Blow-ups of minimal surfaces in the Heisenberg group

Yonghao Yu Courant Institute of Mathematical Sciences, NYU

September 12, 2025

Motivation

• Most of the regularity results of the H-minimal surface in \mathbb{H}^n start with some initial regularity.

Motivation

- Most of the regularity results of the H-minimal surface in \mathbb{H}^n start with some initial regularity.
- De Giorgi's regularity theory of the perimeter minimizer in \mathbb{R}^n does not need any initial regularity.

Motivation

- Most of the regularity results of the H-minimal surface in \mathbb{H}^n start with some initial regularity.
- De Giorgi's regularity theory of the perimeter minimizer in \mathbb{R}^n does not need any initial regularity.
- Aiming to reproduce De Giorgi's theory within the context of the Heisenberg group \mathbb{H}^n .

The Heisenberg group \mathbb{H}^n

• The Heisenberg group \mathbb{H}^n is a nilpotent lie group: $\mathbb{C}^n \times \mathbb{R}$ with coordinates (z,t) and group law

$$(z,t)*(z',t')=(z+z',t+t'-2\operatorname{Im}\langle z,z'\rangle),$$

• Lie algebra spanned by left-invariant vector fields :

$$X_k = \frac{\partial}{\partial x_k} + 2y_k \frac{\partial}{\partial t}, \quad Y_k = \frac{\partial}{\partial y_k} - 2x_k \frac{\partial}{\partial t}, \quad T = \frac{\partial}{\partial t},$$

where $z_k = x_k + iy_k, \ k = 1, ..., n$.

• Horizontal subbundle H of $T\mathbb{H}^n$:

$$H(p) := H_p = \text{Span}\{X_1(p), \dots, X_n(p), Y_1(p), \dots, Y_n(p)\}.$$

- Dilation: $\delta_{\lambda}(z,t) = (\lambda z, \lambda^2 t)$
- Box Norm: $||p||_{\infty} = \max\{|z|, |t|^{1/2}\}.$
- Homogeneous distance: $d(p,q) = \|p^{-1} * q\|_{\infty}$.

Horizontal perimeter

Definition

For a measurable set $E \subset \mathbb{H}^n$ and an open set $\Omega \subset \mathbb{H}^n$, the *H-perimeter* of E in Ω is defined as:

$$\operatorname{\textit{Per}}_{H}(E;\Omega) = \sup \left\{ \int_{E} \operatorname{div}_{H} V dz dt : V \in C_{0}^{1}(\Omega;\mathbb{R}^{2n}), \|V\|_{\infty} \leq 1 \right\},$$

where
$$V = \sum_{j=1}^n V_j X_j + V_{n+j} Y_j$$
 and $\operatorname{div}_H V = \sum_{j=1}^n X_j V_j + Y_j V_{n+j}$.

Horizontal perimeter

Definition

For a measurable set $E \subset \mathbb{H}^n$ and an open set $\Omega \subset \mathbb{H}^n$, the *H-perimeter* of E in Ω is defined as:

$$\operatorname{\textit{Per}}_{H}(E;\Omega) = \sup \left\{ \int_{E} \operatorname{\mathsf{div}}_{H} V dz dt : V \in C^{1}_{0}(\Omega;\mathbb{R}^{2n}), \|V\|_{\infty} \leq 1 \right\},$$

where
$$V = \sum_{j=1}^n V_j X_j + V_{n+j} Y_j$$
 and $\operatorname{div}_H V = \sum_{j=1}^n X_j V_j + Y_j V_{n+j}$.

• E is an H-Caccioppoli set in Ω if for any open set $A \subset \Omega$, $Per_H(E; A)$ is finite.

