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1. Abstract

The purpose of this work is to reconstruct the damage distribution in plate bridge
decks from noisy response data from moving loads, using a minimization scheme of
the discrepancy between measurements and simulations. A linear stiffness degradation
continuum damage model is used, together with a first order shear deformation
theory (FSDT), to predict the structural behavior and to detect damage from noisy
measurements. The effects of noise associated with the uncertainty of measurements
due to the complex nature of the damage-deck-moving load interactions are considered
for different bridge geometries, moving load speed and deck thickness/length ratios.

Genetic algorithms have been used to minimize the cost function. A local
interpolation model has been implemented to reconstruct the damage. Several numerical
results show that the inversion algorithm is computationally efficient in reconstructing
stiffness degradation for this kind of structures. The propose inverse problem strategy
reconstructs the defect characteristics with sufficient precision, under realistic levels of
noise.

The new contributions consist in a new parameterization of the spatial distribution
of damage, a new formulation of the semi-analytical estimate of the probability of
detection, a inverse problem based on type of mobile load on bridge decks, the filter
optimization and position measurement using as criteria the POD and a parametric
study of how it affects the design of the bridge and the loads. In this work some
of the knowledge acquired during the completion of the master structures have been
implemented, also the architecture of inverse problems based on models have been
learned.

Keywords:

Inverse problem, damage identification, moving load, bridge deck, finite element
method, genetic algorithms.
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2. Introduction

Recently, some investigaters started turning their attention to the damage detection by
solving the inverse problem from static or dynamic responses obtained by the forward
procedure. Direct search methods, such as neural networks, genetic algorithms and
simulated annealing methods are developed and promisingly applied to the field of
structural identification. Among them, genetic algorithms (GA) attract our attention
because of the fact that the technique requires significantly small amount of data
in dealing with complex problems, while attaining global convergence as opposed to
gradient-based methods. Suh et al. [32] presented a hybrid neuro-genetic technique that
is able to identify the location and extent of damage in a beam or frame structure using
only the frequency information. Mares and Surace [21] demonstrated the ability of the
GA to identify damage in elastic structures. Friswell et al. [5] combined the genetic and
eigen-sensitivity algorithms for locating damage.

Chou and Ghaboussi [4] proposed a GA-based method to determine the location
and extent of damage in truss structures from the measured static displacements.
Krawczuk [12] presented a wave propagation approach to detect damage in beam
structures based on GA and a gradient-based technique. However, all these works are
limited in that they can analyze only structural members made of isotropic materials.
Recently, techniques for detecting damages from noisy static or dynamic responses of
anisotropic plates are evolving. Lee and Wooh [17] applied an advanced micro-genetic
algorithm for detecting damage of steel and composite structures subjected to dynamic
loading. Rus et al. [28] dealt with a method of damage detection for plane stress problem
of composites using boundary element method (BEM). Lee and Wooh [16] applied the
micro-genetic algorithm for detections stiffness reduction of composite plates based on
the high order shear deformation theory (HSDT).

Despite the broad spectrum of applications for detecting damage, the numerical
techniques may not be attractive from the practical point of view. The methods require
a precise measurement of static or moving loading to the structure that needs to be
input into the numerical model. Based on experimental work, precise control and
measurement of input loading are extremely difficult because of errors (noisy responses)
arising from the structural behaviour, ambient and measuring devices. In order to solve
the inverse problem of structure with noisy data, the conventional techniques usually
require a large number of iterations, and thus, a high computational cost. Therefore,
an effective reduction of the noise may be significant issue for faster convergence, better
computational efficiency and more precise and sensitive detection.

In order to reduce the noise effect in the dynamic response data, this study is
focused on an efficient fitering algorithm based on the wavelet transform. The wavelet
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transform is a technique for the processing of signals whose spectral countenance is
non-stationary. It is defined in terms of a base function, and obtained by compression,
dilatation and decay operations of the mother wavelet. In the wavelet transform, the
signal spectrum is divided by an overlapping of pass band filters with constant relative
bandwidth. Addison [1] gives an excellent overview of the potential that the novel
wavelet analysis provides to different areas of science in the current days. Within the
subject of mechanical systems, Kim [11] gives a successfull wavelet ridge analysis of the
correlation of reflected to incident wave magnitude ratio over the time and frequency to
correlate an experiment with a bending beam model.

