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Abstract— The Boot.EXPOS procedure is an algorithm that
combines the use of exponential smoothing methods with the
bootstrap methodology for obtaining forecasts. In previous
works the authors have studied and analyzed the interaction
between these two methodologies. The initial sketch of the
procedure was developed, modified and evaluated until its final
form designated as Boot.EXPOS.

I. I NTRODUCTION

A time series is a sequence of observations indexed
by time, usually ordered in equally spaced intervals and
correlated. In our days it is well known the importance of
time series studies. These studies provide indicators about
a country economy, the unemployment rate, the export and
import product rates, etc. The most interesting and ambitious
task in time series analysis is to forecast future values.
Models are commonly fitted in order to predict future values
of a time series.

Exponential smoothing methods (EXPOS1) are the most
widely used forecasting methods. Exponential smoothing
refers to a set of methods that can be used to model and to
obtain forecasts. This is a versatile approach that continually
updates a forecast emphasizing the most recent experience,
that is, recent observations are given more weight than the
older observations.

The bootstrap procedure [1] is a very popular methodology
for independent data because of its simplicity and nice
properties. It is a computer-intensive method that presents
solutions in situations where the traditional methods failor
are very difficult to apply. Efron’s bootstrap (IID bootstrap)
has revealed inefficient in the context of dependent data,
such as in the case of time series, where the dependence
structure arrangement has to be kept during the resampling
scheme. However, if the time series process is driven from iid
innovations another way of resampling can be used; then the
IID bootstrap can easily be extended to the dependent case.
The autoregressive AR(p) is a commonly example of such a
process. Because of the iid nature of the AR residuals, the
IID bootstrap can easily be extended to the dependent case.
This procedure is easy to apply, and leads to good theoretical
behavior for estimates when the model is correct.

In previous works [2], [3], [4], [5], [6] the authors have
studied and analyzed the relationship between EXPOS meth-
ods and bootstrap methodology. A procedure denominated
Boot.EXPOS was constructed to forecast time series.
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II. EXPONENTIAL SMOOTHING METHODS

Exponential smoothing refers to a set of forecasting meth-
ods, several of which are commonly used. The EXPOS is
a procedure that continually updates a forecast emphasizing
the most recent experience, that is, recent observations are
given more weight than the older observations, see [10], [11],
[12]. Many researchers have investigated and developed the
EXPOS models in a total of 15 methods, table I [12], [13].

TABLE I

THE EXPONENTIAL SMOOTHING METHODS.

Seasonal Component
Trend N A M
Component (None) (Additive) (Multiplicative)
N (None) N,N N,A N,M
A (Additive) A,N A,A A,M
Ad (Additive damped) Ad,N Ad,A Ad,M
M (Multiplicative) M,N M,A M,M
Md (Multiplicative damped) Md,N Md,A Md,M

The exponential smoothing methods have the correspond-
ing statistical models. Hyndmanet al. [13] presents a state
space formulation for all models in the classification of table
I. The state space model usually consists of two sets of
equations: the observation equation (1) and the state equation
(2),

yt = w′xt−1 + εt, (1)

xt = Fxt−1 + gεt, (2)

with t = 1, 2, · · · , where yt is the observation in time
t, xt is a “state vector” containing unobserved components
(level, trend and seasonality),{εt} is a white noise series and
F , g and w are coefficients. The first equation (1) relates
the observable time series valueyt to a randomk−vector
xt−1 of unobservable components from the previous period.
w is a fixedk−vector. F is a fixedk × k matrix andg is
a k−vector of smoothing parameters. For more details see
[13]. The estimates of the exponential smoothing parameters
are obtained by minimizing the mean squared error (MSE) of
the one-step-ahead forecasts errors over the fitted period.The
model selection is made using the Akaike’s criterion (AIC).
This model selection criterion is preferable when compared
to other criteria because of the parsimonious model penalty,
see [14] for more details.

III. A BOUT BOOTSTRAP METHODOLOGY

Among resampling techniques, bootstrap is perhaps the
most popular one. It is a computational method for estimating
the distribution of an estimator or test statistic by resampling
from the data. Under conditions that hold in a wide variety



of applications, the bootstrap provides approximations todis-
tributions of statistics, coverage probabilities of confidence
intervals and accurate rejection probabilities of tests. The
procedure was devised for an i.i.d. situation and it usually
fails for dependent observations.