Horizontal inner normal

Definition

We can extend $\mu_E(A) := Per_H(E;A)$ as a Radon measure μ_E on Ω . By the Riesz representation theorem, there exists a Borel function $\nu_E : \Omega \to \mathbb{R}^{2n}$ (horizontal inner normal) such that $|\nu_E| = 1\mu_E$ a.e. and the following formula

$$\int_{\Omega} \left\langle V, \nu_{E} \right\rangle d\mu_{E} = -\int_{\Omega} \operatorname{div}_{H} V dz dt$$

holds for any $V\in \mathcal{C}^1_c\left(\Omega;\mathbb{R}^{2n}\right)$.

Horizontal inner normal

Definition

We can extend $\mu_E(A):=Per_H(E;A)$ as a Radon measure μ_E on Ω . By the Riesz representation theorem, there exists a Borel function $\nu_E:\Omega\to\mathbb{R}^{2n}$ (horizontal inner normal) such that $|\nu_E|=1\mu_E$ a.e. and the following formula

$$\int_{\Omega} \left\langle V, \nu_{\textit{E}} \right\rangle d\mu_{\textit{E}} = -\int_{\Omega} \text{div}_{\textit{H}} \textit{Vdzdt}$$

holds for any $V \in \mathcal{C}^1_c\left(\Omega;\mathbb{R}^{2n}\right)$.

• When ∂E is smooth, $\nu_E(p) = \frac{P(-\nu(p))}{|P(\nu(p))|}$ for $p \in \partial E$, where P is the orthogonal projection onto the horizontal subbundle H.

H-perimeter minimizing

Let Q_r denote the homogeneous cube centered at 0 with radius r:

$$Q_r = \{(z, t) \in \mathbb{H}^n : |x_i| < r, |y_i| < r, |t| < r^2, i = 1, \dots, n\}.$$

Definition

A H-Caccioppoli set E is H-perimeter minimizing in Q_r if:

$$P_H(E, Q_r) \leq P_H(F, Q_r),$$

for any set $F \subset \mathbb{H}^n$ such that the symmetric difference $E \triangle F$ is a compact subset of Q_r .

Strongly H-periemeter minimizing

Let $\overline{Q}_r^{Y_1,+}$ the closure of the cube Q_r relative to the direction Y_1 as

$$\overline{Q}_r^{Y_1,+} = \{ (z,t) \in \mathbb{H}^n : -r < y_1 \le r, |x_1| < r, |t| < r^2,$$
 and $|x_i|, |y_i| < r \text{ for } i = 2, ..., n \}.$

Definition (Monti)

A H-Caccioppoli set E is strongly H-perimeter minimizing in some neighborhood U of 0, if for any $Q_r \subset U$,

$$P_H(E, Q_r) \le P_H(F, Q_r), \tag{1}$$

for any set $F\subset \mathbb{H}^n$ such that $(E\bigtriangleup F)\cap ar{Q}_r$ is a compact subset of $\overline{Q}_r^{Y_1,+}$.

Reduced boundary:

Definition

The reduced boundary $\partial_H^* E$ is the set of points p where,

$$\lim_{r\to 0}\frac{1}{\mu_E\left(B_r(p)\right)}\int_{B_r}\nu_E\,d\mu_E=\nu_E(p),$$

and
$$|\nu_E(p)| = 1$$
.

Reduced boundary:

Definition

The reduced boundary $\partial_H^* E$ is the set of points p where,

$$\lim_{r\to 0}\frac{1}{\mu_E\left(B_r(p)\right)}\int_{B_r}\nu_E\,d\mu_E=\nu_E(p),$$

and $|\nu_{E}(p)| = 1$.

Key facts.

- If ∂E is C^1 , then $\partial_H^* E = \partial E$ and ν_E is the usual horizontal inner normal.
- $q \in \partial_{\mathbb{H}}^* E$ if and only if $au_p\left(q\right) \in \partial_{\mathbb{H}}^*\left(au_p E\right)$

Excess

Definition

Take any $p \in \mathbb{H}^n$, r > 0, and $v \in S^{2n}$. The v-directional horizontal excess of E in $B_r(p)$ is

$$\mathsf{Exc}(E, B_r(p), v) = \frac{1}{r^{2n+1}} \int_{B_r(p)} |\nu_E(p) - v| d\mu_E.$$