This application is merged with numerical methods by Li et al. [19] who use the
wavelet finite element method (WFEM) in modal analysis to find cracks with the aim
of solving accurately the crack singularities. On the other hand, wavelets can also
be used for noise removal, which is our objective in this study. Messina et al. [22]
compares wavelets for noise removal against differentiator filters, concluding that they
provide similar performance. In a similar approach, Yang et al. [35] apply envelope
complex wavelet analysis correlation to efficiently discriminate noise from the signals in
an experimental case. In this study, a standard wavelet analysis is used as a filtering
tool within a novel framework of optimization of the search methodology.

In standard practice of nondestructive evaluation (NDE), the issue of the probability
of detection (POD) has only been addressed independently, under the name of
identifiability, in statistics and mathematics, with a wide application in chemistry and
physics. However, in the field of nondestructive testing, only observational comments
have been made. Only Liu et al. [20] discussed as identifiability the relationship
between the number of measurements and the number of degrees of freedom to establish
a necessity condition. Tarantola et al. [33] examined the inversion theory under a
probabilistic formulation and introduced probability density functions in the model
and the a priori information about the parameters to explain the robustness of the
inversion and to obtain a non-single valued output for the parameters. In this study, an
estimate of the POD is designed from the minimization search approach as a criteria to
be optimized for the design of the formulation.

The forward and inverse procedures are presented for the identification of stiffness
degradation in bridge deck plates by combining the FEM as the numerical procedure
for the simulation of the effect of the defect on the response to moving loads. A filter is
introduced that weights the wavelet coefficients, time windows and measurement points.
Then, the POD is approximated from certain simulated values of the measurements.
Finally, the proposed method determines the best measuring points, wavelets levels
and time windows for locating and evaluating stiffness degradation on the deck. A
parametric study is carried out for different bridge geometries, moving load speed and
deck thickness/length ratios.
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3. Methodology

The problem of nondestructive damage recontruction is solved by a model-based inverse
problem approach that consists of two step: (i) to excite the system applying moving
load, and (ii) to measure the response (displacements). A finite element method model
is used in the forward procedure that is explained in detail in the next section. The
elements that play in the IP are summarized in Figure 1, and are explained in detail in
this section.

Noise

Parameter Vector = p

Parameter Vector = p

Model =model(p)

Simulation

Model = ??

Experiment Measurement

Simulated Measurement

Experiment
Residual = r

Stifness 
Function = f

Min (f)
p

p

Wavelet Filters =
{w(t), w(w), w(p)}

POD
max (POD)

w

w

w f(damage, 0)

f(0, noise)

Figure 1. Issues squeme for the solution of the model-based Inverse Problem.

3.1. Forward procedure

3.1.1. Finite element method model with degraded element In the finite element
formulation, the stiffness matrix of the kth damaged element in the local coordinates
can now be written as the volume integral form, that is

K̃(m) = β̃(m)(ξ(k))K(m) (1)

where ξ(k) is the coordinate vector of kth element; and (K(m) =∫
V
B(e)TD(m)B(e) dV ) is the stiffness matrix at the mth element of a plate. Note that

K(m) is a property that is independent of damage; thus it is applicable to all the elements
(e), whether damaged or not.

The governing equation of motion of the system using Eq. 1 is written in the form

MÜ + K̃U = F̄(t) (2)
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where U and Ü are the displacement and acceleration vectors, respectively; M

is the mass matrix without loss before and after damage; K̃ is the stiffness reduction
matrix; and F̄(t) is the time history of the applied load.

For the transient analysis of a slab bridge subjected to the effects of moving loads,
Newmark’s explicit integration technique is adopted by Bathe et al. [3]. Considering a
moving load with a velocity v on a plate element, the total moving distance (t+ΔtDt) of
the load at time t+ δt is given by

t+ΔtDt =
vΔt

3.6
+ Cx1 (3)

where Cx1 denotes the initial coordinate of the moving load in the longitudinal
direction.

