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A B S T R A C T

By presenting benthic foraminifera isotope profiles and bulk geochemical composition of core sediments, we
offer a mutiproxy reconstruction of the central Okhotsk Sea oceanography between ∼130 to and ∼115 kyr,
related to the marine isotopic stage 5e (MIS 5e). Sediments from the site MR0604-PC7A have been compared
with paleo- sea surface temperatures and other records. This multiparameter approach allowed to recognize
three periods for MIS 5e evolution, characterized by variations in marine productivity and bottom oxygenation.
These variations have been ultimately associated with the production of Okhotsk Sea Intermediate Water and the
presence or absence of nutrient contribution from the Pacific Deep Water into central Okhotsk Sea. Aeolian input
reconstructed by Th/Sc ratio indicates higher values during the MIS 6 and MIS 5d compared with the MIS 5e. Eu∗

values indicate an input of detrital material from Kurile Islands and East-Kamchatka during the late MIS 5e,
absent during the early MIS 5e and glacial periods.

1. Introduction

The Arctic and Subarctic Northern Hemisphere realm is considered
to be the region on Earth for which major environmental changes are
expected (Screen and Simmonds, 2010). Assessing environmental con-
strains associated with a climate warming is important for predictive
modelling. One of the best ways to make realistic models is using high-
resolution studies of the penultimate interglacial period (Otto-Bliesner
et al., 2006; Hoffman et al., 2017). Although this period is not a perfect
equivalent to the Holocene because of different orbital parameters
(Loutre and Berger, 2003; Capron et al., 2017), nor a straight analogy
for future greenhouse global warming, the study of this most recent
warm scenario (the Marine Isotope Stage 5e –(MIS 5e)) provides a
natural record of potential environmental changes related to a pre-
dicted global temperature increase. In this way, during the MIS 5e the

last major sea level rise took place, linked to important ice volume
changes and oceanographic reorganization (Thomas et al., 2009).
Therefore, the study of this time interval is a key point in order to know
the real environmental responses associated with warming scenarios.

Aiming to understand the detailed changes that lead to glacial/in-
terglacial transitions in subarctic regions and their corresponding cli-
mate and environmental responses, we selected the Okhotsk Sea area in
the northwestern Pacific (Fig. 1). The high productivity and the intense
intermediate water formation make the studied region one of the
world́s important CO2 sinks (e.g., Tsunogai et al., 1992; Takahashi,
1998; Takahashi et al., 2000; Otsuki et al., 2003). For this reason our
study will have a special focus in water column variations. In addition,
this area is the southernmost marginal sea in the world covered by sea
ice at present in the Northern Hemisphere, being one of the less studied
subarctic regions and one of the most sensitive to climate changes (e.g.,
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Hays and Morley, 2004).
The special character of the Okhotsk Sea and their relatively high

sedimentation rates make this region a key location to obtain records
for climate-related responses at centennial/millennial scale (e.g.,

Gorbarenko et al., 2012; Chebykin et al., 2015). Paleoceanographic
studies in the Okhotsk Sea were scarce in 20th century mainly due to
the inaccessibility for foreign scientist (Gorbarenko et al., 1998).
However, in spite of the increasing number of studies along this century
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Fig. 1. Okhotsk Sea bathymetry map and location of core PC7A. The map was produced by Japan Oceanographic Data Center. Black arrows represent surface circulation: OC=Oyashio
Current, WKC=West Kamchatka Current, ESC=East Sakhalin Current, WSAW=Western Subarctic Water. Dotted line indicates the path of the Dense Shelf Water (DSW) and Okhotsk
Sea Intermediate Water (OSIW).
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(e.g., Nürnberg and Tiedemann, 2004; Sakamoto et al., 2006; Liu et al.,
2006, Okazaki et al., 2010; 2014; Wang et al., 2017), the detailed
mechanisms of the transition from glacial to interglacial and back to
glacial conditions in this area remain poorly understood (e.g., Levitan
and Lavrushin, 2009). The studies dedicate to the MIS 5 (e.g., Sato
et al., 2002; Iwasaki et al., 2012; Khim et al., 2012; Gorbarenko et al.,
2017) are mainly focussed on marine productivity mechanisms during
glacial/interglacial periods and links with East Asian monsoon dy-
namics but a detailed study along the MIS 5e multiproxy discussion of
detrital sources and productivity modes is not achieved. Reconstructing
the water exchange between the Okhotsk Sea and the North Pacific is
especially important because it constitutes a key component of the
global ocean thermohaline circulation (e.g., Hong et al., 2009).

In this paper, we present a high-resolution study comparing directly
atmospheric input, deep-water oxygenation and marine productivity
among other records from the Okhotsk Sea between ∼130 kyr to and
∼115 kyr. Our new record provides further insight into the paleocli-
matic variability, paleoenvironment responses and paleohydrologic
changes for the penultimate glacial/interglacial transition from a region
still poorly understood and underrepresented in the global paleocea-
nographic database.

2. Modern hydrography, marine productivity and climate
conditions in the Okhotsk Sea

The Okhotsk Sea is a marginal sea located in the northwestern
sector of the Pacific Ocean, surrounded by the mainland of Kamchatka
Peninsula, and Far East Russia (Okhotsk volcanic Belt), and by the
Sakhalin, Hokkaido, and Kurile Islands. It is connected to the Pacific
Ocean by some straits between the Kurile Islands, and to the Japan Sea
in the west and southwest by the Tatarsky and Soya straits (Fig. 1).