The horizontal Excess of E in $B_r(p)$ is

$$\operatorname{Exc}(E, B_r(p)) = \min_{v \in S^{2n}} \operatorname{Exc}(E, B_r(p), v).$$

Excess

Definition

Take any $p \in \mathbb{H}^n$, r > 0, and $v \in S^{2n}$. The v-directional horizontal excess of E in $B_r(p)$ is

$$\operatorname{Exc}(E, B_r(p), v) = \frac{1}{r^{2n+1}} \int_{B_r(p)} |\nu_E(p) - v| d\mu_E.$$

The horizontal Excess of E in $B_r(p)$ is

$$\operatorname{Exc}(E, B_r(p)) = \min_{v \in S^{2n}} \operatorname{Exc}(E, B_r(p), v).$$

• If $0 \in \partial^* E$, then we can find a sequence $r_h \to 0$ such that $\operatorname{Exc}(E, B_{r_h}, \nu_E(0)) \to 0$. The rescaled set $E_h = \delta_{1/r_h}(E)$ converges to some limit set E_0 in L^1 with $\operatorname{Exc}(E_0, B_1, \nu_E(0)) = 0$.

Excess

Definition

Take any $p \in \mathbb{H}^n$, r > 0, and $v \in S^{2n}$. The v-directional horizontal excess of E in $B_r(p)$ is

$$\mathsf{Exc}(E, B_r(p), v) = \frac{1}{r^{2n+1}} \int_{B_r(p)} |\nu_E(p) - v| d\mu_E.$$

The horizontal Excess of E in $B_r(p)$ is

$$\operatorname{Exc}(E, B_r(p)) = \min_{v \in S^{2n}} \operatorname{Exc}(E, B_r(p), v).$$

- If $0 \in \partial^* E$, then we can find a sequence $r_h \to 0$ such that $\operatorname{Exc}(E, B_{r_h}, \nu_E(0)) \to 0$. The rescaled set $E_h = \delta_{1/r_h}(E)$ converges to some limit set E_0 in L^1 with $\operatorname{Exc}(E_0, B_1, \nu_E(0)) = 0$.
- For $n \ge 2$: E_0 is a half-space; For n = 1: E_0 might be a non-planar Y-ruled graph. (t=2xy)

De Giorgi's method

- Lipschitz Approximation (Scheon and Simon): E is a perimeter minimizing set in $B_1(x)$, it can be approximate by some Lipschitz function f where the area of the difference is bounded by some constant times the excess.
- Approximating sequence: Pick a decreasing sequence $r_h \to 0$, a point x in the reduced boundary $\partial^* E$. Let f_{r_h} be the approximate function of $E_{r_h} = \frac{E-x}{r_h}$. When r_h is small, the excess of E_{r_h} in B_1 is small. Then f_{r_h} almost is flat and almost a minimizer of the Dirichlet functional

$$D(f) = \frac{1}{2} \int_{D} |\nabla f_r(x)|^2 dx$$

De Giorgi's method

• Harmonic approximation: $f_{r_h} \cdot C(Exc(E_{r_h}, B_1))$ weakly converges to some harmonic function f in $W^{1,2}$.

De Giorgi's method

- Harmonic approximation: $f_{r_h} \cdot C(Exc(E_{r_h}, B_1))$ weakly converges to some harmonic function f in $W^{1,2}$.
- Decay Estimate: There exists a $\varepsilon_0 > 0$ such that for $x \in \partial E$,

$$\operatorname{Exc}(E, B_r(x)) < \varepsilon_0 \Longrightarrow \operatorname{Exc}(E, B_{kr}(x)) \leq \frac{1}{2} \operatorname{Exc}(E, B_r(x)),$$

for some $k \in (0,1)$ sufficiently small.