The location number Īd of the element which the moving load passes through at
time t+ δt can be expressed as

t+ΔtĪd = Nd
x2
I1 + Is + 1 (4)

where

I1 = INT

( t+ΔtDtN
d
x1

Lx1

)
, Is = INT

(
Cx2N

d
x2

Lx2

)
(5)

and Nd
x1

and Nd
x2

are the number of division elements in the longitudinal (x1) and
transverse direction (x2), respectively; Cx2 is the initial coordinate of the moving load in
the transverse direction; Lx1 and Lx2 are the length of a plate in the x1 and x2 directions,
respectively; and INT( ) means the integer part of the value in a parenthesis.

The moving load vectors Fk(t) at an arbitrary location on the Nd
k th element of the

plate should be inevitably distributed to the nodal loads F̄Nk
(t) using the zeroth-order

Hermite (Lagrange) interpolation function Φ . The natural coordinates(ξk, ηk) of the
element for the moving load at time t+ δt can be derived as

t+Δtξk = 2

(
[Cx1 +t+Δt Dt]N

d
x1

Lx1

− I1

)
(6)
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t+Δtηk = 2

(
Cx2N

d
x2

Lx2

− Is

)
− 1 (7)

In a four-node element with three degrees of freedom per node, the moving load
distribution into four neighbourhood nodes not considering distribution of moment can
be expressed as

t+ΔtF̄Nk
= ΦT

(
t+Δtξk,

t+Δt ηk

)
Fk(t+ Δt) (8)

The total external force vectors F̄ applied on the plate at t + Δt can be obtained
by summing up the distributed n loads as given by

t+ΔtF̄ =t+Δt F̄N1 +t+Δt F̄N2 + ...+t+Δt F̄Nn (9)

In Newmark integration scheme, the effective loads at time t+Δt can be calculated
as

t+ΔtF̄ =t+Δt F̄ + M(λt
0U + λt

2U̇ + λt
3Ü) (10)

The dynamic displacements U, accelerations Ü, and velocities U̇ at time t + Δt

can be solved as

t+ΔtU = K̂−1(t+ΔtF̄)(10 − a) (11)

t+ΔtÜ = λ0(
t+ΔtU −t U) − λt

2U̇ + λt
3Ü (12)

t+ΔtU̇ =t U̇ − λt
6Ü − λt+Δt

7 Ü(10 − c) (13)

where the triangularized effective stiffness matrix is K̂ = K̃+λ0M ; and λ0, λ2 , λ3

, λ6 and λ7 are integration constants in the Newmark integration method, respectively.
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3.1.2. Bridge deck and moving load description The bridge deck in which the damage
will be sought is defined by geometry, material, boundary conditions and measuring
points. Several dimensions are proposed for the parametric study, length and thickness.
The boundary conditions are supported on two opposite sides. And moving load is
applied along the bridge at 40km/h - 120 km/h by the middle of the bridge, see Figure 2.
The measurements are made at the four points distributed over a regular 3 x 6 mesh.
The moving load has a magnitude of 10000 kg, and the measurement recording period
is 3 ms.

0 5 10 15 20

0

4

8

 x (m)

 y
 (

m
)

Bridge Deck Plant

Figure 2. Bridge deck plant with dimensions 20 x 8 m.

3.1.3. Noise effect In order to consider unexpected errors in the measured
displacements or accelerations, the usual option is to introduce the effects of random
noise by adding Gaussian noise directly to the values computed by the FEM. Given a
measured response on the kth node, a Gaussian (Normal) random number generator
is used to generate a series of random numbers ζk[n] with standard deviation σ = 1

and zero mean, ζk[n] = N(0, 1). This series simulates a random process ζ(t), and the
simulated measurements are given by,

ψx(p;ψn)[n] � ψ(p)[n] + h(n) ∗RMS(ψ)ζ [n] (14)

where RMS(ψ) is the root mean square given by,

RMS(ψ) =

√√√√ 1

N [n]

N [n]∑
n=1

(ψ)2 (15)
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and where h(n) is the time-discretized Fourier transform of the frequency spectrum
H(ωj) of the noise, and ∗ stands for convolution product. In the following numerical
experiments, only white noise (uniform frequency spectrum) is used, but in case the
process is assigned a non-uniform frequency spectrum, that can be estimated during the
calibration process, the following relationship can be extracted,