Sea-ice formation in the Okhotsk Sea depends on the variability in
intensity and position of the Siberian High and Aleutian Low, which is
related to winter East Asian monsoon oscillations (Wallace, 2000). In
spite of its mid-latitude location, the climatic conditions are comparable
to those of a polar ocean. In this sense, the area is characterized by the
largest seasonal sea-ice coverage in the middle-latitudes of the northern
hemisphere. It is covered by sea-ice about two-thirds during the winter
(Itoh and Ohshima, 2000), and usually free of ice from June/July to
October (Parkinson, 2000). This sea-ice is mostly formed in the north-
western region, and posteriorly it expanded to most of the Okhotsk Sea
due to the effect of winter winds and the East Sakhalin Current (Kimura
and Wakatsuchi, 1999; Simizu et al., 2014). Detrital sediments are in-
corporated within this ice near mainland, and subsequently released
into the open sea by drifting sea-ice after the spring melt (Sakamoto
et al., 2006).

Besides of a regional impact, the Okhotsk Sea influences the climate
and the ocean oscillations at global scales (e.g., Hong et al., 2009),
boosting the generation of the North Pacific Intermediate Water (con-
trolled by sea surface salinity and sea surface temperature (SST)). This
is caused by the large development of sea-ice in this basin and the
development of local intermediate waters saturated in oxygen in the
northwestern shelf (cold, denser and saline), which flow into the Pacific
Ocean (Talley, 1991; Wong et al., 1998). This cold SST directly influ-
ences the development of the atmospheric high-pressure system in the
southwestern Okhotsk Sea, making the Okhotsk Sea a driving force for
the regional atmospheric circulation as well.

The surface circulation in the Okhotsk Sea is a cyclonic gyre. Most
present water is originated from the Pacific Ocean and enters the
Okhotsk Sea via two gateways at Kurile Islands; water exchange with
the Japan Sea is less important (Itoh et al., 2003). The characteristic
property of the hydrology of the Okhotsk Sea is the development of the
so-called dichothermal cold waters at depths of 50–150m with tem-
peratures< 0 °C, which are formed during the winter cooling of surface
water (ice formation) and remain through the whole year. During au-
tumn and winter, on the northern and western shelves, extensive brine

rejection caused by sea ice formation leads to the formation of the
oxygenated of Okhotsk Sea Intermediate Water (OSIW) in depths of
200–1000m (Wong et al., 1998). Below the OSIW has been described
the Pacific Deep Water (PDW) intruding the Okhotsk Sea mainly via
Krusenstherna Strait. These Pacific waters are CO2 enriched and very
old. The Okhotsk Sea, together with the northwestern part of the Pacific
Ocean and the Bering Sea represent the final section of the global
salinity conveyor belt (Broecker, 1991). In this area of the northwestern
Pacific Ocean, water masses are the oldest waters of the World Ocean
and have the highest content in nutrients. This circumstance explains
such high primary productivity of these areas.

The biological production is mainly dominated by siliceous micro-
plankton in the Okhotsk Sea; however, a succession of blooms of
dominant phytoplankton species (first calcitic and subsequently silic-
eous) can be found seasonally from spring to autumn (Boerse et al.,
2000; Nimmergut and Abelman, 2002). Primary production is boosted
by the nutrient supply, seasonal solar insolation and the ice melting
(Saitoh et al., 1996; Sorokin and Sorokin, 1999; Seki et al., 2004;
Okazaki et al., 2005; Okunishi et al., 2007), with Fe as limiting nutrient
(Suzuki et al., 2014). The organic matter oxidation consumes oxygen
creating an oxygen minimum zone between 750 and 1500m (Salyuk
et al., 2003).

There is an important contribution of fresh water and terrestrial
material to the Sea of Okhotsk from the Amur River, one of the largest
rivers in the world, flowing into the western sector of the Okhotsk Sea
(Ogi and Tachibana, 2006). However, most of the detrital input by the
Amur does not reach the central part of the gyre, where the studied core
is located, because the material is transported further to the south by
lateral currents of the gyre (Yasuda et al., 2014).

3. Materials and methods

3.1. Sediment core

A piston core MR0604-PC7A (51°16′56N, 149°12′60E and water
depth of 1247m) (Fig. 1) (hereafter called PC7A) was obtained at the
central region of the Okhotsk Sea during MR06-04 of R/V Mirai,
JAMSTEC, which took place in 2006. This site is bathed by PDW and
above the present day carbonate compensation depth, located at ap-
proximately 1800m water depth in the central Okhotsk Sea (Barash
et al., 2008). This site was selected for a high-resolution multi-proxy
analysis because it shows a clear lithological variation associated with
the last Interglacial, good carbonate preservation and relatively high
sedimentation rates. Sediments from the MIS 5e and bordering time
intervals were analysed geochemically at high resolution in this core.
The studied section has 2.25m length, between 5.8 and 8.05m depth.
The sediments mainly consist of homogenous greyish olive diatom ooze
and diatomaceous clayey silt with abundant ice-rafted debris (IRD).

Soft X-ray photographs were taken for the studied sections on-board
using a SOFTEX PRO-TEST 150 to examine sedimentary structures,
microstructures and IRD abundance. Voltages ranging from 40 to 50
kVp, currents from 2 to 3mA and irradiation time from 150 to 200 s
were used to optimize photographic conditions.

Total organic carbon (TOC) and nitrogen were measured in the
studied section every 10 cm. After decalcification of the samples with
6M HCl, both parameters were obtained by combustion at 1050 °C
using a Heraeus CHN-O Rapid Elemental Analyzer as described by
Müller et al. (1998). The C/N ratio was calculated with these data.

