calculated using the pvclust R
package (Suzuki and Shimodaira, 2011). The complete linkage method
(or furthest neighbor method) was used for clustering purposes.
Pearson's r correlation index and their significance (p-value) have
been calculated for the complete geochemical dataset.

Cyclostratigraphic analysis of the time series from the different prox-
ies has been conducted with the Lomb–Scargle periodogram (Lomb,
1976; Scargle, 1982) (see Supplementary information). This is a very ap-
propriate spectral methodology when working with uneven sampling
data, as in our case study (Rodríguez-Tovar et al., 2010; Pardo-Igúzquiza
and Rodríguez-Tovar, 2012). The power spectrum has been estimated,
by the Lomb–Scargle periodogram, on a frequency range of [0, 0.007]
with a frequency interval of 0.000014 cycles per year. That is, the range
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of frequencies that has been analyzed, searching for hidden periodicities,
is [0, 0.007]. This interval is analyzed at discrete frequencies equal to
k0.000014 being k an integer from 1 to 2000.

The estimated periodogram is then smoothed with a linear filter of
21 terms. The uncertainty is evaluated by the permutation test, which
takes into account all these parameters. To evaluate the significance of
the registered spectral peaks, one appropriate method is the imple-
mented achieved significance level (ACL) using the permutation test
(see Pardo-Igúzquiza and Rodríguez-Tovar, 2000, for a detailed descrip-
tion). According to this, the obtained peaks in the ACL can be considered
as primary, and not secondarily generated by the appliedmethodology;
fromall the peaks registeredwith the Lomb–Scargle only those also reg-
istered in the ACL have been interpreted.

To adopt a conservative position, we only consider those cycles in
the frequency range with more possibilities of being registered,
discarding those on the edge of the low frequencies close to the vertical
axe in the ACL, as well as those corresponding to thickness close to the
sampling interval. Thus, taking into account that the studied part of
the sediment core spans around 11,100 yr, those cycles at the lowest
Fig. 4. Spectral peaks summary obtained with the spectral method at high and low fre-
quency bands. Color in dots defines the confidential level (%) obtained. Power spectra
plots are available in Supplementary Information.
frequencies calibrated as higher than 3500yr, have not been considered.
Moreover, according to the estimated time represented for the sampling
interval (around 160 yr), those cycles in the highest frequency band,
calibrated as lower than 320 yr, were also not interpreted. Thus, we
have only considered those cycles registered in the frequency band cor-
responding to periodicities between 320 and 3500 yr (Fig. 4 and Supple-
mentary information).

2.3. Selected proxies interpretation and corrections

In the last decades inorganic chemical proxies has been demonstrat-
ed to be an extremely useful tool for paleoenviromental reconstructions
(e.g., Calvert and Pedersen, 2007). The use of several element ratios in
order to define changes in the terrigenous/biological composition is
based on the relationship between different minerals and their sources.
Nevertheless, the interpretation of chemical facies/ratios as response to
environmental changes has to be done carefully, as similar element re-
sponse can be obtained through different environmental forcings, such
as aridity, anoxia, productivity, antrophic influence, or change inminer-
al sources, among others.

The first correction that should be done is related to dilution effect
promoted bymineral phases of biogenic origin, commonly calcium car-
bonate and opal. Thus, to comparemajor and trace element proportions
in samples with variable carbonate and opal contents, it is common to
normalize absolute trace-element concentrations to Al, Ti or Th, assum-
ing a unique detrital origin for these elements (e.g., Brumsack, 1986;
Calvert and Pedersen, 1993; Piper and Calvert, 2009). Al normalization
has some drawbacks that are most likely to occur when the coefficient
of variation (i.e. the standard deviation divided by the mean) of the Al
concentration is large compared to the coefficient of variation of the
other elements (Van der Weijden, 2002). However, the coefficient of
variation in this record is low 0.17 for Al, 0.4 for Zr and 0.29 for Mn.