σn =

√√√√ 1

N2

N−1∑
j=0

|Hj|2 (16)

Redundant measurements are an effective way to reduce the effect of noise. If the
noise is assumed Gaussian with zero mean and standard deviation σn, an effective way
to reduce it is increasing the number of measurements N . Then, since the system is
linear we can just take it into account substituting the measurements with their mean
values, and the noise will reduce with a factor 1√

N
,

ψ̃ =
1

N

∑
k

ψk ⇒

1

N

∑
k

(ψk + h ∗ ζk) = ψ̃ +
h

N
∗
∑

k

nk = ψ̃ +
h√
N

∗ ζ (17)

A similar conclusion can be drawn, when the number of measurements is multipled
by a factor N , for the ratio f,n

f,p
(defined later), which can be proved to reduce by a factor

1√
N

. More details can be found in Oppenheim [24].

3.2. Inverse procedure

The inverse procedure presented aims at characterizing damage in a structure (degree
of degradation) and determine its extent and location. The testing consists of two steps:
(1) to disturb a structure with a known excitation function (the moving load defined
by the weight, speed and trajectory of the vehicle) and (2) to measure its response
(transient time history or a waveform representing the displacements, usually obtained
by accelerometers) at one or more locations in the structure. We assume that the
dynamic behavior of the structure in its intact and damaged states is predictable using
a well-calibrated model.

Then, the measured signal is processed to solve the inverse problem, i.e., to
determine the changes in the structure from its original state. A genetic algorithm
search tool (Lee and Wooh [16], Goldberg [7]) is used to minimize the discrepancy
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between the experimental readings and the numerically predicted trial response, by
means of a cost functional designed to calibrate for coherent uncertainties and noise,
and providing maximal robustness and sensitivity. Thus, we focus on determining the
best cost functional for detecting damage from responses with noise. We propose and
optimal choice of measuring points as well as time windows and wavelet level filters for
better sensitivity to noise effects. The criterion for this is chosen in a rational way so as
to maximize the probability of detection.

3.2.1. Cost functional The readings from the sensors are denoted by ψ for the
theoretical or synthetic case, and ψx for the experimental case. They do not need
to coincide with the measurements Φ to analyze, which can be improved by being
calibrated magnitudes, so that they gain independency from the ambient conditions
during the experiment and coherent noise, and also by being adimensional. A reading

◦
ψ

in the undamaged state of the specimen is defined for calibration, and the measurement
to analyze is defined as,

Φ =
ψ −

◦
ψ

RMS(
◦
ψ)

(18)

where the RMS values are defined for a discrete function f in time domain f(ti)

or frequency domain F (ωj) at N sampling points as,

RMS(f) =

√√√√ 1

N

N−1∑
i=0

f(ti)2 =

√√√√ 1

N2

N−1∑
j=0

|F (ωj)|2 (19)

A residual γ is defined from the misfit or discrepancy Φx − Φ between the
measurements. A filter w is included, which will be later defined for optimizing the
residual,

γ = w(Φx − Φ) (20)

The cost functional f or fitness function is defined after a residual vector γ of size
Ni as the quadratic form,

f =
1

2
|γ|2 =

1

2

1

Ni

Ni∑
i=1

γ2
i (21)
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It is useful to define an alternative version of the cost functional denoted as f l,
with the property of improving the sensitivity while approaching the optimum, just by
introducing a logarithm and a small value ε to ensure its existence. This definition
particularly enhances the convergence speed when the minimization is tackled by with
genetic algorithms or other random search algorithms (see Rus et al. [6]),

f l = log(f + ε) (22)

3.2.2. Probability of detection The economy of the health monitoring industry is based
on several interrelated concepts, but the basic one is the Probability of Detection (POD).
The POD gives an idea of the probability that a defect is positively detected, given a
specimen, a defect size and some noise and system uncertainty conditions. The aim of
the following section is to provide an estimation of this probability as a function of such
variables.