Isotopic analyses (C and O) were carried out using tests of the
benthic foraminifera Uvigerina spp. with a 10 cm depth interval. Picked
foraminifera tests were analysed with a GV IsoPrime mass spectrometer
using an automated carbonate preparation system (IsoPrime Multiprep)
at JAMSTEC. Each analysis represents a set of approximately 10 in-
dividuals, between 250 and 300 µm in diameter that were cleaned in an
ultrasonic bath. The external precision is ∼±0.06‰.

Aluminum (Al), calcium (Ca) and silica (Si) concentrations were
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measured using a non-destructive X-ray Fluorescence (XRF) scanner
“TATSCAN-F2” (JAMSTEC), designed for quick 2-dimensional ele-
mental imaging and scanning of sediment and rock surfaces (Sakamoto
et al., 2006). In this study, u-channel samples were scanned with a
7mm measurement diameter at 1 cm depth interval. A geological
standard sample of JSd-2 (Imai et al., 1996) provided by the Geological
Survey of Japan (AIST) was routinely measured before each section was
run. Known errors in the data, including measurement errors derived
from non-uniform sample surfaces and voids (fractures) in the U-
channel, were manually removed.

Trace elements (Sc, Co, Ni, Cu, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, Ta, Tl,
Pb, Th, and U) were analysed using an Agilent 7500ce by inductively
coupled plasma mass spectrometry (ICP-MS) (Agilent Technologies,
Tokyo Japan) fitted with perfluoroalkoxy (PFA) sample introducing and
Pt-inject torch each 2 to 5 cm. The ICP-MS was operated at no collision
gas and multi-tune acquisition mode. This combination of the system
allowed a wide range of elements be precisely determined using pulse
counting detector, and also fluoric acid containing sample solution be
delivered directly into plasma. Sample dissolution, preparation and
measurement were described in Chang et al. (2003) and Nakamura and
Chang (2007). Analytical accuracy and precision for ICP-MS analyses,
estimated from repeated measurements of international reference rocks
(JB-1a of the Geological Society of Japan (GSJ), BCR-2 and BIR-1
(Jochun et al., 2005) of the United States Geological Survey) were
mostly better than 5% and 2–3%, respectively.

3.2. Used proxies

Different geochemical and mineralogical ratios have been used as
paleoclimatic and paleoenvironmental proxies. Ca, Si and Ba-variations
(Fig. 2) have been related to paleoproductivity in the studied region
(e.g., Gorbarenko et al., 2007). The Ba/Al ratio and its equivalent Ba/
Th ratio have been clearly associated with marine productivity in the
Okhotsk Sea (e.g., Gorbarenko et al., 2007; Goldberg et al., 2005) and
in other regions (Paytan et al. 1996). In the Okhotsk Sea massive barite
deposits have been described associated to cold seeps (Greinert et al.,
2002) but the cold seeps influence is very local and do not affect the
studied location.

Si and Ca content in sediments are often associated with pro-
ductivity in marine environments (e.g., presence of diatoms and calcitic
or aragonitic organisms), but during low productivity periods particu-
larly Si is controlled by the siliciclastic material. For a first-order dis-
crimination between biogenic and detrital Si, we made a simple cal-
culation of Si-excess, i.e. the non-siliciclastic Si, which we assume is
identical to biogenic silica (Si biog.). This calculation is based on the
assumption of an (idealized) pure siliciclastic end member, which is
represented by the Si/Al ratio of the measurement with the highest Al
counts (Fig. S1 in the supplement), with Al being a purely siliciclastic
element. The deviation of total Si counts from the slope (with the as-
sumption of a zero-intercept) is a maximum estimate of Si-excess (Si
biog.). The high correlation between obtained Si biog. and the color
parameter b* (from blue to yellow), described as robust opal content
proxy in Okhotsk Sea (Nürnberg and Tiedemann, 2004), corroborates
the Si biog. interpretation and geochemical data base quality (Fig. S2).
The Ca/Si ratio indicates decoupling between sources for Si and Ca,
which would point to predominance of calcitic versus siliceous micro-
fossils. Microscopic and smear slide observations confirm the presence
of calcitic organisms, represented by coccolithophorids, when we reach
high Ca/Si values, and the predominance of siliceous microfossils when
Si increases, has already been described by previous studies (Sorokin
and Sorokin, 1999; Broerse et al., 2000a, 2000b; Seki et al., 2007).

Stable isotope (C and O) composition from benthic foraminifera has
been used as a proxy of water column conditions and age model sup-
port. It is well known that δ18O in benthics mainly reflect changing
glacial ice volumes and bottom waters generation (Rogerson et al.,
2004). Nevertheless, variations in δ13C are more complex and can

reflect changes in water masses boundaries, ocean-atmosphere carbon
equilibration, nutrient concentration and biological productivity, var-
iations in the degree of stratification of the water column, upwelling
activity or changes in the partitioning of δ13C within the various
components of the global carbon reservoir among other factors (e.g.,
Zahn et al., 1986; Mackensen et al., 1993; Herguera et al., 2010).

The C/N ratio is an useful proxy in order to decipher the provenance
of the bulk organic matter from the sediments. C/N ratio values below
10 suggest a marine algal origin, and values above 20 continental
vascular plants; intermediate values indicate a mixed source (Meyers
1994; 1997; Meyers and Teranes, 2001).