We selected diverse elemental ratios as most representative for aeo-
lian (Zr/Th), source composition (La/Lu), redox (Mn/Al) and detrital
(Mg/Al) proxies. The selection was done based on previous data, on
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the composition of the catchment, dust input mineralogy and on the
correlation between different elements (Supplementary information).
The selected aeolian proxy is the Zr/Th ratio because Saharan dust is
enriched in heavy minerals such as zircon (e.g., Moreno et al., 2006;
Hemming, 2007; Aarons et al., 2013; Scheuvens et al., 2013). In this
sense the Zr/Th, or the equivalent Zr/Al ratio, has been extensively
used as a proxy of aeolian input in the Mediterranean, Atlantic and
also Caribbean regions (Mahowald et al., 2002; Cole et al., 2009;
Rodrigo-Gámiz et al., 2011). The La/Lu ratio represents the whole Rare
Earth Elements (REE) pattern and allows to discriminate between rela-
tive felsic and basaltic input in dust source signatures (Rollinson, 1993).
The La/Lu ratio appears to be a reliable fingerprint for Saharan dust
input in the Mediterranean area (Wehausen and Brumsack, 1999;
Martínez-Ruiz et al., 2000) and other regions (Marx et al., 2011). In
this way, the La/Lu ratio has been specifically used to discriminate aeo-
lian inputs originating from the African craton (Hamroush and Stanley,
1990; Moreno et al., 2006; Castillo et al., 2008; Mush et al., 2010). In
close marine and coastal areas La/Lu ratio range between 100 during
humid period to N150 during Pleistocene and Holocene arid periods
when African dust material has been described (Gallego-Torres et al.,
2007; Cortés-Sánchez et al., 2011). In very small catchments as the
LdRS, which is mainly composed of metamorphic rocks, the arrival of
a distantly sourced dust signature can be easily recognized by changes
in this ratio.

The manganese is a solid phase electron acceptor that reflects
paleoredox conditions in lacustrine systems (Richardson and Nealson,
1989; Eusterhues et al., 2005; Jouve et al., 2013; Naeher et al., 2013).
Mn precipitates out in sediment mainly as Mn4+, usually as oxides,
and re-solubilizes in the water column mainly as Mn2+ (Richardson
and Nealson, 1989). Nevertheless, precipitated manganese can be
newly dissolved linking the preservation of Mn/Al ratio enrichments
to sedimentation rates and pore water geochemistry (Och et al.,
2012). At LdRS, Mn/Al shows a high correlation with previously de-
scribed effective humidity proxies – e.g. the occurrence of Betula, Pinus
and Artemisia pollen (Anderson et al., 2011) – and marked diagenetic
peaks are absent (Mangini et al., 2001) pointing to a good preservation
for the Mn record with a limited diagenetic overprint. This relationship
between Mn content and effective humidity can be explained by the
presence of reducing conditions in the lake bottom and corresponding
chemocline promoting an enrichment in Mn during humid periods
(Mackereth, 1966; Schaller and Wehrli, 1996). Mn precipitation also
can be furthermore catalyzed by Mn oxidizing bacteria (Diem and
Stumn, 1984).

LdRS catchment is composed by metamorphic quartzites, schist and
mica-schist, and Mg-bearing carbonates are almost absent (Castillo
Martín, 2009). In this scenario Mg-chlorites, measured in the clay min-
eral fraction, could be the main sources for Mg content. The high corre-
lation (r N 0.75) between Mg and other typical alumino-silicates
elements (e.g., K, Al, Th) also supports this detrital origin (Supplementa-
ry information). An increase in Mg respective to other detrital elements
can be interpreted as an enrichment inMg-chlorite (claymineral) input
respect to other phases. A hydrodynamic process, like an increase in sur-
face runoff during humid periods, could explain this mineralogical
sorting (Mathews, 1956) as observed in marine depositional environ-
ments (e.g., Jiménez-Espejo et al., 2007a).

3. Results

3.1. Organic and inorganic geochemistry

Results are described using a stratigraphically constrained cluster
analysis (Fig. 2) based on δ13C, C/N atomic ratio, and Mn/Al, Mg/Al,
La/Lu and Zr/Th ratios. Seven main phases in the studied record can be
observed (Fig. 2).

Phase 1 (between 11.1 and 10.5 cal. kyr BP): this phase is impov-
erished in organic carbon (TOC b 2.1%). This period is characterized by
the highest δ13C values (−19.7 ± 1.3‰) and the C/N atomic ratio has
ameanvalue of 10.9±0.4.Minor changes in the inorganic ratios are ob-
served except for the Zr/Th (Fig. 2).

Phase 2 (between ~10.5 and ~6.9 cal. kyr BP): TOC values increased
(9.8 ± 1.7%), however δ13C values (24.0 ± 0.3‰) and C/N atomic ratio
(9.6 ± 0.7) decreased (Fig. 2). All the inorganic proxies shared a flat pat-
tern. The Zr/Th ratio displayed a progressive increase from~7.6 cal. kyr BP
onwards (Fig. 2).