The detection and characterization of defects is based on the interpretation of
the alterations of the measurements due to the presence of the defect. Other model
uncertainties and system noises also alter these measurements. We can estimate the
POD by the probability that the alteration of the measurement caused by the defect
is larger than that caused by the noise. If we label the alteration on the measurement
readings caused by the defect as the signal component, and the alteration generated
by the noise as noise, the former definition can be formulated as (see Rus et al. [29]),

POD = P

(
|signal|2
|noise|2 > 1

)
(23)

Signal and noise components

The measurement ψ depends linearly on the location and extent of the defects
p and the level of noise σ, see Rus et al. [30]. Furthermore, three variables are be
considered in the problem of maximizing the probability of detection (POD), the level
of noise, denoted by σ, the location and extent of the defects, denoted by p, and the
cost functional that collects the effects of those in a scalar function f , as defined above.
The local damage p is defined by a five parameters vector, respectively, adimensional
centering ordinate, adimensional centering abscissa, damage area, maximum damage
level, and form factor.

From the definition of the simulated noise, the dependency of the variation of
the measurement with increasing noise is also linear. These two considerations about
linearity support the proposal that the measurements on a specimen with noise and



CONTENTS 13

with defect can be expressed as Taylor series expansion centered at the case without
noise and without defect, and neglecting higher order terms (hot) than linear,

ψi(p, σ) = ψi(0, 0) + p
∂ψi

∂p
(0, 0)︸ ︷︷ ︸

signal

+ σ
∂ψi

∂σ
(0, 0)︸ ︷︷ ︸

noise

+hot (24)

where i = 1, ..., Ni are the measuring points. The first term on the right hand
side is the measurement at point i without noise nor defect. The second term is the
alteration of that measurement due to the presence of the defect only, and is labeled
signal, following the reasoning above. The third term is the alteration of the signal
originated by the noise only (noise).

Finite differences

The second and third terms of the Taylor series in depend on the sensitivity of the
measurements on the area and the noise respectively, and can therefore be computed
by finite differences,

∂ψi

∂p
(p0, 0) = ψi,p(p0, 0) =

ψi(p0 + Δp, 0) − ψi(p0 − Δp, 0)

2Δp
(25)

∂ψi

∂σ
(0, 0) = ψi,σ(0, 0) =

ψi(0,Δσ) − ψi(0, 0)

Δσ
(26)

where p0 → 0 is a small defect used to guarantee that the FEM captures the
perturbations produced at small Δp (since the case p = 0 with no defect needs to
be computed with a topologically different mesh), in order to compute ψi,p(p0, 0) ≈
ψi,p(0, 0). In addition, a central difference scheme, which yields an error of the order
O(Δp2), becomes available. Since the noise component is linear by definition, a forward
difference scheme is adopted, whose O(Δσ) error is sufficient.

Some authors [31] propose that the parameters Δp and Δσ should be two orders
of magnitude smaller than the values at which the derivative should be computed.
However, an estimation of these parameters is studied. It shows ψi,p(0, 0) and ψi,σ(0, 0)

versus Δp and Δσ, respectively, for a defect at the center of the bridge deck. Δp =

Δσ = 10−2 is shown to produce a stable value of the derivative for the case of the single
measurement represented, but the same result is obtained for all 18 measuring points.

On the other hand, (26) yields by direct derivation the last term of the Taylor
expansion,
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∂ψi

∂σ
= ξiRMS(ψFEM

i ) = ξiRMS (27)

Analytical estimation of the POD

Equations (24), (27) and the relationship |Yi|2 = 1
m

∑m
i=1 Y

2
i , can be combined into

(23) to obtain,

POD=P

(
p2 1

Ni

∑Ni

i=1(ψi,p(0, 0))2

σ2RMS2 1
Ni

∑Ni

i=1 ξ
2
i

> 1

)
=P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p2 >

RMS2σ2
∑Ni

i=1 ξ
2
i

Ni∑
i=1

(ψi,p(0, 0))2

︸ ︷︷ ︸
Sp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(28)

If the noise generator ξi is a random variable, the POD is a probability of the
stochastic variable p2, described by the cumulative probability density function F ,

POD = F

(
RMS2σ2

∑Ni

i=1 ξ
2
i

Sp

)
(29)

Using Monte Carlo techniques and error propagation theory the noise in the
measurement points can be concluded to follow a normal distribution. Assuming this
distribution, the squared sum of the noise ξi is known to follow a Chi-square distribution,
since