- Iterating the decay estimate, we get ∂E is locally a boundary of a $C^{1,\gamma}$ function g for some $\gamma \in (0,1)$.
- Schauder's estimate: By Schauder-type estimate, the reduced boundary $\partial^* E$ is $C^{1,\alpha}$ for any $\alpha \in (0,\frac12)$

Intrinsic graphs

Definition

Let $W = \{(z, t) \in \mathbb{H}^n, x_1 = 0\} = \mathbb{R}^{2n}$ be the vertical hyperplane, for $\varphi : W \to \mathbb{R}$, we define the *intrinsic graph* of φ as

$$gr(\varphi) = \{w * \varphi(w) : w \in W\}$$

and the intrinsic epigraph of φ as

$$E_{\varphi} = \{(w * s) : w \in W, s > \varphi(w)\}$$

where $w * s := (z + se_1, t + 2y_1s), e_1 = (1, 0, ..., 0) \in \mathbb{R}^{2n}$.

Intrinsic Lipschitz graph

Definition

An intrinsic graph $gr(\varphi)$ is *L-intrinsic Lipschitz* with $L \in [0, \infty)$ if for all $p, q \in gr(\varphi)$,

$$|x_1(p)-x_1(q)|\leq Ld(p,q),$$

where $x_1(p)$ is the x_1 -coordinate function.

Intrinsic Lipschitz graph

Definition

An intrinsic graph $gr(\varphi)$ is *L-intrinsic Lipschitz* with $L \in [0, \infty)$ if for all $p, q \in gr(\varphi)$,

$$|x_1(p)-x_1(q)|\leq Ld(p,q),$$

where $x_1(p)$ is the x_1 -coordinate function.

We define the intrinsic gradient of φ by

$$\nabla^{\varphi}\varphi = \left(X_{2}\varphi, \dots, X_{n}\varphi, \frac{\partial \varphi}{\partial y_{1}} - 4\varphi \frac{\partial \varphi}{\partial t}, Y_{2}\varphi, \dots, Y_{n}\varphi\right)$$

Theorem (Bigolin-Caravenna-Serra Cassano)

 $gr(\varphi)$ is an intrinsic Lipschitz graph if and only if $\nabla_{\varphi}\varphi \in L^{\infty}_{loc}(D; \mathbb{R}^{2n-1})$ exists in the sense of distribution.

Figures of an intrinsic Lipschitz graph

Lipschitz approximation

Theorem (Monti)

For L>0, $n\geq 2$, there exists some constant k>1 such that for any H-perimeter minimizing set E in B_{kr} , with $0\in \partial^*E$, there exists an L-intrinsic Lipschitz function $\varphi:W\to \mathbb{R}$ such that

$$S^{2n+1}\left((\operatorname{gr}(\varphi)\triangle\partial E)\cap B_r\right)\leq c(L,n)(kr)^{2n+1}\operatorname{Exc}\left(E,B_{kr},X_1\right),$$

Lipschitz approximation

Theorem (Monti)

For L>0, $n\geq 2$, there exists some constant k>1 such that for any H-perimeter minimizing set E in B_{kr} , with $0\in \partial^*E$, there exists an L-intrinsic Lipschitz function $\varphi:W\to \mathbb{R}$ such that

$$S^{2n+1}\left((\operatorname{gr}(\varphi)\triangle\partial E)\cap B_r\right)\leq c(L,n)(kr)^{2n+1}\operatorname{Exc}\left(E,B_{kr},X_1\right),$$

- For n ≥ 2, small excess ⇒ intrinsic Lipschitz graph with slope proportional to √Exc.
 For n = 1, you only have a universal bound on the Lipschitz constant.
- This theorem also holds for n=1, but the Lipschitz constant L has to be suitably large.

Approximating sequence

Let $E \subset \mathbb{H}^n$ be a perimeter minimizing set in Q_1 with $0 \in \partial^* E$, $\nu_E(0) = X_1$. One can find a sequence of real numbers $r_h \to 0^+$ such that $E_h = \delta_{1/r_h}(E)$ satisfy the following properties:

- $0 \in \partial^* E_h$, and $\nu_{E_h}(0) = X_1$.
- 1 Each set E_h is H-perimeter minimizing.
- lacktriangle Exc $(E_h, B_1, X_1) = (\eta_h)^2 := < \frac{1}{h}$ since excess is dilation invariant.
- **Solution** Each set E_h can be approximate by some L-intrinsic function $\varphi_h: W \to \mathbb{R}$.

