The Bernstein problem for area-minimizing intrinsic graphs in the Sub-Riemannian Heisenberg group

F. Serra Cassano¹

¹Dipartimento di Matematica, Università di Trento, Trento, Italy

Workshop on Geometrical Variational Problems in Sub-Riemannian Geometry September 10-12, 2025, Granada

The Heisenberg group ℍ¹

$$\mathbb{H}^1 = (\mathbb{R}^3, \cdot, \{\delta_{\lambda}\}, H\mathbb{H}^1, \mathbf{d}_{\mathbb{H}})$$

1. Group law.(not commutative) If p = (x, y, z), $p' = (x', y', z') \in \mathbb{R}^3$.

$$p\cdot p':=\left(x+x',y+y',z+z'+\frac{1}{2}(xy'-yx')\right).$$

$$0 = (0, 0, 0) \equiv \text{ unit element}, \quad p^{-1} = -p$$

2. Dilations. $\delta_{\lambda}: \mathbb{R}^3 \to \mathbb{R}^3 \ (\lambda > 0)$ such that

$$\delta_{\lambda}(x, y, z) = (\lambda x, \lambda y, \lambda^2 z),$$

The Heisenberg group ℍ¹

3. Horizontal subbundle . The Lie algebra of left-invariant vector fields in \mathbb{H}^1 , \mathfrak{h}_1 , is generated by

$$X = \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial z}, \qquad Y = \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial z}, \qquad T = \frac{\partial}{\partial z} \ .$$

The only non-trivial commutator relation is

$$[X, Y] = T.$$

The Heisenberg group ℍ¹

The horizontal subbundle

$$H\mathbb{H}^1 \subset T\mathbb{H}^1 = T\mathbb{R}^3$$

where, given $p \in \mathbb{R}^3$,

$$H_p \equiv H_p \mathbb{H}^1 := \operatorname{span}\{X(p), Y(p)\} \subset T_p \mathbb{H}^1$$
.

 $T_p(\mathbb{H}^1)$ is equipped with a scalar product $<\cdot,\cdot>_p$. w.r. t. $X(p),\,Y(p),\,T$ are orthonormal and let

$$|v|_{
ho} := \sqrt{\langle v, v \rangle_{
ho}} \quad \text{if } v \in T_{
ho}(\mathbb{H}^1) \; .$$

The Bernstein problem for intrinsic graphs
Results on the Bernstein problem for intrinsic graphs
Proof's techniques

The Heisenberg group ℍ¹

4. Metric in \mathbb{H}^1 .

$$\|p\|_{\mathbb{H}}:=\max\left\{\sqrt{|x|^2+|y|^2},\sqrt{|z|}
ight\} \qquad extit{$d_{\mathbb{H}}(p,q):=\|q^{-1}\cdot p\|_{\mathbb{H}}$}$$

Intrinsic regular surfaces

Definition

We say that $S \subset \mathbb{H}^1$ is an *intrinsic* C^1 -regular surface if $\forall p \in S$ \exists U neighborhood of p and a function $f \in C^1_{\mathbb{H}}(U)$ such that

$$S \cap U = \{ p \in U : f(p) = 0 \}; \tag{i}$$

$$\nabla_{\mathbb{H}} f(p) := X f(p) X(p) + Y f(p) Y(p)$$

$$\equiv (X f(p), Y f(p)) \neq 0 \quad \forall p \in U.$$
(ii)

where $f \in C^1_{\mathbb{H}}(U)$ in the sense of Folland and Stein, i.e. $f \in C^0(U)$ and $\exists Xf, Yf : U \to \mathbb{R}$ continuous.

Intrinsic regular surfaces

Remark: If S is a (Euclidean) C^1 -regular surface in $\mathbb{H}^1 \equiv \mathbb{R}^3$, then $S \setminus \mathcal{C}(S)$ is intrinsic C^1 - regular, denoting with $\mathcal{C}(S)$ the set of *characteristic points of S*. Viceversa there are intrinsic C^1 -regular surfaces not C^1 -regular.