∑Ni

i=1 ξ
2
i −→ χ2

Ni
(e.g. [26]). The parameter of the Chi-square distribution is the

number of degrees of freedom Ni, which in this case is the number of measurement
points. In the case that Ni > 10, the Chi-square distribution can be approximated by
a Gaussian or normal N distribution χ2(Ni) ≈ N(Ni − 2/3,

√
2Ni) with mean Ni − 2/3

and standard deviation
√

2Ni. This approximation in (29) yields,

p2 −→ N

[
RMS2σ2(Ni − 2/3)

Sp

,
RMS2σ2

√
2Ni

Sp

]
(30)

Since F (x) =
∫ x

−∞ f(y)dy is the cumulative of the normal probability density
function f , whose inverse is x = G(F (x)), the useful defect area to noise ratio p/σ

can be expressed from (30) given a POD level as,

p

σ
=

√
RMS2(Ni − 2/3)

Sp

(
1 +G[POD]

√
2Ni

Ni − 2/3

)
(31)
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Note that the analytical expression (30) is only valid for noise with normal
distribution at the measurement points.

4. Numerical result

4.1. Forward problem

A bridge deck with dimensions 8 × 20 m and thickness 0.5 m is tested. The boundary
conditions are simple support on two opposite sides. Figure 3 shows the simulated
search results, experiment and non damage measurement by FEM without noise. An
moving load is applied at the red marked point with speed 40 km/h along the middle
of the bridge, and measurements are made at the 18 points distributed over a regular
3 × 6 mesh, see Figure 2.
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Figure 3. Measurements without noise.

4.2. Search convergence

The moving load has a magnitude of 10000 kg, whereas the measurement recording
period is 3 ms. Figure 4 shows the calibration results without noise, predictive damage
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distribution (white) againt the real damage distribution (gray). Predictive damage
distribution converges with high accuracy, it verify the predictive model.

Figure 4. Damage model results without noise.

In this section, the search algorithm is studied, adjusting the GA parameters to
archieve a computational effiency and to guarantee a good convergence for zero noise.
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Figure 5. Evolution of the GA in the case without noise, for 50 individuals and 200
generations.

The Figure 5 plots the evolution of the population mean versus each generation.
To ensure that the solution does not converge to a local minimum, genetic diversity
was injected by mutation and crossover parameters. To guarantee the convergence to a
global optimum, while establishing a compromise between IP error and computational
cost, the GA selected parameters are shows in Table 1.
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Parameter Value
Population size 50
Number of generations 200
Probability of crossover 0.80
Probability of mutation 0.30
Probability of selection 0.70

Table 1. Parameters used for the GA search algorithm.

The choice of these values was made based on a test in which it has found a
successful values with a good computational cost. Figure 6 and 7 shows the evolution
of the cost function for several values of population and genetarion. The improvement
achieved by increasing above the established values of population and generations is
never significant.
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Figure 6. Cost function evolution with generations.

30 50 70
3

3.5

4

Population

C
os

t f
un

tio
na

l, 
−

lo
g(

f)

Figure 7. Cost function evolution with population.
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Figure 8 shows the predictive damage distribution againt the real damage
distribution and it can see the genetic algorithm evolution, optimum is reached for
122 generations. Predictive damage distribution converges with high accuracy for noise
level 0.1 %.
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Figure 8. Damage model resultsand evolution of the GA for noise 0.1 %.
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Figure 9 shows predictive damage distribution converges with high accuracy for
noise level 0.3 %. In Figure 9 below, the optimum cost function is reached for 105
generations.
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Figure 9. Damage model results and evolution of the GA for noise 0.3 %.
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Figure 10 shows predictive damage distribution converges with accuracy for noise
level 1 %. In Figure 10 below, the optimum cost function is reached for 140 generations.
The number of generations have grown by almost 35 points and have lower precision in
search results, but not significantly.
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Figure 10. Damage model results, measurement and evolution of the GA for noise
1.0 %.
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Figure 11 shows predictive damage distribution converges with medium accuracy
for noise level 3 %. In Figure 11 below, the optimum cost function is reached for 160
generations. The number of generations have grown by almost 20 points and have lower
precision in search results.
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Figure 11. Damage model results, measurement and evolution of the GA for noise
3.0 %.