Existence of limit

The sobolev space $W^{1,2}_H(D)$ is the set of all $\varphi \in L^2(D)$, such that the distributional derivatives in $\nabla_H \varphi$ are square integrable, where

$$\nabla_{H}\varphi = \left(X_{2}\varphi, \dots, X_{n}\varphi, \frac{\partial \varphi}{\partial y_{1}}, Y_{2}\varphi, \dots, Y_{n}\varphi\right).$$

Theorem (Monti)

Following from the construction above, there exists an open neighborhood $D \subset W$ of 0, real constants $\overline{\varphi_h}$, a limit function $\varphi \in W^{1,2}_H(D)$ and a selection of indices $k \to h_k$ such that as $k \to \infty$,

$$\frac{\varphi_{h_k} - \bar{\varphi}_{h_k}}{\eta_{h_k}} \rightharpoonup \varphi \qquad \text{weakly in } L^2(D),
\frac{\nabla^{\varphi_{h_k}} \varphi_{h_k}}{\eta_{h_k}} \rightharpoonup \nabla_H \varphi \quad \text{weakly in } L^2\left(D; \mathbb{R}^{2n-1}\right).$$
(2)

Properties of limit function

Theorem (revision)

• If E is H-perimeter minimizing in some neighborhood of $0 \in \mathbb{H}^n$, the limit function φ solves the following equation weakly in $D_{1/4}$:

$$\frac{\partial}{\partial y_1} \Delta_0 \varphi = 0, \tag{3}$$

where
$$\Delta_0 = \frac{\partial^2}{\partial y_1^2} + \sum_{i=2}^n X_i^2 + Y_i^2$$
.

• If E is strongly H-perimeter minimizing in some neighborhood of $0 \in \mathbb{H}^n$, then the limit function φ solves the following equation weakly in $D_{1/4}$:

$$\Delta_0 \varphi = 0 \tag{4}$$

Contact flows

• A diffeomorphism $\Psi: \mathbb{H}^n \to \mathbb{H}^n$ is a contact map if $d\Psi(H) \subset H$. Contact diffeomorphisms are the only diffeomorphisms that preserve the H-perimeter.

Contact flows

• A diffeomorphism $\Psi: \mathbb{H}^n \to \mathbb{H}^n$ is a *contact map* if $d\Psi(H) \subset H$. Contact diffeomorphisms are the only diffeomorphisms that preserve the H-perimeter.

Definition

A one-parameter flow $(\Psi_s)_{s\in\mathbb{R}}$ of \mathbb{H}^n is a *contact flow* if each Ψ_s is a contact map

Contact flows

• A diffeomorphism $\Psi: \mathbb{H}^n \to \mathbb{H}^n$ is a *contact map* if $d\Psi(H) \subset H$. Contact diffeomorphisms are the only diffeomorphisms that preserve the H-perimeter.

Definition

A one-parameter flow $(\Psi_s)_{s\in\mathbb{R}}$ of \mathbb{H}^n is a *contact flow* if each Ψ_s is a contact map

- Examples:
 - Left translations: $(z, t) \mapsto (z + z', t + z' 2 \operatorname{Im}\langle z, z' \rangle)$.
 - Rotations: $(z, t) \mapsto (R(z), t)$.
 - Dilations: $(z, t) \mapsto (\lambda z, \lambda^2 t)$.
- Vertical Dilation $(z, t) \mapsto (z, \lambda t)$ is not contact.