In context of stationary time series two different bootstrap
methods have been proposed. Perhaps the best-known for
time-series data is the block bootstrap. However, if the time
series process is driven from i.i.d. innovations another way of
resampling can be considered. The classical bootstrap derived
for i.i.d. samples can easily be extended to the dependent
case.

Another procedure, the sieve bootstrap, was proposed
by Bühlmann (1997) [15] for dependent observations and
extended by Alonsoet al. [16], [17] for constructing pre-
diction intervals in stationary time series. In a few words,
the sieve bootstrap considers first an autoregressive process
that is fitted to a stationary time series. Considering a model-
based approach, which resamples from approximately i.i.d.
residuals, the classical bootstrap methodology was applied to
the centered residuals. Following Bühlmann [15] and Lahiri
[18], validity and accuracy of IID-innovation bootstrap is
well studied.

In previous works, Cordeiro and Neves [2], [3], [4], [5],
[6] studied and analyzed the possibility of joining EXPOS
methods and the bootstrap methodology. From those studies
the idea behind the sieve bootstrap, suggested the connection
of those two procedures.

IV. COMPUTATIONAL PROCEDURE FOR PREDICTION

A first computational algorithm was constructed using
four models for fitting to the time series: single exponen-
tial smoothing, Holts linear and Holt-Winters with additive
and multiplicative seasonality. Nowadays it considers thirty
exponential smoothing methods and it consists of an auto-
matic procedure in language. This procedure was named
Boot.EXPOS. The idea is to select the most adequate EXPOS
model by using the AIC criterion and obtain the residuals.
The error component is isolated and investigated regarding
its stationarity using the Augmented Dickey-Fuller test. If it
is not compatible with this hypothesis, data transformation is
required. If there is some stationarity evidence, the residual
sequence is filtered by an autoregressive model, autoregres-
sive coefficients are estimated and innovations are obtained.
In the context of AR models the bootstrap can be conducted
by resampling the centered residuals and then generating a
data set, using the estimated coefficients and the resampled
residuals. The EXPOS fitted values and the reconstructed
series are used to obtain a sample path of the data. Forecasts
are obtained using the initial EXPOS model. The bootstrap
process is repeatedB times and information is kept into a
matrix. An “optimal” point forecast is obtained by taking the
average of each column.

A. Algorithm sketck

For a given time series{y1, · · · , yn} select the “best”
EXPOS model (Table I) using the AIC criterion.

Any good model should yield residuals that do not show
a significant pattern. It is rare to discuss white noise in this
context because there is frequently some pattern left in the
residuals, see [11]. In order to model such left-over patterns
and in case of stationarity, an autoregressive model is used
to filter the EXPOS residuals series. Thus, in order to apply
the residual-based bootstrap, a stationary series is required.

The algorithm that joins the EXPOS methods with the
bootstrap approach is summarized as follows:

Step 0:Select an EXPOS model by AIC criterion,
obtain the exponential smoothing constants
θ0 = (α, β, γ, φ), the ŷ = {ŷ1, · · · , ŷn} and
the residual sequence{r1, · · · , rn};

Boot.EXPOS

Step 1:Fit an AR(p) to the residual sequence using
the AIC criterion;

Step 2:Obtain the AR residuals;
For B replicates

Step 3:Resample the centered residuals;
Step 4:Obtain a new series by recursion using the

resampld series and the autoregressive coef-
ficients fromStep 1;

Step 5:Join the fitted valueŝy (Step 0) to the
previous series;

Step 6:Forecast the initial series using the selected
model andθ0 estimated inStep 0.

Statistical tests, transformations and differentiation are
prepared for analysis of stationarity of the random part before
the AR ajustment is done (Step 1 of Boot.EXPOS). The
computational work is performed using the 2.14.1 [7]
and packagesforecast [8] and tseries [9]. A new function
Boot.EXPOS is implemented.

V. REMARKS

In this article the authors propose the use of the
Boot.EXPOS procedure to forecast time series. Based on
past and recent empirical results in forecasting using the
Boot.EXPOS procedure, it has revealed a good option in
obtaining forecasts. This suggests that the “optimal” combi-
nation of EXPOS methods and bootstrap can provide more
accurate forecasts.
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