Representaciones

Ejercicio 1: *Representación bidimensional de D*₃

Considera las seis transformaciones asociadas al grupo diédrico D_3 . Si V es el espacio euclídeo 2-dim generado por $\{\vec{e}_x, \vec{e}_y\}$, encuentra la representación unitaria de los elementos de D_3 en V con respecto a esa base. Demuestra que es irreducible.

Ejercicio 2: Representación bidimensional de las rotaciones

Demuestra que la representación real 2-dim de las rotaciones en el plano con respecto a la base $\{\vec{e}_x, \vec{e}_y\}$ puede ser descompuesta en dos representaciones 1-dim si se engloba en un espacio vectorial complejo.

Ejercicio 3: Reducción de representaciones

Determina la transformación de semejanza que reduce la representación 2-dim de C2

$$D(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
; $D(a) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

a forma diagonal.

Ejercicio 4: Clases de conjugación

Sea T una rep matricial irred del grupo finito G y sea C una clase de conjugación en G. Demuestra que $\sum_{g \in C} T(g)$ es un múltiplo de la matriz identidad.

Ejercicio 5: *Caracteres*ⁿ

Sea G un grupo de orden N y sea $\chi(g)$ un carácter de G. Probar que $N^{-1}\sum_{g\in G}[\chi(g)]^n$ es un entero no negativo para cualquier número natural n.

Ejercicio 6: Producto directo de representaciones

Sean (x_1, y_1) y (x_2, y_2) las coordenadas de dos vectores 2-dim que transforman independientemente bajo transformaciones de D_3 como se especifica en el Ejercicio 1. Considera el espacio de funciones generado por los monomios x_1x_2 , x_1y_2 , y_1x_2 , y_1y_2 . Demuestra que la representación de D_3 en este espacio 4-dim es el producto directo de la representación del Ejercicio 1 por sí misma.

Ejercicio 7: Coeficientes de Clebsch-Gordan

Reduce la representación 4-dim de D₃ obtenida en el ejercicio anterior a sus compo-

nentes irreducibles. Encuentra los coeficientes de Clebsch-Gordan.

Ejercicio 8: Irreps del grupo tetraédrico

El grupo tetraédrico *T* está formado por todas las rotaciones que dejan invariante un tetraedro regular. Contiene 4 ejes triples y 3 ejes dobles. Enumera los elementos del grupo, las clases y los grupos invariantes. Encuentra las irreps y construye la tabla de caracteres.

Ejercicio 9: Caracteres de S₄

Construye la tabla de caracteres de S_4 .

Ejercicio 10: *Caracteres de D*₄

Enumera las irreps del grupo diédrico D_4 . Encuentra la tabla de caracteres para esas representaciones.