CONTENTS 22

Figure 12 and 13 above shows predictive damage distribution doesn’t converges for
noise level 10 % and 20 %. This is verified by Figure 19 and Figure 20, because the
POD is not enough to ensure the search for any level of damage. Similarly, Figure ??
checks that the distance of damage exceeds the unit for these noise levels.
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Figure 12. Damage model results, measurement and evolution of the GA for noise
10 %.
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Figure 13. Damage model results, measurement and evolution of the GA for noise
30 %.

4.3. Filtered optimum

Now, a standard GA is implemented for the search of the defect and the optimal filter.
This is done first by considering the time windowing, the selction of measurement points
and the wavelet levels. The characteristic parameters for tuning the GA are a crossover
fraction of 0.6 and a mutation fraction of 0.4. The number of generation is 200, and
the number of individuals in the population is 50. For the optimization of the POD,
the term p/σ is aproximated by finite diferences using εp = 0.01 and εn = 0.01. These
values fall empirically within a wide range of finite difference steps that does not affect
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significantly the final value. Figure 14 shows the probability of detection without noise
for different filters and without. We can see that the improvement made by the filters
is not representative, since the noise level is negligible.
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Figure 14. Probability of detection with and without filtering, optimization of the
measurement point filter, time window filter and wavelet filter.

The wavelet level and time windows optimization is performed with the minimum
possible number of bits to represent the combination of measurement point, 5 bits for
the five wavelet levels and 5 bits for the five reference points in time. An example of
this is given in Figure 14, where the minimum damage that can be found is 0.0001, and
inversely proportional to the allowed noise level Figures 15, 16, 17, 18, 19 and 20.

In Figure 21 is showed, in order to perform the convergence analysis, the distance
between the parameters that characterize the real and the calculated defects are defined
by the norm defined by Equation 32.

d =

√∑N
i=1 (p̃i − pc

i)
2∑N

i=1 p̃i

(32)
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Figure 15 shows the POD for several level of damage and it shows filters influence
is not very representative, with a improvement of 0.82. We can see the filters influence
begins to be noticeable but still not very representative, with a improvement of 0.82. The
wavelet and time windowing filters are optimized reaching all frequencies, see Figure 15.
The damage detectable is 0.0421.
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Figure 15. Probability of detection with and without filtering and sequential
optimization of the measurement point filter, time window filter and wavelet filter
for noise 0.1 %.
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The wavelet and time windowing filters are optimized reaching all frequencies, see
Figure 16. The damage detectable is 0.0492.
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Figure 16. Probability of detection with and without filtering and sequential
optimization of the measurement point filter, time window filter and wavelet filter
for noise 0.3 %.
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Figure 17 shows the filters influence is very representative, with a improvement of
0.25. The wavelet and time windowing filters aren’t optimized reaching high frequencies,
see Figure 17 below. The damage detectable is 0.1920.
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Figure 17. Probability of detection with and without filtering and sequential
optimization of the measurement point filter, time window filter and wavelet filter
for noise 1.0 %.
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Figure 18 shows the filters influence is very representative, with a improvement of
0.25. The wavelet and time windowing filters aren’t optimized reaching high frequencies,
see Figure 18 below. The damage detectable is 0.1917.
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Figure 18. Probability of detection with and without filtering and sequential
optimization of the measurement point filter, time window filter and wavelet filter
for noise 3.0 %.
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Figure 19 and Figure 20 shows that filtering is not sufficient to achieve improved
results. For noise levels above 10 % failed to detect any level of damage implemented
the optimal filter.
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Figure 19. Probability of detection with and without filtering and sequential
optimization of the measurement point filter, time window filter and wavelet filter
for noise 10 %.
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Figure 20. Probability of detection with and without filtering and sequential
optimization of the measurement point filter, time window filter and wavelet filter
for noise 30 %.

4.4. Noise effect

Figure 21 plots the distance, see Equation 32, between real and reconstructed damage
parameters, versus system noise levels. The results showed on the particular local
damage parametrization, for a 8 x 20 m bridge dimensions with thickness 0.5 m, and
speed 40 km/h. Figure 21 shows good results up to 3 % of noise.
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Figure 21. Distance of damage as a function of the noise in measurements.