Phase 3 (between ~6.9 and ~6.0 cal. kyr BP): this phase represented
a disruption in the studied proxies. TOC valueswere high (10.6± 1.7%),
δ13C values slightly decreased (−25‰ ± 0.7‰), and C/N atomic ratio
oscillated around 10. The Mg/Al ratio showed the lowest values
(b0.1). The La/Lu ratio was characterized by variations from ~165 to
~135. Zr content increased remarkably and Mn/Al ratio showed an op-
posite trend.

Phase 4 (between ~6.0 and ~4.0 cal. kyr BP): this phase is character-
ized by rising upwards TOC (up to 11.2 ± 1.8%) and δ13C (−23.8 ±
0.5‰) values, and the C/N atomic ratio was always above 10 (14 ±
0.9). Zr/Th shows a major peak at 4.7 cal. kyr BP, with an opposite
trend when compared with the Mg/Al ratio. La/Lu and Mn/Al ratios
were characterized by a flat and stable pattern during this interval.

Phase 5 (between ~4.0 and 2.0 cal. kyr BP): TOC values decreased to
around 9, aswell as the δ13C (−22.6± 0.5‰), and the C/N atomic ratios
(13.5 ± 1.2). Since ~4.4 cal. kyr BP, the La/Lu ratio achieved constant
high values (with average around 155), only reached punctually during
previous Holocene periods. Zr/Th showed an increasing trend with
a seesaw pattern and the Mn/Al again displayed an opposite trend.
Mg/Al and La/Lu ratios depicted no clear trends during this interval.

Phase 6 (between ~2.0 and 0.4 cal. kyr BP) seems to be a continuation
of the previous phase, althoughwithmore attenuated trends. TOC values
decreased (6.9 ± 1.4%), as well as δ13C (−22.3 ± 1.0‰) and C/N
atomic ratio (12.1 ± 1.1).

Phase 7 (last 400 cal. yr BP) showed significant changes in the proxy
data when comparedwith previous periods. TOC values dropped (4.8±
0.8%), and the C/N atomic ratio oscillated around 10 (10.6 ± 0.9). Zr/Th
and La/Lu ratios showed abrupt increases reaching highest values for
the entire Holocene, and Mg/Al was relatively low.

3.2. Statistical approach

Statistical correlations (Pearson's r) and significance (p-values) as
well as stratigraphically unconstrained hierarchical cluster analysis
were calculated using all proxies and representative ratios to highlight
the main environmental and climate processes underlying these
datasets (see Supplementary information). The chemical elements can
be grouped according to their chemical affinity (Fig. 3). The first group
is composed by chemical elements related to the eolian (Zr/Th) input
like Ca and Hf. The C/N ratio is also associated with this eolian terrige-
nous material owing to increases in the lake productivity that are due
to the input of Saharan dust. TOC shows same C/N ratio pattern and
not represented because reiterative. The second group is made up of
chemical elements related to metallic-rich sediments (Ta, Sc, Cr, Sm,
Eu, Tb, Ce, Pr, Nd, Fe, Sn and Pb) whereas the third group is composed
of the chemical elements that are present in clays, either in their struc-
ture or adsorbed in between their octaedrical layers (K, Sr, U, Nb, V, Ga,
Cs, Ba, Tl, Li, Rb, Be, Ho, Er, Gd, Dy, Tm and Yb). The fifth group includes
the chemical elements that are sensitive to redox changes (Cu, Co, Zn,
Mo, Ni, Y and the Mn/Al ratio). The La/Lu and Mg/Al ratios also are
grouped but with a clusters significant at 0.80.

3.3. Cyclostratigraphy

The results obtained from the cyclostratigraphic analysis allow the
differentiation of cycles in the low-frequency bands at 2600–2200 yr
and 1500–1400 yr, and in the high-frequency ones at 313 yr and 256 yr
(Fig. 4). Used methodology and the uneven sample resolution allow us
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to recognize centennial-scale cycles but average sample resolution indi-
cates that they must be considered with caution, thus only millennial-
scale cycles are considered in this study.

The 2600–2200 yr cycle is the most frequently registered, being
observed in three of the studied proxies, La/Lu, Mn/Al, and δ13C
(95–99% CL). The 1500–1400 yr cycle is registered in Mg/Al and δ13C,
with special high significance (99% CL) in the Mg/Al.