The main reason for the introduction of intrinsic C^1 -regular surfaces is that they can be used to give a useful notion of intrinsic rectifiability in \mathbb{H}^1 , in contrast to (Euclidean) rectifiability, which does not work for this purpose (Ambrosio-Kirchheim, 2000).

Intrinsic graphs (IG) in ℍ¹

Let

$$\mathbb{W} := \{ (0, y, z) : y, z \in \mathbb{R} \} ,$$

$$\mathbb{V} := \{ (x, 0, 0) : x \in \mathbb{R} \}$$

they are homogeneous subgroups of \mathbb{H}^1 , i.e. they are subgroups and $\delta_{\lambda}(\mathbb{W}) \subseteq \mathbb{W}$ and $\delta_{\lambda}(\mathbb{V}) \subseteq \mathbb{V}$ for each $\lambda > 0$. Moreover, they are complementary, i.e.

$$\mathbb{R}^3 = \mathbb{W} \cdot \mathbb{V}$$
 , $\mathbb{W} \cap \mathbb{V} = \{0\}$

IG in \mathbb{H}^1

More precisely, each $p = (x, y, z) \in \mathbb{H}^1$ can be written, in unique way, as

$$p = p_{\mathbb{W}} \cdot p_{\mathbb{V}}$$

with

$$p_{\mathbb{W}} = \left(0, y, z - \frac{xy}{2}\right) \in \mathbb{W},$$

 $p_{\mathbb{V}} = (x, 0, 0) \in \mathbb{V}.$

IG in ℍ¹

A set $S \subset \mathbb{R}^3$ is a X- graph, or simply an intrinsic graph (IG), if there is $f : \omega \subset \mathbb{W} \equiv \mathbb{R}^2 \to \mathbb{V} \equiv \mathbb{R}$ such that, if $e_1 = (1, 0, 0)$,

$$S = G_f^X := \left\{ \Phi(A) := A \cdot f(A) e_1 : A \in \omega \right\}$$

where $\Phi: \omega \subset \mathbb{W} \to \mathbb{H}^1$,

$$\Phi(A) := A \cdot f(A) e_1 = \exp(f(A)X) (A)$$

$$= \left(f(y, z), y, z - \frac{y}{2} f(y, z) \right) \text{ if } A = (0, y, z) \equiv (y, z) \in \omega.$$

The X-subgraph of f is the set

$$\textit{E}_{\textit{f}}^{\textit{X}} := \left\{ (\textbf{0},\textit{y},\textit{z}) \cdot \textit{s}\,\textit{e}_{1} \in \omega \cdot \mathbb{R}\textit{e}_{1} : \, (\textbf{0},\textit{y},\textit{z}) \in \omega, \, \textit{s} < \textit{f}(\textit{y},\textit{z}) \, \right\}.$$

Some features of IG

- (i) $(\omega \subset) \mathbb{W}$ is a subgroup of \mathbb{H}^1 .
- (ii) Intrinsic graphs are invariant under both left-translations and dilations of the group.
- (iii) An intrinsic C^1 -regular surface can (locally) be represented as an intrinsic graph [Franchi-Serapioni-S.C., 1999].
- (iv) There is an intrinsic C^1 -regular X-graph S_0 such that

$$\operatorname{Hausdim}(S_0, d_H) = 3 \text{ and } \operatorname{Hausdim}(S_0, |\cdot|_{\mathbb{R}^3}) = 2.5$$

[Kirchheim, S.C., 2004].

The space of C^1 -regular X-graphs

Let $\omega \subset \mathbb{W} \equiv \mathbb{R}^2$ be an open set and let

$$C^1_{\mathbb{W}}(\omega) := \left\{ f : \omega o \mathbb{R} \ : \ G^X_f \ ext{is intrinsic } C^1 ext{-regular}
ight\} \ .$$

Then the following are equivalent ([Ambrosio-S.C.-Vittone, 2006], [Citti-Manfredini, 2006], [Bigolin-S.C.,2010]):

- (i) $f \in C^1_{\mathbb{W}}(\omega)$;
- (ii) $f \in C^0(\omega)$ and $\exists \nabla^f f \in C^0(\omega)$ in distributional sense, where $\nabla^f f$ denotes the intrinsic gradient of f defined as

$$abla^f f := \partial_y f + rac{1}{2} \, \partial_z (f^2) \quad ext{ (Burgers' operator)} \, .$$

Rmk.