Generating function of contact flow

ullet Given a contact vector field V_{ψ} generated by $\psi \in \mathcal{C}^{\infty}(\Omega)$

$$V_{\psi} = \sum_{j=1}^{n} (Y_j \psi) X_j - (X_j \psi) Y_j - 4 \psi T.$$

Generating function of contact flow

ullet Given a contact vector field V_ψ generated by $\psi \in \mathcal{C}^\infty(\Omega)$

$$V_{\psi} = \sum_{j=1}^{n} (Y_{j}\psi)X_{j} - (X_{j}\psi)Y_{j} - 4\psi T.$$

• Then there is a corresponding contact flow $\Psi: [-\delta, \delta] \times \Omega \to \mathbb{H}^n$, such that for any $s \in [-\delta, \delta]$, and $p \in \Omega$, the following relation holds:

$$\Psi'(s,p) = V_{\psi}(\Psi(s,p)),$$

 $\Psi(0,p) = p.$

We say that the flow is generated by ψ .

Step 1: set up

• We assume the generating function $\psi \in C^{\infty}(\mathbb{H}^n)$ for the contact flow $\Psi: [-\delta, \delta] \times D_1 \to \mathbb{H}^n$ is of the form

$$\psi = \alpha + x_1 \beta + \frac{1}{2} x_1^2 \gamma,$$

where α, β, γ are smooth functions in \mathbb{H}^n such that

$$X_1 \alpha = X_1 \beta = X_1 \gamma = 0$$
 in $Q_{1/2}$

Step 1: set up

• We assume the generating function $\psi \in C^{\infty}(\mathbb{H}^n)$ for the contact flow $\Psi: [-\delta, \delta] \times D_1 \to \mathbb{H}^n$ is of the form

$$\psi = \alpha + x_1 \beta + \frac{1}{2} x_1^2 \gamma,$$

where α, β, γ are smooth functions in \mathbb{H}^n such that

$$X_1 \alpha = X_1 \beta = X_1 \gamma = 0 \text{ in } Q_{1/2}$$

• If E is H-perimeter minimizing in Q_1 , we assume:

$$\alpha \in C_c^{\infty}(Q_{1/2})$$
,

then $P_H(E_h,Q_1) \leq P_H(\Psi_s(E_h),Q_1)$.

• If E is strongly H-perimeter minimizing in Q_1 , we assume

$$\alpha(y_1, z_2, \dots, z_n, t) = \int_0^{y_1} \vartheta_0(s, z_2, \dots, z_n, t) ds, \quad y_1 \in \mathbb{R}, \ z_i \in \mathbb{C},$$
(6)

where $\vartheta_0 \in C_c^{\infty}\left(D_{1/2}\right)$ and $X_1\vartheta_0=0$.

(5)

Step 2: First variation under contact flow

Theorem (Monti)

Let Ψ_s be the contact flow generated by V_{ψ} . We have the following first variation formula for any $s \in [-\delta, \delta]$,

$$\left| \Delta_{s} Per_{H}(E, \Omega) + s \int_{\Omega} \left\{ 4(n+1)T\psi + L_{\psi}(\nu_{E}) \right\} d\mu_{E} \right| \leq CP_{H}(E, \Omega)s^{2}, \tag{7}$$

where $\Delta_s Per_H(E,\Omega) = Per_H(\Psi_s(E),\Psi_s(\Omega)) - Per_H(E,\Omega)$, and

$$L_{\psi}\left(\sum_{j=1}^{n}x_{j}X_{j}+y_{j}Y_{j}\right)=\sum_{i,j=1}^{n}x_{i}x_{j}X_{j}Y_{i}\psi+x_{j}y_{i}\left(Y_{i}Y_{j}\psi-X_{j}X_{i}\psi\right)-y_{i}y_{j}Y_{j}X_{i}\psi$$

Step 2: First variation under contact flow

Theorem (Monti)