4. Discussion

4.1. Saharan aeolian input signal and evolution during the Holocene

The study of Saharan dust input over the African margin during
the Holocene shows paradoxical situations, like high dust input to the
North Canary basin (approx. 32°N) during the early-middle Holocene
(Moreno et al., 2001; Bozzano et al., 2002) and high dust input in
southern locations (approx. 22°N) during middle–late Holocene
(Adkins et al., 2006). Our data from LdRS indicate that lake sedimenta-
tionwas characterized by enhanced supply of Saharan dust during early
Holocene around 11 cal. kyr BP, and more recently at 7.1, 6.4 and
6.2 cal. kyr BP (Fig. 2 orange arrows), with a progressive increase from
6.0 cal. kyr BP, with relative decrease at 4.2 kyr and between 1.0 and
0.2 cal. kyr BP. An increase in Saharan dust input pulses or decrease in
fluvial detrital input using a variety of proxies (grain size, plant wax
n-alkanes, K/Al ratio) has been previously described in the western
and eastern Mediterranean and off-shore NW Africa marine records at
7.4 cal. kyr BP and a dry pulse has been recognized in northern Africa
between 8.5 and 7.3 cal. kyr BP (Fig. 5) (Petit-Maire and Guo, 1996;
Jiménez-Espejo et al., 2007b; Niedermeyer et al., 2010; Rodrigo-Gámiz
et al., 2011; Cortés Sánchez et al., 2012; Blanchet et al., 2013). The
timing of the “African Humid Period” (AHP) demise has been estimated
between 6.0 and 4.2 cal. kyr BP, and its end is described as abrupt
(deMenocal et al., 2000; Cole et al., 2009) or progressive (Jung et al.,
2004; Lézine, 2009; Marshall et al., 2011; Blanchet et al., 2013) depend-
ing on the record and its location. In our case, the first evidence of aeo-
lian dust input at LdRS, relatedwith the AHP demise, is recorded around
7.0 cal. kyr BP with an increasing trend in the Zr/Th ratio and Artemisia
pollen and a decrease in Betula and Pinus pollen percentages (Fig. 5 e, f,
h, i). That could be related to the fact that aridity of the source region is a
necessary condition for dust availability, but storminess and air turbu-
lence are also needed to uplift dust and inject it into the troposphere
(Bozzano et al., 2002; Hodell et al., 2013). Our data indicate that these
specifically required arid and atmospheric configurations were punctu-
ally established from 7.0 to 6.1 cal. kyr BP, and persistently occurred
from 6.0 cal. kyr BP until present. At 7.0 cal. kyr BP a drastic decrease
of lake levels in the Sahara–Sahel belt took place (Liu et al., 2007 and
reference therein), and dry lake basins are major components of
Saharan dust (Moreno et al., 2006). The onset of the persistent condi-
tions coincides with the Mid-Holocene transitional character when
global climate forcing started to change (Debret et al., 2009) and
the transition between mainly humid to mainly arid conditions was
recognized in the entire Mediterranean basin (Jalut et al., 2011;
Rodrigo-Gámiz et al., 2011). This aridification has been linked with
N5° latitudinal southward migration of the ITCZ (Arbuszewski et al.,
2013).

In addition, signatures of themost recent changes in the Saharan en-
vironment and Saharan dust composition also appear to be recognized
at LdRS. Peaks in the Zr/Th ratio are broadly synchronous with the
La/Lu ratio in the LdRS record but they differ in orientation and intensity
during the Holocene (Fig. 2). This could be related to changes in the av-
erage composition of the aeolian dust (Moreno et al., 2006; Pey et al.,
2009). In addition, dust deposition increased in the last 200 years due
to the onset of commercial agriculture in the Sahel region (Mulitza
et al., 2010). In the LdRS record we observed an increase in the Zr/Th
ratio and unusually high La/Lu ratio, pointing to a marked change in
the origin and/or composition of the dust reaching southern Iberia
(Fig. 5e). This increase in the La/Lu ratios indicating more La content
could reflect enhanced granitic weathered material from the West
African craton in agreement with present day Saharan dust provenance
region (Cole et al., 2009; Skonieczny et al., 2013). Nevertheless, effects
of local anthropogenic impact cannot be discarded.

4.2. External input, regional productivity and effective humidity

LdRS is at present a small oligotrophic lake where biogeochemical
cycles are highly influenced by the effect of Saharan dust deposition
(Pulido-Villena et al., 2005; Morales-Baquero et al., 2006; Reche et al.,
2009). Although the C/N atomic ratio indicates that the organic matter
has a mixed aquatic (algal)/continental origin in the LdRS, the low C/N
ratio, which in some cases is around 10 or lower (Fig. 2) suggests a sig-
nificant contribution from an algal source (according to Meyers et al.,
1994; Meyers and Teranes, 2001; among others), especially between
~10 and ~6 cal. kyr BP (Fig. 2), in agreement with wetter conditions in
the alpine lakes from Sierra Nevada (Anderson et al., 2011; García-Alix
et al., 2012; Jiménez Moreno and Anderson, 2012).