- (i) $C^1(\omega) \subsetneq C^1_{\mathbb{W}}(\omega)$;
- (ii) $C^1_{\mathbb{W}}(\omega)$ is not a vector space.

Definition (Intrinsic Lipschitz *X*-graphs [Franchi, Serapioni. S.C., 2006])

We say that G_t^X is an intrinsic Lipschitz X-graph if $\exists L > 0$ s.t.

$$\|(\bar{p}^{-1}\cdot p)_{\mathbb{V}}\|_{\mathbb{H}}\leq L\,\|(\bar{p}^{-1}\cdot p)_{\mathbb{W}}\|_{\mathbb{H}}\quad\forall\, p,\bar{p}\in G_{f}^{X}$$

Let $\omega \subset \mathbb{W} \equiv \mathbb{R}^2$ be an open set and let

$$\mathit{Lip}_{\mathbb{W}}(\omega) := \left\{ f : \omega \to \mathbb{R} \ : \ \mathit{G}_{\mathit{f}}^{\mathit{X}} \ \text{is intrinsic Lipschitz}
ight\} \, .$$

Then the following are equivalent [Bigolin, Caravenna, S.C, 2015]:

- (i) $f \in Lip_{\mathbb{W},loc}(\omega)$;
- (ii) $f \in C^0(\omega)$ and $\exists \nabla^f f \in L^{\infty}_{loc}(\omega)$ in distributional sense.

Rmk.

- (i) $Lip_{loc}(\omega) \subsetneq Lip_{\mathbb{W},loc}(\omega)$;
- (ii) $C^1_{\mathbb{W}}(\omega) \subsetneq Lip_{\mathbb{W},loc}(\omega) \subsetneq C^{0,1/2}_{loc}(\omega)$.

Definition (Sobolev class of *X*-graphs [Monti,S.C.,Vittone, 2008])

Let $\omega \subset \mathbb{W} \equiv \mathbb{R}^2$ an open set. We say that a function $f \in L^1(\omega) \cap L^2(\omega)$ belongs to the class $W^{1,1}_\mathbb{W}(\omega)$ if $\exists (f_j)_j \subset C^1(\omega)$ and $w \in L^1(\omega)$ such that, as $j \to \infty$,

$$\mathit{f}_{j}
ightarrow \mathit{f}, \, \mathit{f}_{j}^{2}
ightarrow \mathit{f}^{2} \, ext{and} \,
abla^{\mathit{f}_{j}} \mathit{f}_{j}
ightarrow \mathit{w} \, ext{in} \, \mathit{L}^{1}(\omega) \, .$$

Given $f \in W^{1,1}_{\mathbb{W},loc}(\omega)$, the distribution

$$\nabla^f f := \partial_y f + \frac{1}{2} \, \partial_z (f^2) = w \in L^1_{loc}(\omega) \,.$$

Note that

- (i) $\mathit{Lip}_{\mathbb{W},\mathit{loc}}(\omega) \subset \mathit{W}^{1,1}_{\mathbb{W},\mathit{loc}}(\omega)$ [Citti, Manfredini, Pinamonti,S.C.,2014];
- (ii) $W_{loc}^{1,1}(\omega) \cap C^0(\omega) \subset W_{\mathbb{W}}^{1,1}(\omega)$ [Monti, S.C., Vittone, 2008].