4.5. POD validation

Three cases presented previously we used to validate and robustness of the formulation of
the POD, it observed a linkage between results that exceed the distance of the damage
the unit and did not reach a detection probability for any level of damage, see the
relation, Figure 22. This relationship holds in the parametric study presented below.
For example, to a noise level of 3 % level of damage for which the POD reaches = 50 %
is 0.148 and the distance is 0.42, both results show a direct relationship, and the noise
level for which the distance of damage is greater than 0.5 is 3.97 %, logically just over
3%.
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Figure 22. POD validation.

4.6. Parametric study

Figures 23, 26 and 27 plot the distance, see Equation 32, between real and
reconstructed damage parameters, versus system noise levels. The results showed on
the particular local damage parametrization, for a 8 x 20 m bridge dimensions with
thickness 0.5 m and speed 40 km/h in Figure 21 is studied for different cases of lengths
and thicknesses of the bridge, and different speeds, to verify the consistency of the
method. The distance unit is a dispersion of results of 100 %. Figures 24, 25 and 28
plot the POD for each case, noticeable a direct relationship between all results.

With increasing length of the bridge there is a greater sensitivity to noise to obtain
worse results, see Figure 23. For a length of 80 m, it reaches a given distance, or drive.
Figure 24 shows how da pod, or detected with POD unit is reduced with increasing the
length of the bridge, until it stops 80 m does not reach the POD unit.

Figure 26 shows that for thickness between 0.5 and 0.7 m achieved good results up
to 3 % of noise, but for a thickness of 0.3 is reduced to 1 %. Figure 24 shows how the
POD, value less unit does for noise 3 % and thickness noise 0.3 m.

Figure 27 shows between 20 and 120 km/h, speed limits on roads, not cause a
trend in the results, staying around the same values. This is verified in Figure 28.



CONTENTS 33

0.1 0.3 1 3 10 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Noise [%]

D
is

ta
nc

e 
of

 s
ol

ut
io

n,
  d

Distante vs. Noise − Length 20 m

0.1 0.3 1 3 10 30
0

0.5

1

1.5

Noise [%]

D
is

ta
nc

e 
of

 s
ol

ut
io

n,
  d

Distante vs. Noise −  Length 50 m

0.1 0.3 1 3 10 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Noise [%]

D
is

ta
nc

e 
of

 s
ol

ut
io

n,
  d

Distante vs. Noise −  Length 80 m

Figure 23. Distance of the damage as a function of the noise in measurements, for
several lengths.
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Figure 24. Probability of detection, for several speeds and noise 3%.
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Figure 25. Probability of detection, for several thickness and noise 3%
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Figure 26. Distance of the damage as a function of the noise in measurements, for
several tickness.
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Figure 27. Distance of the damage as a function of the noise in measurements, for
several speeds.
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Figure 28. Probability of detection, for several speeds and noise 3%.



CONTENTS 37

5. Conclusions

An inverse problem strategy is defined and tested in this work, which is capable of
identifying and characterizing a degree of degradation defect in plate bridge decks when
noise in the measurements are present. To quantity the level that a defect is positively
detected, given a specimen, an analitycal formulation of Probability of Detection is
defined, function of the location and extent of the defects, the level of noise and the cost
function. A new damage model that makes it possible to parameterize the damage more
trustworthy is defined. A parametric study is performed to within range of values that
the method produced good results. The POD’s formulation is validated for the cases
presented, its relevance and robustness in all cases is demonstrated. It is concluded
that, by applying the proposed model based inverse problem strategy, it is possible to
reconstruct the characteristics of a damage with sufficient precision under realistic levels
of noise in measurements. It is concluded from this study that the approach works well
for the numerical tests, especially for complex structures such as bridge deck plates under
moving loads. Even under the consideration of noisy effects in the measurements, the
proposed method is useful for reconstructing the stiffness degration damage. However,
in order to prove the effectiveness of the technique for real-life situations, it will be
necessary to prove the concept from experimental studies and adapting the continuum
damage model to observations.
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