4.2.1. Early Holocene glacial input and humid conditions
(~11.1–6.0 cal. kyr BP)

Anderson et al. (2011) suggested that the highest percentage of
Botryococcus colonies that occurred during the first part of the record
(~11.1–10.5 cal kyr BP) pointed to either relatively high lake water
levels or perhaps to a wash out of nutrients during deglaciation. Pollen
and geochemical marine records in the Iberian Mediterranean indicate
an aridification episode during this time interval (Fletcher and
Sanchez-Goñi, 2008; Rodrigo-Gámiz et al., 2011; Bellin et al., 2013),
making improbable high lake levels by precipitation. Our record also in-
dicates arid conditions with high Zr and Artemisia contents (Fig. 5e, f)
(Anderson et al., 2011), but it is remarkable that the highest δ13C –

−18‰ – is also reached during this interval (Fig. 2). This is a typical
value for organic matter composed by remains from soil and C4 plants
(Eglinton et al., 2002). The most plausible explanation for all these ob-
servations is a mixed input coming both from the atmosphere and
frommelting glaciers. Both ice and rock glaciers existed in SierraNevada
during the preceding Younger Dryas cold period, becoming significantly
diminished around 10.5 ± 0.3 cal. kyr BP (Palade et al., 2011). This melt
water could have contributed to the lacustrine systemwith “old carbon”
(derived from C4 plant remains) and additional Zr input coming from
the Sahara that accumulated during the Younger Dryas on the glacier.
This fact, together with the absence of evidence of C4 plants in this
area at that time (Ortiz et al., 2004, 2010), could explain the high δ13C
values in the sediments during the initial stage of the record. Therefore,
despite the generally arid conditions that could have prevailed during
this early stage, dust and other nutrients from melting glaciers most
likely reached LdRS, probably enriching the lacustrine system and pro-
moting high lacustrine levels.

The period from ~10.5 to ~6.1 cal. kyr BP is generally characterized
by relatively low C/N atomic ratio (~10), high TOC content and Mn/Al
ratio, and low δ13C values (Figs. 2 and 5g). Palynological data also
show relative high abundance of algae (Botryococcus and Pediastrum),
ferns (Botrychium), aquatic plants (Potamogeton and Cyperaceae),
Pinus and temperatemesic trees (Betula and deciduousQuercus), during
this period (Anderson et al., 2011; Jimenez-Moreno and Anderson,
2012). All these proxies suggest relatively higher humidity conditions
than today and the maximum development of the lacustrine system.
The low C/N atomic ratio suggests a large contribution of algal organic
matter (OM) to the sediment (Meyers, 1994; Meyers and Teranes,
2001; among others), and for periods when the C/N atomic ratio
dropped below 10 it was the most important contributor of OM to the
lake.

The high Mn/Al ratios obtained from the LdRS record at this time
could be related to more dysoxic conditions on the lake bottom (e.g.,
Eusterhues et al., 2005; Jouve et al., 2013; Naeher et al., 2013). Despite



Fig. 5. Age profiles of Zr/Th (e) and Mn/Al (×103) (g) ratios in Laguna de Río Seco compared with selected organic and inorganic proxies from different records located in the Mediterra-
nean and North African regions. From the top to the bottom: a) terrigenous grain-size fraction (N10 μm) (Mulitza et al., 2010); b) EM1/(EM2+ EM3) ratio used as fluvial/aeolian contri-
bution to the terrigenous fraction in the easternMediterranean (Blanchet et al., 2013); c)wax n-alkane concentration (n-C27–n-C34) [μg g−1] (Niedermeyer et al., 2010); d)fluvial-derived
input ratio in thewesternmost Mediterranean (Rodrigo-Gámiz et al., 2011); f, h, i) pollen percentages of Artemisia, Betula, and Pinus in LdRS (Anderson et al., 2011); j) summer insolation
curve (June) at 30°N (Berger and Loutre, 1991). Stars show dated samples. Orange bars highlight main discussed intervals. Gray bars indicate time interval for the Sapropel 1 desposition
(S1), the African Humid Period demise (AHP), the Roman Humid Period (RHP) and the Little Ice Age nLIA).
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the fact that shallow lakes typically remain well-oxygenated through-
out the year (e.g., Elbaz-Poulichet et al., 1997) one plausible explanation
for this could be that during this humid period algae and bacteria
productivitywas high. This, together with abundant external input (nu-
trients), could have promoted low C/N and high OM content. Our expla-
nation is supported by presumed immature soil development covering
the metamorphic bedrock, which probably limited the terrestrial
vascular plant communities, thus exporting terrestrially-derived carbon
to the lacustrine sediments. Thus, the high effective humidity and
higher organic matter content caused low oxygenation and high Mn
content.