Area≡ **III-perimeter** measure

Given $E \subset \mathbb{R}^3$ measurable, $\Omega \subset \mathbb{R}^3$ open, we define the \mathbb{H} or sub-Riemannian perimeter

$$|\partial E|_{\mathbb{H}}(\Omega):=\sup\left\{\int_{E} \text{div } V \ d\mathcal{L}^3: \ V\in C_c^{\infty}(\Omega,H\mathbb{H}^1), |V(p)|_{\rho}\leq 1\right\}\,.$$

Area functional for intrinsic graphs

Theorem (area of *X*-graphs, [Franchi-Serapioni-S.C., 2001], [Ambrosio-S.C.-Vittone, 2006], [Monti, S.C., Vittone, 2008]

Let $\omega \subset \mathbb{W} \equiv \mathbb{R}^2$ be open,let $\Omega := \omega \cdot \mathbb{R}e_1$ and let $f \in W^{1,1}_{\mathbb{W}}(\omega)$. Then

$$|\partial E_f^X|_{\mathbb{H}}(\Omega) = \int_{\omega} \sqrt{1 + |\nabla^f f|^2} \, d\mathcal{L}^2.$$
 (IAF)

In particular, (IAF) holds for all $f \in W_{loc}^{1,1}(\omega) \cap C^0(\omega)$.

We will denote

$$\mathcal{A}_{\mathbb{W}}(f) := \int_{\omega} \sqrt{1 + |
abla^f f|^2} \ d\mathcal{L}^2 \ \mathsf{if} \ f \in W^{1,1}_{\mathbb{W},loc}(\omega) \,.$$

Area functional for intrinsic graphs

Rmk. The area functional for intrinsic graphs

$$Lip(\omega) \ni f \mapsto \mathcal{A}_{\mathbb{W}}(f) := \int_{\omega} \sqrt{1 + |\nabla^f f|^2} \ d\mathcal{L}^2 \ \text{is not convex} \,,$$

([Danielli, Garofalo, Nhieu, 2008]).

Minimal boundaries in ℍ¹

Inspired by De Giorgi's theory, we say that a set $E \subset \mathbb{R}^3$ is \mathbb{H} -perimeter minimizing in Ω , if it has locally finite \mathbb{H} -perimeter in Ω and

$$|\partial E|_{\mathbb{H}}(\Omega') \leq |\partial F|_{\mathbb{H}}(\Omega')$$

for every $F \subset \mathbb{R}^3$ with $E\Delta F := (E \setminus F) \cup (F \setminus E) \subset\subset \Omega'$, for any open set $\Omega' \subset\subset \Omega$.

Given $f: \omega \subset \mathbb{W} \equiv \mathbb{R}^2 \to \mathbb{R}$, we say that the graph G_f^X is area-minimizing in $\Omega = \omega \cdot \mathbb{R}e_1$ if the intrinsic subgraph E_f^X is \mathbb{H} -perimeter-minimizing in Ω .

BP for IG in \mathbb{H}^1 .

The Bernstein problem (BP) for intrinsic graphs: Characterization of $f: \omega = \mathbb{R}^2 \to \mathbb{R}$ for which G_f^X is area-minimizing in $\Omega = \mathbb{R}^3$. In particular, under which assumptions on f must G_f^X be a vertical plane? That is,

$$f(y,z) = ay + b \quad \forall (y,z) \in \mathbb{R}^2 \equiv \mathbb{W}$$
 (IA)

for costants $a, b \in \mathbb{R}$.

Some results on BP for IG

Assume G_f^X is area-minimizing in \mathbb{R}^3 . Then it is a vertical plane:

- if $f \in C^2(\mathbb{R}^2)$: [Barone Adesi, S.C., Vittone, 2007], [Danielli, Garofalo,Nhieu,Pauls, 2009];
- if $f \in C^1(\mathbb{R}^2)$: [Galli, Ritoré, 2015];
- if $f \in Lip_{loc}(\mathbb{R}^2)$: [Nicolussi Golo, S.C., 2019];
- if G_t^X is ruled by horizontal lines: [R. Young, 2022]
- if $f \in Lip_{loc}(\mathbb{R}^2)$ in the sub-Finsler \mathbb{H}^1 : [Giovannardi, Ritoré, 2024]

Some results on BP for IG

it need not be a vertical plane:

• if $f \in W^{1,p}_{loc}(\mathbb{R}^2) \cap Lip_{\mathbb{W},loc}(\mathbb{R}^2)$ for each $p \in [1,2)$: [Monti, S.C., Vittone, 2008],..., [Nicolussi Golo, Ritoré, 2021].