U/Th can be used as proxies for paleo-redox conditions and venti-
lation processes (e.g., Gallego-Torres et al., 2007). Changes in oxidation
states promote variations from soluble U (VI) to immobile U (IV)
(Anderson, 1982; Barnes and Cochran, 1990; Mangini et al., 2001).
Organic substances also increase U content linked to the formation of
organo-mineral compounds (Balistrieri and Murray, 1986). U/Th values
between 0.75 and 1.25 have been related with dysoxic conditions and
those higher than 1.25 with anoxia (Gallego-Torres et al., 2007).

On the other hand, Th/Sc, La/Yb and Eu anomalies have been in-
terpreted as detrital proxies in different environments (e.g., Jimenez-
Espejo et al., 2014; Gaiero et al., 2004; Shigemitsu et al., 2007; among
others). The La/Yb ratio represents the whole Rare Earth Elements
(REE) pattern and allows discriminating sedimentary, metamorphic,
basalts and felsic rocks (Rollinson, 1993). The La/Yb and equivalent
La/Lu ratio has been specifically used to discriminate aeolian inputs of
the African craton from those of the European margin (Hamroush and
Stanley, 1990) and aeolian input (loess) in the nearby Bering Sea
(Shigemitsu et al., 2007). On the other hand, the Th/Sc ratio has been
related to the acidity degree of the materials from the source area
(being higher in granitic materials). Th is concentrated in acid igneous
rocks, whereas the highest Sc contents are typical of more basic ma-
terials. The Th/Sc ration in this region has been interpreted to represent
aeolian input (Shigemitsu et al., 2007), and higher Th/Sc values re-
present higher loess content. It further serves as a continental prove-
nance proxy (Levitan and Lavrushin, 2009; Maslov et al., 2004) because
acid rocks could indicate an increasing southern influence from the
Kurile Islands (with a mix of rhyolitic and andesitic materials) versus
those from the continent massifs bordering the northern Sea of Okhotsk
(Levitan and Lavrushin, 2009).

The Eu anomaly (Eu*) (Eu*= (Eu sample/Eu chondrite)/(Sm
sample/Sm chondrite)) is a parameter that is sensitive to the nature of
detrital input (Gaiero et al., 2004). The average value of Eu* in geologic
regions around Okhotsk Sea are associated to diatom ooze (0.35) and
granites (0.35), while the magmatic sequences of the western Kam-
chatka show intermediate values around 0.61, slightly lower than
eastern Kamchatka (0.82), and highest values are associate to Island
Arc sequences (0.93–1.10) (Levitan et al., 2007; Levitan and Lavrushin,
2009).

The obtained proxies have been compared with low resolution
branched isoprenoid tetraether (BIT) index and paleo-SST proxy
(TEX86) data published previously by Seki et al. (2009), from site
MR0604-PC7B (51°16′55N, 149°12′57E and water depth 1256m) re-
covered in a very adjacent location during the same cruise. The BIT
index is an indicator of the relative contribution of soil-derived GDGTs
to marine GDGTs, and TEX86 (TetraEther indeX of tetraethers consisting
of 86 carbon atoms) is a paleo-SST proxy, which is based on the number
of cyclopentyl moieties in the isoprenoid glycerol dialkyl glycerol tet-
raether (GDGT) lipids (Schouten et al., 2002; Seki et al., 2009; 2014).
TEX86-derived SSTs have a reported error of ± 1.7 °C in the Okhotsk
Sea (Seki et al., 2014)

3.3. Age model and sedimentation rate

Different penultimate interglacial period compilation studies de-
monstrate how complex and critical is the age model construction for
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this period (Capron et al., 2017; Hoffman et al., 2017). At the studied
region Gorbarenko et al. 2017 described that age model for this period
has been constructed at least by four methods: (i) astronomical cali-
bration of colour parameters and lithological changes (e.g., site MD01-
2415, Nürnberg and Tiedemann, 2004), (ii) graphic correlation of
productivities proxies (Gorbarenko et al., 2010; 2017); (iii) correlation
of b* values with previous Okhotsk sea dated cores (Khim et al., 2012)
and (iv) correlation of the benthic δ18O isotopic record with the global
benthic δ18O stack LR04 (Lisiecki and Raymo, 2005) (Sugisaki et al.,
2010). In addition, paleomagnetic studies in this region demonstrate
that is a useful tool for age model construction and inter-core correla-
tion (Inoue and Yamazaki, 2010; Yamazaki et al., 2013).

The age modelling for the PC7A chronostratigraphic approach for
ages< 100 kyr is robust and includes high-resolution core logging data
(magnetic susceptibility), benthic δ18O stratigraphy and luminescence
dating for absolute age control (Seki et al., 2009; Sugisaki et al., 2010).
The errors of age control points derived from luminescence data in
sediments older than 100 kyr are too big for its effective use, and age
models based on tuning a low resolution benthic foraminiferal δ18O
record (Seki et al., 2009; Sugisaki et al., 2010) to the global LR04 stack
(Lisiecki and Raymo, 2005) provided insufficient age control. In this
study we used a different age model to those previously presented that
also include a correlation between productivity proxies (colour re-
flectance b* and Si biog.) and well dated sequences in the western