The arrival of Saharan dust is newly recorded in the LdRS at
7.0 cal. kyr BP (Fig. 2). This promotedmajor changes in the LdRS biogeo-
chemistry, for example, a decrease in theMn/Al ratio, abrupt oscillations

image of Fig.�5
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in the C/N atomic ratio (fast increase/decrease) and heavier δ13C values.
This indicates that Saharan dust input affected the LdRS ventilation and
increased productivity, probably due to the supply of carbonates and
other nutrients to the lake. Aeolian dust input is the only natural supply
of calcium carbonate into the lake, as siliceous rocks compose the catch-
ment at LdRS (Pulido-Villena et al., 2006). The increase in aeolian input
7.0 cal. kyr BP (Zr/Th ratio) is supported by a regional decrease in effec-
tive humidity (Pinus andmesic tree content) from LdRS and the nearby
Borreguiles de la Virgen records (Figs. 5e, h and i) (Anderson et al.,
2011; Jiménez-Moreno and Anderson, 2012). A similar aridification
trend can be found in other parts of the Iberian Peninsula (e.g., Jalut
et al, 2000; Carrión, 2002; Carrión et al., 2003; Morellón et al., 2009;
Morales-Molino et al., 2013), the Italian Peninsula (Sadori and Narcisi,
2001), the Peloponese (Jahns, 1993) and Sahara region (Liu et al., 2007).

At the end of this period (between ~6.8 and 6.0 cal. kyr BP) there is a
slight increase in C/N and Zr/Al ratios, coupled with a decrease in the
δ13C value, mesic arboreal trees and Pinus percentages, and Mg/Al and
Mn/Al ratios (Figs. 2 and 5). Although OMderived from algae continued
to be important (C/N atomic ratio above 10), an increase in land plant
contribution to the lake is apparent at this time. This can be interpreted
as a transitional stage with relatively less humid conditions and a pro-
gressive increase in aeolian dust into LdRS. A progressive increase in
the signal of aridity beginning ca. 7.0 cal. kyr BP has also been observed
in another Sierra Nevada alpine site, i.e. Borreguiles de la Virgen
(García-Alix et al., 2012; Jiménez-Moreno et al., 2013).

4.2.2. Middle-Late Holocene arid conditions (last ~6.0 cal kyr BP)
An abrupt increase in the C/N atomic ratio occurred in the LdRS lake

record at ~6.0 cal. kyr BP. This is related to a substantial change in the
main OM contribution in the lake from mostly algal to a more vascular
plant input. This probably points to a major change in the lake that trig-
gered the decrease in algal production at that time, most likely a drop in
lake level due to an increased aridity. This is paralleled simultaneously
by a progressive increase in δ13C that may also be interpreted as a pro-
gressive aridification trend, perhaps related to a better water-use effi-
ciency in vascular plants during dry conditions (Farquhar et al., 1982),
together with a biogeochemical response of the lacustrine production
to aeolian Saharan inputs with heavier δ13C values. The inorganic
geochemical proxies analyzed here also agree with this progressive
aridification trend (Figs. 2 and 5). The Zr/Th ratio shows enhanced Saha-
ran dust deposition in the lake since ~6.0 cal. kyr BP, which parallels
other records from Mediterranean basins and North Africa offshore
(Neidermeyer et al., 2010; Rodrigo-Gámiz et al., 2011; Blanchet et al.,
2013).

Mn/Al ratio shows anopposite trend that canbe interpreted as a pro-
gressive decrease in algal-bacterial productivity due to lowered lake
water level. However, a relative maximum was reached at
5.5 cal. kyr BP (Fig. 5g). This Mn enrichment is concurrent with a
humid pulse recognized in other records around thewesternMediterra-
nean, for instance, in Sicily (e.g., Sadori and Narcisi, 2001).