Focus on some results on BP for IG

Theorem [Nicolussi Golo, S.C., 2019]

Let $f \in W^{1,\infty}_{loc}(\mathbb{R}^2) \equiv Lip_{loc}(\mathbb{R}^2)$ and suppose that G_f^X is stable as intrinsic graph, that is, for all $\varphi \in C_c^\infty(\omega)$, the following two conditions are satisfied:

2
$$II_f(\varphi) = \frac{\mathrm{d}^2}{d\epsilon^2} |A_{\mathbb{W}}(f + \epsilon \varphi)|_{\epsilon=0} \ge 0 \text{ (2nd VF)}.$$

Then, for suitable $a, b \in \mathbb{R}$,

$$f(y,z) = ay + b \quad \forall (y,z) \in \mathbb{R}^2.$$
 (IA)

In particular if $f \in Lip_{loc}(\mathbb{R}^2)$ and G_f^X is area-minimizing in \mathbb{R}^3 , then f satisfies (IA)

The Sub-Riemannian Heisenberg group
The Bernstein problem for intrinsic graphs
Results on the Bernstein problem for intrinsic graphs
Proof's techniques

Rmk. Every area-minimizing intrinsic graph is stable; however, the converse need not be true.

Focus on some results on BP for IG

A *ruled surface* in \mathbb{H}^1 is surface $S \subset \mathbb{H}^1$ that can be written as union of horizontal line segments with endpoints in ∂S .

Theorem [R. Young, 2022]

An entire area-minimizing ruled intrinsic graph in \mathbb{H}^1 is a vertical plane.

Example of area-minimizing IG not vertical plane

A counterexample [Monti, S.C., Vittone, 2008]

Let

$$f(y,z) := 2\frac{z}{|z|}\sqrt{|z|} \quad \text{if } (y,z) \in \mathbb{R}^2 \equiv \mathbb{W}.$$

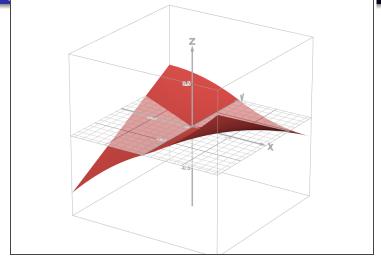
Then

•
$$f \in W_{loc}^{1,p}(\mathbb{R}^2) \cap C^0(\mathbb{R}^2)$$
 for each $p \in [1,2)$;

•
$$f \in Lip_{\mathbb{W},\mathrm{loc}}(\mathbb{R}^2);$$

• G_f^X is a cone, area-minimizing in \mathbb{R}^3 and it is not a ruled surface.

Figure: graph G_t^X in the counterexample



Examples of stable, not area-minimizing IG

Example 1

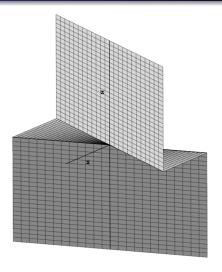
Let $f: \mathbb{R}^2 \to \mathbb{R}$ be

$$f(y,z) := \begin{cases} 0 & z \le 0 \\ \frac{2z}{y} & 0 < z \le \frac{y^2}{2} \\ y & z > \frac{y^2}{2}. \end{cases}$$

Then $f \in W^{1,p}_{loc}(\mathbb{R}^2) \cap C^1_{\mathbb{W}}(\mathbb{R}^2 \setminus \{0\}) \cap Lip_{loc}(\mathbb{R}^2 \setminus \{0\})$ with $1 \le p < 3$ such that:

- G_f^X is a stable cone [Nicolussi Golo, S.C.,2019], but not area-minimizing in ℝ³ [Young, 2022];
- $f \in Lip_{\mathbb{W},loc}(\mathbb{R}^2)$.