Fig. 2. Correlation of sediment core MR0604-PC7A age
profiles and proxy interpretation with (a) δ18O record (‰
SMOW) of the synthetic Greenland ice core (Barker et al.,
2011); (b) Sanbao/Hulu stalagmite δ18O records (Wang
et al., 2001, 2008); (c) Core SO201-2-85 color b* (Riethdorf
et al., 2013), located in Western Bering Sea; (d) Core
SO201-2-85 benthic δ18O record from Uvigerina peregrina.
Core MR0604-PC7A; (e) benthic δ13C record from Uvigerina
spp.; (f) benthic δ18O record Uvigerina spp.; (g) Core
MR0604-PC7B TEX86 –derived paleo Sea Surface Tempera-
tures (Seki et al., 2009); (h) Core MR0604-PC7A Si biogenic
record estimated from XRF-data; (i) Ca/Si ratio; (j) U/Th
ratio; (k) Ba/Th ratio; (l) C/N ratio in organic matter; (m)
Total organic matter content (wt%). Black triangles re-
present used age model tie points. Colored bars identify
Heinrich 11 period (yellow), early MIS 5e period (blue and
dashed bar), and Greenland Stadial 26 (gray). (For inter-
pretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Bering Sea (core DO201-2-85KL, 57°30.30′N; 170°24.77′E), (Riethdorf
et al., 2013) and the Sanbao/Hulu stalagmite δ18O record (Wang et al.,
2008) (Fig. 2a-–d). The main discrepancy between the age model pre-
viously published in (Seki et al., 2009; Sugisaki et al., 2010) and the
new PC7A chronostratigraphy is related to the large offset between the
LR04 and Sanbao/Hulu records for the Termination II age and the
different isotopic/event age attribution. In this study we assume that we
will experience similar benthic δ18O influences/changes through time
in both records as well as synchronous productivity changes. Hence, we
have assigned tie points at 128.6, 126.6, 119.0 and 115.3 kyr based on
the benthic δ18O record, defining the MIS 5e plateau in productivity
and SST (Table 1). Age models based on 4 tie points are common for the
MIS 5e studies (e.g., Irvali et al., 2012) and the difference with near
locate records e.g., Gorbarenko et al. 2017 is± 1.0 kyr. Ages between
the control points were calculated by interpolation assuming constant
sedimentation rate. The resulting age model results in a mean sedi-
mentation rate of 10.5 cm/kyr for the MIS 5e productivity plateau
(from aprox. 124 to 119 kyr, based in Ba/Th ratio).

Average temporal resolution of XRF scanner samples is 40 yr and
between 150 and 400 yr for other analysis, which allows us to distin-
guish millennial/centennial climate oscillations. Although the absolute
uncertainty of the constructed age model is likely few thousand years,
the MIS 5e plateau is recognized and is pertinent to discuss millennial
scale variations and the sequence of consecutive events, especially these
variations that are prominent in the high resolution XRF scanner data.

4. Results and discussion

4.1. The MIS 6 final stage

The sediment in core PC7A during glacial MIS 6 is mainly composed
of quartz, feldspars, clay minerals and plagioclase from the surrounding
emerged lands (Harada, 2006). Obtained X-ray images indicate the
existence of IRD included in the sediment during this period (Fig. S3).
The existence of IRD in marine sediments has been attributed to sea-
sonal and/or multiannual ice melting, because IRD deposition does not
take place under perennial-ice condition (e.g., in the central Arctic Sea)
because terrigenous grains are trapped (Sakamoto et al., 2005). In ad-
dition, TEX86-deverived temperature from a nearby site indicate paleo-
SST between 7 and 9 °C (Seki et al., 2009), all pointing to non-perennial
ice conditions in the central Okhotsk during MIS 6, despite the north-
western sector being covered by annual sea-ice during glacial times
(Gorbarenko et al., 2003; Yamazaki et al., 2013).

The detrital material during glacial periods was transported to the
entire Okhotsk Sea by ice as IRD, ocean currents, aeolian, and fluvial
processes (Sakamoto et al., 2005). In the case of the central Okhotsk
Sea, the Amur River supply is not important, taking into account the
current ocean configuration and lower river discharge during glacial
conditions (Liu et al., 2006; Yasuda et al., 2014). In order to discern
between continental and aeolian input, previous authors estimated end-
member compositions based in Th/Sc and La/Yb ratios, proposing a
signal derived from Kurile-Kamchatkan (K-K) volcanic material and
from loess in the North Pacific realm (Weber et al., 1996; Otosaka et al.,
2004; Shigemitsu et al., 2007). The obtained data at site PC7A (Fig. 3)
has been compared with these end members and almost all are located
on or a little above the mixing line (Fig. 4). Our results indicate that
loess content was higher during the MIS 6 periods (Th/Sc > 0.4) in
agreement with studies that describe high loess input in the mild-lati-
tudes of the western North Pacific during glacial periods (e.g.,
Kawahata et al., 2000). Our data further imply a decrease of loess input
during the early MIS 5e (Fig. 3c). Notably, variations in the loess signal
do not affect the Eu* values. The Eu* values around 0.63 (Fig. 3d) in-
dicate that granitic material from western Kamchatka is also a main
detrital source during MIS 6 in the fine fraction. Nevertheless a study
based in drop stones at southern site OS03-1 indicates also the influence
of Eastern Kamchatka input in the coarse fraction (Wang et al., 2017).

Table 1
Age-depth points for core MR0604-PC7A model.