Let Ψ_s be the contact flow generated by V_{ψ} . We have the following first variation formula for any $s \in [-\delta, \delta]$,

$$\left|\Delta_{s} Per_{H}(E,\Omega) + s \int_{\Omega} \left\{4(n+1)T\psi + L_{\psi}(\nu_{E})\right\} d\mu_{E}\right| \leq CP_{H}(E,\Omega)s^{2},$$

where $\Delta_s Per_H(E,\Omega) = Per_H(\Psi_s(E),\Psi_s(\Omega)) - Per_H(E,\Omega)$, and

$$L_{\psi}\left(\sum_{j=1}^{n}x_{j}X_{j}+y_{j}Y_{j}\right)=\sum_{i,j=1}^{n}x_{i}x_{j}X_{j}Y_{i}\psi+x_{j}y_{i}\left(Y_{i}Y_{j}\psi-X_{j}X_{i}\psi\right)-y_{i}y_{j}Y_{j}X_{i}\psi$$

Minimality condition implies

$$\lim_{h\to\infty}\frac{1}{n_h}\int_{\Omega}\left\{4(n+1)T\psi+L_{\psi}(\nu_{E_{\varphi_h}})\right\}dw=0,$$

Step 3: Further Simplification

Theorem (Citti, Manfredini, Pinamonti, Serra Cassano)

The horizontal inner normal $\nu_{E_{\varphi}} = (\nu_{X_1}, \dots, \nu_{X_n}, \nu_{Y_1}, \dots \nu_{Y_n})$ is of the form:

$$u_{\mathsf{E}_{arphi}}(\mathsf{w}\cdotarphi(\mathsf{w})) = \left(rac{1}{\sqrt{1+\left|
abla^{arphi}arphi(\mathsf{w})
ight|^{2}}}, rac{-
abla^{arphi}arphi(\mathsf{w})}{\sqrt{1+\left|
abla^{arphi}arphi(\mathsf{w})
ight|^{2}}}
ight).$$

Step 3: Further Simplification

Theorem (Citti, Manfredini, Pinamonti, Serra Cassano)

The horizontal inner normal $\nu_{E_{\varphi}} = (\nu_{X_1}, \dots, \nu_{X_n}, \nu_{Y_1}, \dots \nu_{Y_n})$ is of the form:

$$\nu_{\mathsf{E}_{\varphi}}(\mathsf{w}\cdot\varphi(\mathsf{w})) = \left(\frac{1}{\sqrt{1+\left|\nabla^{\varphi}\varphi(\mathsf{w})\right|^{2}}}, \frac{-\nabla^{\varphi}\varphi(\mathsf{w})}{\sqrt{1+\left|\nabla^{\varphi}\varphi(\mathsf{w})\right|^{2}}}\right).$$

• Separate $L_{\psi}(\nu_{E_{\varphi_h}}) = L_1 + L_2$, where L_1 is a quadratic form that contains ν_{X_1} and L_2 is the rest of L_{ψ}

Step 3: Further Simplification

Theorem (Citti, Manfredini, Pinamonti, Serra Cassano)

The horizontal inner normal $\nu_{E_{\varphi}} = (\nu_{X_1}, \dots, \nu_{X_n}, \nu_{Y_1}, \dots \nu_{Y_n})$ is of the form:

$$u_{\mathsf{E}_{arphi}}(w\cdotarphi(w)) = \left(rac{1}{\sqrt{1+\left|
abla^{arphi}arphi(w)
ight|^{2}}}, rac{-
abla^{arphi}arphi(w)}{\sqrt{1+\left|
abla^{arphi}arphi(w)
ight|^{2}}}
ight).$$

- Separate $L_{\psi}(\nu_{E_{\varphi_h}}) = L_1 + L_2$, where L_1 is a quadratic form that contains ν_{X_1} and L_2 is the rest of L_{ψ}
- Since φ_h is intrinsic L-Lipschitz, we can assume $||L_2|| \leq A||\nabla^{\varphi_h}\varphi_h||$ for some constant A, then

$$\lim_{h\to\infty}\frac{1}{\eta_h}\int_{D}|L_2|\,dw\leq\lim_{h\to\infty}\frac{1}{\eta_h}\int_{D}A\left|\nabla^{\varphi_h}\varphi_h\right|^2dw\leq\lim_{h\to\infty}\frac{A}{\eta_h}c_0\eta_h^2=0$$