Besides this progressive trend, the Zr/Th ratio also shows relative de-
crease in dust deposition between 4.5 and 4.0 cal. kyr BP and between
2.2 and 2.0 cal. kyr BP. The first decrease is coincident with the major
arid event recognized at 4200 cal. years BP in the Italian Peninsula
(Drysdale et al., 2006), the Levant (Bar-Matthews et al., 2003), and
North and central Africa (Guo et al., 2000; Thompson et al., 2002)
among other locations. At LdRS effective humidity proxies (Mg/Al and
C/N ratios and Pinus percentages) indicate certain aridification. This
uncoupling between regional effective humidity proxies and aeolian
dust could be related to migrations of the summer convective system
and the North Saharan Air Layers (NSAL) trajectories as described dur-
ing previous Holocene periods (Trauth et al., 2009). Probably the fore-
most reason for these patterns is that regional and temporal character
of the effects of solar forcing results in local or regional redistribution
of climatic patterns and their local amplitude, as previously described
in the Mediterranean region (Versteegh et al., 2007). The second
decrease in Zr/Th, at 2.2–2.0 cal. kyr BP, is roughly coincident with
high precipitation levels in Southern Iberia, the called Humid Ibero–
Roman period (Martin-Puertas et al., 2010; Nieto-Moreno et al., 2011),
and Sicily (Sadori et al., 2013), among other locations. Other effective
humidity proxies at LdRS (Mg/Al, TOC% and C/N) show a more clear in-
crease timing coincidence to the Ibero–Roman period, indicating again
the complex relationship between Saharan dust amount reaching this
site and regional effective humidity.

Major changes in dust deposition and lacustrine environment in the
LdRS occurred during the last 400 years. The current C/N atomic ratio is
slightly below 10, which suggests a higher algal production but TOC
values are, in general, low indicating oligotrophic conditions. The C/N
atomic ratio drops at ~300 cal. yr BP, and since then, there is a good
correlation (r = 0.84, p-value b0.01) between δ13C and Zr/Th ratios
(Supplementary information). These factors suggest a strong biogeo-
chemical response to aeolian Saharan input in the LdRS during this pe-
riod. Moreover, the origin of the aeolian dust changes when comparing
the La/Lu and the Zr/Th ratios. This is probably linked with the onset of
commercial agriculture in the Sahel region in the last 200 years
(Mulitza et al., 2010) and/or export of dust from new areas.
4.3. Cyclical changes driving Saharan aeolian input and regional
effective humidity

Cyclostratigraphic studies showmillennial- to centennial-scale vari-
ability in different Holocene climate proxy records (e.g., Bond et al.,
2001; Debret et al., 2007). At LdRS we have obtained clearly ~2600–
2200 yr and ~1500–1400 yr climate periodicities (Fig. 4). As discussed
below, both periodicities have been related to solar activity and/or
marine circulation characteristics, yet the interpretations remain
controversial and the forcing mechanism not completely understood
(e.g., Rahmstorf, 2003; Debret et al., 2007; Pena et al., 2010; Obrochta
et al., 2012).

The 2600–2200 yr cycle is the most frequently registered cycle at
LdRS, being observed in proxies of aeolian dust and redox conditions
(La/Lu,Mn/Al, and δ13C).Mn/Al (dysoxic–anoxic conditions) and δ13C sig-
nal indicate variations in humidity that also appear to affect the La/Lu
ratio suggesting that recurrence of aeolian dustwith different provenance
or including newdust sources is also linkedwith aridity. OtherMediter-
raneanmarine and lacustrine sediments have also described similar pe-
riodicities (Kloosterboer-van Hoeve et al., 2006; Rodrigo-Gámiz et al.,
2014). The 2600–2200 yr cycle has been described in high- and low-
latitudes in both hemispheres linked with variations in solar activity
and monsoonal variability (e.g., Sirocko, 1996; Nederbragt and Thurow,
2005; McGowan et al., 2010).

The 1500–1400 yr cycle is registered in proxies of runoff and effec-
tive humidity (Mg/Al and δ13C). This climate cycle has been persistently
detected in theNorthAtlantic andMediterranean climate regions (Bond
et al., 1993; Moreno et al., 2005; Debret et al., 2007; Pena et al., 2010;
Rodrigo-Gámiz et al., 2014) and has been linked with solar activity
and oceanographic circulation. In any case, it has been demonstrated
that North Atlantic Oscillation-like (NAO) variations control moisture
penetration into the western Mediterranean (Trigo et al., 2004) at
multi-decadal (Hurrel, 1995) to millennial scales (Moreno et al.,
2005). The ~1500 yr cycle control the NAO-like intensity (Debret
et al., 2007), the major forcing for the North Atlantic westerlies position
and consequent penetration of winter storm tracks into the Mediterra-
nean region (Thompson and Wallace, 2001). It is remarkable that δ13C
appears to be affected by both cycles. This could be related to the double
nature of this proxy, affected by the biogeochemical changes in the
lacustrine system linked with variations in aeolian dust as pointed out
for the 2600–2200 yr cycle, but also with conditions of effective
humidity, related to the water use efficiency in vascular plants
(Farquhar et al., 1982) and algal development described at higher-
frequency periodicities.
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The 1500 yr cyclicity has also been related to aridity of dust source
areas in western Africa and the intensity of dust transported by trade
winds (deMenocal and Rind, 1993) but our dust proxies at LdRS do
not appear to be sensitive to such cycles. The main connection with
this cycle is the significant correlation (0.80) between La/Lu and Mg/Al
ratios (Fig. 3 group IV) pointing newly to rainfall as major control in
the dust source composition. The other dust proxies could be less sensi-
tive because high altitudemeridional dust transport is controlled by dif-
ferent mechanisms at this periodicity. All these evidences reinforce the
strong link between solar irradiance and dust transport to LdRS most
likely controlled by NAO-like variations for the millennial-scale cycles
obtained.