Figure: graph G_t^X in example 1



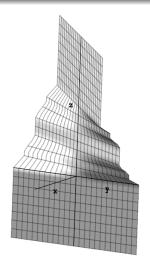
Examples of stable, not area-minimizing IG

Example 2

There exists $f \in W^{1,2}_{loc}(\mathbb{R}^2) \cap C^1_{\mathbb{W}}(\mathbb{R}^2) \cap Lip_{loc}(\mathbb{R}^2 \setminus (\{0\} \times \mathbb{R}))$ such that G_f^X is :

- not a vertical plane;
- a ruled surface:
- stable [Nicolussi Golo, S.C.,2019], but not area-minimizing in \mathbb{R}^3 [Young, 2022].

Figure: graph G_f^X in example 2



A new result on BP for IG

Theorem [Nicolussi Golo, S.C., Vedovato, 2025]

Let $f \in W^{1,p}_{loc}(\mathbb{R}^2)$ with p > 4 and suppose that:

- $\exists k > 0$ such that $\exp(k|\partial_z f|) \in L^1_{loc}(\mathbb{R}^2)$;
- G_f^X is stable.

Then G_f^X is a vertical plane.

In particular, if G_f^X is area minimizing in \mathbb{R}^3 , then it is a vertical plane

Some open problems

Question. What about the Bernstein problem for intrinsic graphs when f only has standard Sobolev regularity or $C_{\mathbb{W}}^1$ -regularity. In other words, is an entire are-minimizing G_f^X still a vertical plane if

•
$$f \in W^{1,p}_{\mathrm{loc}}(\mathbb{R}^2) \cap C^0(\mathbb{R}^2)$$
 for $p \in [2,\infty)$ or

•
$$f \in C^1_{\mathbb{W}}(\mathbb{R}^2)$$
?

1st VF: minimal surface equation for i.g.

Assume $f \in W^{1,1}_{loc}(\mathbb{R}^2) \cap C^0(\mathbb{R}^2)$ and $\varphi \in C_c^{\infty}(\mathbb{R}^2)$:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\epsilon} \bigg|_{\epsilon=0} \mathcal{A}_{\mathbb{W}}(f+\epsilon\varphi) &= \int_{\mathbb{R}^2} \frac{\nabla^f f}{\sqrt{1+(\nabla^f f)^2}} (\partial_y \varphi + \partial_t (f\varphi)) \, \mathrm{d}\mathcal{L}^2 \\ &= \int_{\mathbb{R}^2} \frac{\nabla^f f}{\sqrt{1+(\nabla^f f)^2}} (\nabla^f)^* \varphi \, \mathrm{d}\mathcal{L}^2 = 0 \end{aligned} \quad (\mathsf{IMSE})$$

where $(\nabla^f)^*\varphi := -(\nabla^f\varphi + \partial_t f\varphi)$ (adjoint of ∇^f). If $f \in C^2(\mathbb{R}^2)$, then

$$0 = \int_{\mathbb{R}^2} \frac{\nabla^f f}{\sqrt{1 + (\nabla^f f)^2}} (\nabla^f)^* \varphi \, d\mathcal{L}^2$$
$$= \int_{\mathbb{R}^2} \nabla^f \left(\frac{\nabla^f f}{\sqrt{1 + (\nabla^f f)^2}} \right) \varphi \, d\mathcal{L}^2$$

1st VF: minimal surface equation for i.g.

Therefore, if $f \in C^2(\mathbb{R}^2)$,

$$\nabla^f \left(\frac{\nabla^f f}{\sqrt{1 + (\nabla^f f)^2}} \right) = \frac{\nabla^f \nabla^f f}{(1 + (\nabla^f f)^2)^{3/2}} = 0 \quad \text{in } \mathbb{R}^2.$$
 (IMSE)

Remark. If $f \in C^2(\mathbb{R}^2)$ satisfies (IMSE):

- need not be an intrinsic plane [Danielli,Garofalo,Nhieu, 2008];
- $\nabla^f f$ is constant along the integral curves of $\nabla^f = \partial_y + f \partial_t$: this implies that G_t^X is ruled by horizontal straight lines.

2nd VF for i.g.