Step 4: Expanding the quadratic form

• In L_1 , when we set $\beta = \gamma = 0$, for quadratic term that is of the form $Y_i Y_1(\psi) \nu_{X_1} \nu_{Y_i} = Y_j Y_1(\alpha) \nu_{X_1} \nu_{Y_i}$ for $i = 1, \dots, n$. we have,

$$\lim_{h\to\infty}\frac{1}{\eta_h}\int_D\frac{(Y_iY_1\alpha)\nu_{X_1}\nu_{Y_i}}{\eta_h}=\int_DY_i\alpha_{y_1}\cdot Y_i\varphi$$

Step 4: Expanding the quadratic form

• In L_1 , when we set $\beta = \gamma = 0$, for quadratic term that is of the form $Y_i Y_1(\psi) \nu_{X_1} \nu_{Y_i} = Y_j Y_1(\alpha) \nu_{X_1} \nu_{Y_i}$ for $i = 1, \dots, n$. we have,

$$\lim_{h\to\infty}\frac{1}{\eta_h}\int_D\frac{(Y_iY_1\alpha)\nu_{X_1}\nu_{Y_i}}{\eta_h}=\int_DY_i\alpha_{y_1}\cdot Y_i\varphi$$

• The error occurred when Monti was expanding the term $X_jX_1\psi$. It should be γ instead of $x_1X_1\gamma$ when j=1. The later will vanish in the limit, which caused the final integral in his proof to miss a term $\gamma\varphi_{y_1}$.

Final results

• The final equation is of the form:

$$\begin{split} \int_{D} (4(n-1)\beta_{t} + \gamma_{y_{1}})\varphi - \varphi_{y_{1}}Y_{1}^{2}\alpha + \gamma\varphi_{y_{1}} - \\ - \sum_{i=2}^{n} [(X_{i}\alpha_{y_{1}} + Y_{i}\beta)X_{i}\varphi + (Y_{i}\alpha_{y_{1}} - X_{i}\beta)Y_{i}\varphi]dw = 0. \end{split}$$

Final results

• The final equation is of the form:

$$\int_{D} (4(n-1)\beta_t + \gamma_{y_1})\varphi - \varphi_{y_1}Y_1^2\alpha + \gamma\varphi_{y_1} - \sum_{i=2}^{n} [(X_i\alpha_{y_1} + Y_i\beta)X_i\varphi + (Y_i\alpha_{y_1} - X_i\beta)Y_i\varphi]dw = 0.$$

• Letting $\beta = \gamma = 0$, by integration apart, we obtain

$$0 = -\int_{D} \alpha \frac{\partial}{\partial y_{1}} \Delta_{0} \varphi dw$$

Final results

• The final equation is of the form:

$$\int_{D} (4(n-1)\beta_{t} + \gamma_{y_{1}})\varphi - \varphi_{y_{1}}Y_{1}^{2}\alpha + \gamma\varphi_{y_{1}} - \sum_{i=2}^{n} [(X_{i}\alpha_{y_{1}} + Y_{i}\beta)X_{i}\varphi + (Y_{i}\alpha_{y_{1}} - X_{i}\beta)Y_{i}\varphi]dw = 0.$$

ullet Letting $eta=\gamma=0$, by integration apart, we obtain

$$0 = -\int_{D} \alpha \frac{\partial}{\partial y_{1}} \Delta_{0} \varphi dw$$

• If E is strongly perimeter minimizing, $\alpha_{y_1} = \vartheta$ for any test function $\vartheta \in C_c^{\infty}(D_{1/2})$, then we have

$$0=\int_{D}\vartheta\Delta_{0}\varphi dw.$$

Open questions

- Quantitative rates for the convergence to the blow-up profile.
- Possible decay estimate from this PDE.
- ullet Higher-step Carnot groups: does an analogue of $\partial_{y_1}\Delta_0 arphi=0$ persist?