Core/Section Depth (cm) Kyr cal. BP Approach

PC07A/4 82-
88

319 101 ± 5 OSL absolute date (Sugisaki et al.,
2010)

PC07A/6 13-
15

449 115.3 Si bio-b* Vs b* (Riethdorf et al.,
2013)

PC07A/6 61-
63

490 119.0 Si bio-b* Vs b* (Riethdorf et al.,
2013)

PC07A/7 53-
55

589 126.6 δ18 benthic Vs δ18 benthic (Riethdorf
et al., 2013)

PC07A/7 83-
85

619 128.6 δ18 benthic Vs δ18 benthic (Riethdorf
et al., 2013)

Fig. 3. Core MR0604-PC7B age profiles (Seki et al., 2009)
of: (a) BIT index, an indicator of the relative abundance of
soil GDTTs relative to marine GDGTs; (b) TEX86 –derived
SST compared with core MR0604-PC7A; (c) Th/Sc ratio; (d)
Eu anomaly. Arrows represent Eu* values for different re-
gions from Levitan and Lavrushin, 2009.
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Obtained difference could be linked with variable composition between
bulk and coarse fractions.

Low Ba/Th and U/Th ratios (Fig. 2j, k) indicate low productivity
and well oxygenated conditions in agreement with previous studies that
reconstruct glacial conditions (e.g., Keigwin, 1998). Our records also
seems to be sensitive to the Heinrich 11 event (Oppo et al., 2006) (Fig. 2
pink bar), recognized by lower temperatures and a decrease in C/N
ratios and TOC content, pointing to a decrease in productivity during
cold periods during MIS 6.

The MIS-6 demise and the onset of the penultimate deglacial stage is
a matter of controversy. Different studies propose the beginning of the
interglacial MIS 5e from 135 to 142 kyr (e.g., Sugisaki et al., 2010;
Thompson and Goldstein, 2006; Thomas et al. 2009). Nevertheless, we
placed the onset of the MIS 5e at 128.6 kyr, parallel to maximum
northern hemisphere summer insolation throughout the Northern
Hemisphere (130–127 kyr) (Berger and Loutre, 1991), δ18O record (‰
SMOW) of the synthetic Greenland ice core (Barker et al., 2011),
Sanbao/Hulu (Wang et al., 2008) and site SO201-2-85 (57°30.30′N;
170°24.77′E, Bering Sea) color b* parameter (Riethdorf et al., 2013)
records (Fig. 2).

4.2. Early MIS-5e: deglaciation pattern

Oxygen isotopic composition (from 4.5 to 3‰) and paleo-SST (from
9 to 11 °C) show parallel variations during the early MIS 5e (Fig. 2f, g
blue bar). Paleo-SST fluctuates and shows a see-saw trend during Ter-
mination II (Seki et al., 2009) mirrored by C/N ratios and the BIT index.
This variability during the deglaciation-like period can be linked with a
minor cooling in Europe (Sirocko et al., 2005). The coincident relative
minima in these three proxies can be explained by variable cold fresh
water pulses and likely major delivery of shelf preserved soil material
(high BIT index) under prevalent marine productivity condition (low C/
N ratio) (Fig. 3a blue bar). They may be linked to detrital supply events
from the Kamchatka Peninsula, where extended mountain glaciers
protruded down towards the sea, as was proposed for the end of the
MIS-6 and the beginning of MIS-5e (Nürnberg et al., 2011). Obtained
Eu* values also agree with a W Kamchatka provenance during the MIS 6
and the early MIS 5e.

During this interval the Th/Sc ratio shows a continuous decreasing
pattern (Fig. 3c). Variations in this proxy can indicate a decrease in

loess input and variations in the detrital sources. Changes in dust
sources from Siberia-Northeast China area to the Taklimakan Desert-
Loess Plateau region have been described during this period for the
Japan Sea (Nagashima et al., 2007) and a similar trend of decreasing
aeolian input has been described in the western subarctic Pacific nearby
Bering Sea (Shigemitsu et al. 2007). This parallelism in the loess supply
in the entire northwestern Pacific realm during the penultimate glacial/
interglacial transition suggests a major change in the atmospheric
pattern in this region. As the supply of loess to these high latitudes
depends on the monsoonal activity (An et al., 1991), a progressive in-
crease of monsoonal strength during the penultimate deglaciation time
could be expected, together with enhanced freshwater input from river
and sea ice melting.

Despite all described changes during this deglaciation-like interval
it is remarkable that the thermohaline circulation did not appear to be
affected. No major changes were detected on productivity, oxygenation
and water column conditions, according to the TOC, Ba/Th, and U/Th
ratio records (Fig. 2j, k, m), and low productive and well-oxygenated
conditions were sustained throughout the entire interval (Fig. 5a, b).

4.3. The middle MIS 5e (∼126 to ∼122 kyr): transient and calcium
predominant marine productivity conditions

The values of Ba/Th and U/Th show a large increase at ∼126.5 and
125 kyr (Fig. 2j, k). These results can be interpreted as a dramatic in-
crease in productivity and increasing bottom water oxygen depletion in
the central Okhotsk Sea. This major change is coeval with a retreat of
sea ice, decreasing IRD abundance in the region (Gorbarenko et al.,
2017), and a stabilization of the sea level increase (Thomas et al.,
2009). We propose that this event can also be traced in records from
other Artic regions as the Nordic seas, where the warmest sea surface
temperatures were reached (Knudsen et al., 2002). This ∼3-kyr lag of
the Okhotsk productivity increase to the benthic δ18O increase, and
rising radiative forcing, is similar to the estimated lag between the in-
solation maximum and monsoonal dynamics deposits in the North
Hemisphere (e.g., Ziegler et al., 2010) and to the retreat of marine
based ice sheets (Carlson and Winsor, 2012). Persistent cold conditions
during the early MIS 5e also have been described in other Artic and
subarctic records (e.g., Bauch et al., 2011; 2012). A muted response to
orbital forcing during the MIS 5e also reconstructed in the Artic Circle
Far East Russia El’gygytgyn lacustrine record (Melles et al., 2012)
compared with previous interglacial periods (MIS 11 and 31). The
origin of the distinct persistence of glacial conditions in the Arctic re-
gion is not clear, but might be linked with reduced northern North
Pacific upwelling (Hall et al., 2001) or other processes and feedbacks
including greenhouse gas forcing (Melles et al., 2012).