Theorem [Monti, S.C., Vittone, 2008]

Let $f \in W^{1,1}_{\mathrm{loc}}(\omega) \cap C^0(\omega)$ and assume that G_f^X is area minimizing in $\Omega = \omega \cdot \mathbb{R}e_1$. Then, for each $\varphi \in C_c^{\infty}(\omega)$,

$$0 \leq II_{f}(\varphi) = \frac{\mathrm{d}^{2}}{d\epsilon^{2}} \mathcal{A}_{\mathbb{W}}(f + \epsilon \varphi)|_{\epsilon=0} =$$

$$\int_{\omega} \frac{(1 + (\nabla^{f} f)^{2}) ((\nabla^{f})^{*} \varphi)^{2} + 2\varphi \partial_{t} \varphi \nabla^{f} f) - (\nabla^{f} f (\nabla^{f})^{*} \varphi)^{2}}{(1 + (\nabla^{f} f)^{2})^{3/2}} \, \mathrm{d}\mathcal{L}^{2}$$

From the Euclidean approach to the Lagrangian one

The strategy: 1st and 2nd VF meant in the Lagrangian point of view rather than in the Eulerian one.

Theorem 1[Nicolussi Golo, S.C., Vedovato, 2025]

Let $f \in W^{1,q}_{loc}(\mathbb{R}^2)$ with q > 2 and $\exists k > 0$ such that $\exp(k|\partial_z f|) \in L^1_{loc}(\mathbb{R}^2)$. Assume it satisfies (IMSE) . Then

(i)
$$f, \nabla^f f \in C^0(\mathbb{R}^2) \cap W^{1,p}_{loc}(\mathbb{R}^2) \ \forall \ p \geq 1;$$

(ii) if
$$\chi(s,\tau):=rac{
abla^f f(0, au)}{2}s^2+f(0, au)s+ au$$
 and $\Psi(s, au):=(s,\chi(s, au))$, then

$$\Psi: \mathbb{R}^2 \to \mathbb{R}^2$$
 is a local p bi-Sobolev homeomorphism $\forall p \geq 1$;

(iii) $\partial_s \chi(s,\tau) = f(s,\chi(s,\tau)) \, \forall \, (s,\tau) \in \mathbb{R}^2$. In particular $\nabla^f f$ is constant along integral curves of ∇^f .

From the Euclidean approach to the Lagrangian one

The new tool for showing Thm. 1 is the following

Theorem [Ambrosio, Nicolussi Golo, S.C., 2023]

Let $I, J \subset \mathbb{R}$ be open intervals with I of length $\ell > 0$. Suppose that $f \in W^{1,1}_{loc}(I \times J) \cap C^0(\overline{I} \times \overline{J})$ and that

$$\int_{I\times J} \exp\left(\frac{\ell p^2}{p-1}|\partial_z f(y,z)|\right) dy dz < \infty.$$

Then, $\forall (y_0, z_0) \in I \times J$, $\exists \Psi : \tilde{\omega} \subset I \times J \rightarrow \omega \subset I \times J \ p$ -bi-Sobolev homeomorphism with $\tilde{\omega} := (y_0 - \epsilon, y_0 + \epsilon) \times (z_0 - \epsilon, z_0 + \epsilon)$ and satisfying

From the Euclidean approach to the Lagrangian one

Theorem 2 [Nicolussi Golo, S.C., Vedovato, 2025]

Let $f \in W^{1,q}_{loc}(\mathbb{R}^2)$ with q > 4 and $\exists k > 0$ such that $\exp(k|\partial_z f|) \in L^1_{loc}(\mathbb{R}^2)$. Assume it satisfies (IMSE) and 2nd VF.

(i) For suitable constants $a, b \in \mathbb{R}$,

$$abla^f f(0, au) = a \quad f(0, au) = b \quad \forall \, au \in \mathbb{R};$$

(iI) if $\chi(s,\tau):=\frac{a}{2}s^2+bs+\tau$ and $\Psi:=(s,\chi(s,\tau))$, then $\Psi:\mathbb{R}^2\to\mathbb{R}^2$ is a homeomorphism and

$$f(s,\chi(s,\tau)) = as + b \quad \forall (s,\tau) \in \mathbb{R}^2$$

In particular G_t^X is a vertical plane.