4.4. Triggering atmospheric factors for Saharan dust input over
Western Europe

Though our study indicates that solar irradiance and aridity modu-
lated the cyclic dust influx to alpine area over westernmost Europe,
our data also suggest that meridional dust transport mechanism ap-
pears to be different from long-range atmospheric transport in the
Tropical region (Prospero and Lamb, 2003; Engelstaedter et al., 2006).
The relationship between climatic changes in theMediterranean region
and atmospheric circulation in the northern Atlantic has also been dem-
onstrated in previous studies (e.g., van Geel et al., 1996; Lamy et al.,
2006; Magny et al., 2011 among others). In this sense, recent studies
based on proxies of direct solar activity andmodels indicate that certain
Holocene arid phases appear to be driven by amplified minor solar var-
iations (Martin-Puertas et al., 2012). In any case, present day conditions
indicate that various mechanisms could be related to the convection
and/or trajectories of Saharan dust over the southern Iberia Peninsula:

(1) Dust convection requires Saharan low pressure development
during summer over the North African Sahara, as a result of the
intense surface heating. Additionally, an atmospheric upper
level high creates a pressure gradient that bring dust to high alti-
tudes (3–5 km) where it is transported over a wide area of the
Mediterranean, including the Iberian Peninsula (Knippertz and
Todd, 2012; Negral et al., 2012). At decadal scales solar intensity
mainly changes in the ultraviolet field (5–8%), promoting distur-
bances at atmospheric middle altitudes that could be transferred
to the lowest levels (Lean et al., 2005; Gray et al., 2010). More-
over, it has been described how Eastern North Atlantic Central
Waters are very sensitive to minima in solar irradiance during
NAO positive years (Morley et al., 2011). Both mechanisms
could affect aridity and atmospheric conditions over western
Africa by affecting the convection intensity.

(2) Meridional transport of Saharan dust that reached high altitudes
(3–5 km) toward Europe requires specific atmospheric configu-
rations. Dust is transported over south Iberia mainly when low-
pressures are located in the Atlantic region and high pressures
exist over the Central Mediterranean (e.g., Rodríguez et al.,
2001), a probable configuration during summer–fall–winter.
This kind of configuration could have beenmore commonduring
NAO positive index periods when strong lows are located over
the North Atlantic and strong subtropical high pressures domi-
nate the Saharan–Mediterranean region (Trigo et al., 2004).

5. Conclusions

The LdRS deposits have preserved a clear and continuous record of
aeolian dust deposition in southern Spain during the Holocene. During
the earlyHolocene (~11.1–10.5 cal. kyr BP), the preserved arid signal re-
sults from the combination of atmospheric and glacier trapped Saharan
dust. After this period, our data indicate that Saharan aridity, summer
low pressure system intensity and required atmospheric configuration
for meridional transport was punctually established from 7.0 to
6.1 cal. kyr BP, and persistently from 6.0 cal. kyr BP until present. During
the last 400 years changes in the aeolian dust nature have been recog-
nized. The arrival of dust promoted major biogeochemical changes on
the lacustrine system reflected in the productivity.

Studied proxies indicate humid conditions and poorly oxygenated
waters in the lake during the early Holocene. A major change took
place at 6.0 cal. kyr BP when lake changed abruptly from primarily
algal organic matter to a predominance of terrestrial vascular plants.
From 6.0 cal. kyr BP until present a progressive increase in aridity in
the region can be recognized, interrupted by rare periods of increasingly
humid periods.

Cyclostratigraphic analysis indicates twomain periodicities: at 2600–
2200 yr, linked with dust input and redox proxies, and ~1500 yr cycles
associated with changes in effective humidity. These two cycles suggest
different forcing mechanisms that triggered paleoclimatic oscillations,
both ultimately linked to solar activity and to NAO-like circulation the
latest.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemgeo.2014.03.001.
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