The prominent variation in the Ca/Si ratio at ∼126 kyr indicates an
important transient period (Fig. 2i dashed bar). The Ca/Si ratios clearly
mark a switch to dominant CaCO3 accumulation relative to opal con-
tents, equivalent to the one previously reported during recent degla-
ciations (Sato et al., 2002; Khim et al., 2012). The origin of this car-
bonate accumulation is under debate. It has been linked to poor
nutrient supply (Si) caused by strong stratification (Sato et al., 2002;
Khim et al., 2012; Iwasaki et al., 2012) or to a better carbonate pre-
servation promoted by changes in ventilation as occurred during the
last deglaciation (Okazaki et al., 2014). Redox proxies (e.g., U/Th) do
not indicate an increase in bottom sea dysoxia (Fig. 2j), while paleo-SST
and aeolian dust tracers indicate warmer temperatures and lower aeo-
lian input (Fig. 2g, 3c). C/N ratio also indicate an increase in con-
tinental organic matter input from 126 kyr, all in agreement with an
enhance monsoonal activity and therefore, a dominance of warm and
moist air masses over the Amur River catchment basin and Okhotsk Sea,
which would imply a change in the thermohaline conditions (Harada
et al., 2006, 2008). All these evidences point to a change in the nature
of the surface and deep-water masses as the driving factor for carbonate
preservation instead of stratification (Fig. 5c). We can expect a major

Fig. 4. Scatter plots of Th/Sc versus La/Yb at core MR0604-PC7A. Red dots represent MIS
6 values and black dots those corresponding to MIS 5. Squares represent previously de-
scribed Kurile-Kamchatka and loess material Th/Sc and La/Yb end-members.
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influence of this transient episode in the North Pacific Intermediate
Waters as described for the last deglaciation (e.g., Max et al., 2014).

After this transient period we observed an increase in silica biogenic
(Fig. 2h) and, despite the clear increase in productivity (Fig. 2m), we
find lighter and stable benthic δ13C values (Fig. 2f). Previous studies in
the NW Pacific already detected a deglacial lowering of δ13C coincident
with deposition of diatomaceous facies, attributed to increased biolo-
gical productivity (Keigwin et al., 1992) or/and mass water changes
(Keigwin, 1998). δ13C values decline to ∼−1.2‰, pointing to the
presence of poorly ventilated and nutrient-rich water masses. This de-
cline could be explained by water masses changes or organic matter
accumulation. The replacement of OSIW by a water mass with light
δ13C values (Fig. 5d), e.g., PDW with δ13C values of∼−0.8‰ (Fig. 2e),

can explain this variation (Takahashi et al. 2000b). This lowering of
benthic foraminiferal δ13C below that of ambient bottom water could
be also induced by an isotopically light microenvironment through
organic matter oxidation (Zahn et al., 1986; Mackensen et al., 1993) or
more likely to a different composition of the Glacial-PDW (Adkins et al.,
2002). Nevertheless, water mass replacement appear more plausible
because diatoms blooms also indicate PDW presence, because these are
silica rich waters fostering diatom presence, while siliceous plankton
growth is prevented during glacial periods by the expansion of Si-poor
OSIW (Fig. 5d) (Iwasaki et al., 2012).

Another evidence for water mass replacement is linked with the
significant increase in U/Th showing reducing bottom water conditions
from ∼124 kyr (dysoxic conditions; U/Th > 0.75). At ∼121.5 kyr U/
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Th ratios reach values> 1.25 that has been associated to anoxia
(Gallego-Torres et al., 2007), nevertheless, the continuous presence of
benthic foraminifera indicates rather dysoxic conditions (oxygen con-
centrations of 0.3–0.1ml/l) (Psheneva and Gorbarenko, 2013). The two
primary factors controlling dissolved-oxygen concentration in and
below the sediment-water interface are a high biological productivity
and/or poor water ventilation. At our study site, productivity peaks
(e.g. Ba/Th, TOC, Si biog.) correlate well with the lowest bottom oxy-
genation levels (U/Th) (Fig. 2h, k, j, m), pointing to productivity as
major forcing, an equivalent phenomena to present days conditions
(Salyuk et al., 2003).

4.4. The MIS 5e demise: silica predominant marine productivity

During the late MIS 5e productivity proxies (Ba/Th) and dysoxia
(U/Th) reached maximum values, Si biog. increases and Ca/Si ratio
decline (Fig. 2 line dotted). Nevertheless, at ∼120 kyr these variations
in productivity were not linked with the increase in oxygenation con-
ditions (Fig. 2j) and heavier δ13C. This shows the influence of deep-
water masses on bottom water oxygen state and points towards a pro-
gressive replacement of poor oxygenated PDW by OSIW, completed
during the glacial stage (GS) 26 at central Okhotsk Sea. Although all
these changes took place during a relatively weak East Asian Monsoon
(Fig. 2b), Th/Sc ratios related to aeolian input do not indicate any kind
of variation (Fig. 3) while Eu* showed a wider range (from 0.58 to
0.81) during the late MIS 5e. These higher values suggest occasional
inputs from Eastern Kamchatka or the Kurile Islands, according to
Levitan and Lavrushin (2009). This interpretation agrees with the
proposal of Gorbarenko et al. (1996), suggesting that continental ice
sheets were not developed in eastern Siberia, and the main source of
meltwaters was the ice sheet and icebergs from Kamchatka.

During this late MIS 5e period, our SST record indicates a slightly
warming (Fig. 2 g). However, we propose that maximum productivity
conditions in this Okhotsk sea region are linked to a higher input of
PDW instead to SST variations.

4.5. The early MIS 5d

The end of the last interglacial period and its glacial inception is
debated. It has been placed around 116 and 113 kyr (Stirling et al.,
1998; Muhs et al., 2002) in agreement with relatively low summer in-
solation values (Berger and Loutre, 1991). Nevertheless other authors
placed the age of the upper boundary of the MIS 5e at∼111 kyr (Bauch
et al., 2012). In our record the end of the MIS 5e has been placed at
∼119 kyr following the INTIMATE event stratigraphy (Rasmussen
et al., 2014). Here our data indicates a marked productivity decrease
and the benthic δ13C values show a trend towards heavy values (Fig. 2f,
k). The paleo-SST record also indicates a cooling, and it can be corre-
lated with the established GS-26 cooling (Rasmussen et al., 2014) in
agreement with close records (Gorbarenko et al., 2017).

Organic matter provenance proxies (e.g., C/N ratio) show a varia-
tion but Ca/Si, U/Th suffers abrupt changes, and δ13C progressively
increases compared with the MIS 5e level (Figs. 2 and 3). These var-
iations can be explained by a modified water column configuration. Site
PC7A data allow us to discriminate that stratification was becoming
weaker with the U/Th ratio indicating that dysoxic conditions de-
creased at ∼119 kyr and that full oxic conditions were re-established
during early MIS 5d. Increase in oxygenation is mirrored by the in-
crease in δ13C likely promoted by mixing of PDW with intermediate
waters (Fig. 5f). This intensified ventilation in the Okhotsk Sea can be
related to a decrease in freshwater supply (less precipitation and less
riverine inputs), and increasing salinity in agreement with a weaker
monsoonal activity and reduced supply of silicate. Reduced silicate
input is also supported by low Ca/Si indicating a near-absence of coc-
colithophorids and other carbonaceous phytoplankton and a pre-
dominance of siliceous microplankton. These changes bear great

similarity to those described during the middle-late Holocene (Seki
et al., 2004; Iwasaki et al., 2012; Khim et al., 2012).

Eu* still shows a considerable scatter with high values pointing to a
clear influence from Eastern Kamchatka and the Kurile Island. Proxies
associated with aeolian input do not show significant variations
(Fig. 3), pointing to variations in other Okhotsk Sea regions as the main
driver for thermohaline circulation in the entire basin, like sea ice
formation in the northwest Okhotsk Sea.

With the onset of MIS 5d benthic δ13C reaches MIS 6 values (Fig. 2e)
reflecting the complete replacement of PDW by OSIW, however, pro-
ductivity (Si biog.) appear to be still relatively high during GS-26
(Fig. 5f). Higher Th/Sc values indicate an increase in aeolian input and
Eu* values show a progressive reduction of detrital input from the
southern Kurile Islands. The studied proxies indicate that at the GS-26
kyr full glacial conditions were reached.

5. Conclusions

Geochemical proxies show evidence for significant paleoenviro-
mental changes in the central Okhotsk Sea during the penultimate in-
terglacial period. Obtained data confirm previous studies that indicate
glacial/interglacial and millennial scale changes in warm/cold condi-
tions affected productivity (as can be interpreted from C/N ratio and
TOC data). Nevertheless, for the first time we describe in detail the
relationship between changes in the water column structure, eolian
input and shifts in the provenance of detrital material during MIS 5e.
We further propose three phases for the MIS 5e mainly based on pa-
leoproductivity variations.

The start of the MIS 5e evolves in a deglaciation-like mode, char-
acterized by a decrease in aeolian input, variations in the organic
matter sources with only minor changes in the water column properties.
We observe an offset between the increase in productivity and δ18O
benthic isotopic variations that indicate a certain resilience of sea ice to
radiative forcing compared with other regions.

A transitional period associated to a carbonate peak and water
column instability can be distinguished before reaching the MIS 5e
productivity plateau. The carbonate peak appears to be linked with
deep convection, appearances of PDW and carbonate preservation.

During the MIS 5e geochemical productivity plateau we distinguish
two periods: one dominated by carbonate productivity and another one
with silica preponderance and higher contribution of detrital material
from the Kurile Islands and Eastern Kamchatka. These changes during
the MIS 5e full interglacial conditions can be explained by the presence
of PDW in the central Okhotsk Sea, high marine productivity and a
decrease in monsoonal activity.

The early demise of MIS 5e at ∼120 kyr is accompanied by water
column variations similar to those described for the middle Holocene.
These involved intense water column mixing, decrease in carbonate
nannofossil content and increase in bottom water ventilation. The MIS
5e to MIS 5d transition is characterized by an increase of aeolian input,
complete replacement of PDW by OSIW, predominance of silica based
marine productivity and cold sea surface temperatures. After the GS-26
period typical glacial conditions were reached.
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