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Introduction || Why quantum fields?

¢ The Quantum Field Theory (QFT) is a synthesis of

— Special Relativity and

— Quantum Mechanics

[It is possible to write a relativistic version of Schrodinger equation. In fact, he

was the first to come up with what we call today the Klein-Gordon equation, that

he later discarded because it couldn’t describe properly the fine structure of
hydrogen spectrum, so he had to settle for its non-relativistic limit]

* However, wave equations (relativistic or not) cannot explain particle number

changing processes

Moreover, relatistic wave equations suffer from pathologies:

— negative probability densities
— negative energy solutions

— violation of the causality principle

(non vanishing probability of particle propagation beyond the light cone)

Introduction || Why quantum fields?

e The QFT:

— provides a natural framework for states with arbitrary number of particles

(Fock space)

— makes sense of negative energy solutions
(antiparticles)

— solves the causality problem

(a particle propagating beyond the light cone is indistinguishable from its
antiparticle going in opposite direction; both amplitudes cancel each other)

— explains the spin-statistics connection
(as a consequence of field quantization)

— allows calculation of physical observables with very high accuracy in

agreement with experiment (cross sections, lifetimes, magnetic moments, ...

ex: g./2=1.001159 652182032 (720)
th: QED (5 loops!)

= a1 = 137.035999 150 (33)

)
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Introduction || Notation, units and coventions

e We will use natural units # = ¢ = 1. Then, the following physical magnitudes
have the same dimensions: [length] = [time] = [energy]™ 1 = [mass] !

e A useful relation is:

hic = 197.3269631(49) MeV fm

fic ~ 200 MeV fm = 25 GeV 2 ~ 1073 m? = 10 mbarn (1)

1 fm = 10" m (one Fermi, the order of the proton radius), 1 barn = 1072 cm?

* Our sign convention for Minkowski metric is

1 0 0 O 1000
0 -1 0 O 0100
guw =g" = , 8 =8"gm =0 =
. 0 0 —1 0 ' T Joo1o
0 -1 0001
Introduction || Notation, units and coventions
* We will use Einstein convention implying summation over repeated indices:
3
Bl = Z AuB' = g, A'BY = AYBY — A'B' — A’B* — A°B, (3)
where A} = (AO A) = (A, A1 A2, A3) are contravariant vectors and
Ay = guA’ = (A —A) = (A° — A2, —A3) = (Ao, A1, Aa, A3) are covariant.
In particular, xt = (xO, X) = (¢, x) and
9 9
oy==—, o=_— 4
O=0,0" =0 —-V?, V>*=0:+0;+0;. (5)

Greek indices (i, v, .. .) take values 0,1,2,3. Latin indices (i, j, .. .) are reserved for
spatial components. The four-momentum is then

pr=id" = (p°,F) = (E,p), pup! =E—p =m*, (6)
: . 0 . d . 0 . :
pozlaozlg, p lak_la_xk:_lﬁ:_lakz_IVk (7)

()
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Introduction || Notation, units and coventions

¢ We will use Heaviside-Lorentz units for electromagnetism in which the
fine structure constant is

e2

= 47thce

=1/137.035999 150 . (8)

Then the electric charge unit for i = ¢ = 1 is e = v 47ta (dimensionless),
Maxwell equations read

’ VXE+8¢§:0 (9)

and the Coulomb potential between two charges Q1 = eq; and Q) = eq; is

V(r) = Q417TQ1’2 = qlqz% ) (10)

local/jillar

Lie groups

* A group is a set of elements G, not necessarily countable, with an internal
operation satisfying the requirements: asssociativity, existence of a neutral
element e and existence of an inverse element a~! for every element 4.

* The elements g of a Lie group depend in a continuous and differentiable way on a
set of real parameters 6,, a =1,..., N, namely g(0), where:

2(0) =e (the neutral element)
g 1(8) = ¢(—8) (inverse element).
The Lie group is also a manifold. N is the group dimension.
* A subgroup is a subset of G which is also a group.
— An invariant (or normal) subgroup H is such that Vi € H and Vg € G, ghg™! € H.

— A simple group is a nontrivial group whose only invariant subgroups are the
trivial group and the group itself.

For instance, SU(n) is simple and U(n) is not simple.

10
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Lie groups

e A representation R maps every element g to a linear operator Dg(g) on a vector
space, § — Dg(g), such that:
(i) Dr(e) = 1 (unit operator),
(i) Dr(81)Dr(82) = Dr(8182)-
On a vector space of finite dimension, g is represented by a matrix n x n,
[Dr(2)] j» inducing a linear transformation on the vector space which is given by
how it acts on the basis vectors (¢, ...,¢"), ¢' — [Dg (g)]i].gbj.

e Two representations R and R’ are equivalent if 35 such that
Dr(g) = S'Dr/(g)S, Vg. Namely, they are related by a change of basis.

* The representation R is reducible if it leaves invariant a nontrivial subspace.
Otherwise it is irreducible (irrep). We say that R is completely reducible if Vg,
Dr(g) can be written in blocks, i.e., one can choose a basis {¢'} so that there are
vector subspaces not mixing with the others under the action of the group. In this
case, R can be written as the direct sum of several irreps: Dr = D1 & Dy ® ...

11
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Lie groups

¢ If an element of a Lie group is infinitely close to the identity then
Dgr(06) =1 —i60°T§. The operators Tf = idDgr/00%|,_,, witha =1,...,N, are
the group generators in the representation R. The number of generators is the
group dimension. For an arbitrary transformation: Dg(0) = exp{—i0°T¢}.

— If Dr is a unitary representation (the inverse of each element is its adjoint)
then the generators are Hermitian.
And every unitary representation is completely reducible.
Remember that physical observables are Hermitian operators.

e The generators satisfy the Lie algebra: [T?, T?] = if"™°T¢, where f*° are the
structure constants of the group, independent of the representation. In order to
find the group representation it is enough to find the algebra representation.

e If G is Abelian, [T% T?] = 0 and exp{—ia"T"} exp{—ip’T"} = exp{—i(a® + B°)T*}.
The irreps of an Abelian group are one-dimensional.

12
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Lie groups

e Casimir operators are those commuting with every generator. They are a multipleg
of the identity and the proportionality constant A is used to label the irreps. i

— For instance, SU(2) (group of rotations in three dimensions) has three generators,
the angular momentum operators J* with k = 1,2,3,
satisfying the Lie algebra [J¥, J/] = iek/" ™.
SU(2) has one Casimir operator: J2 = (J1)2 + (J2)2 + (J3)2 = AL, with A = j(j +1).
The irreps of SU(2) are labeled by j = 0, %, 1,... and have dimension 2j + 1.

Here € is the totally antisymmetric Levi-Civita tensor,

+1 si (ijk) is an even permutation of (123),

ik ={¢ 1 si (ijk) is an odd permutation of (123), (11)

€

0 otherwise.

13
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Lie groups

e A Lie group is compact if its parameter space is compact.
Examples: the group of rotations is compact; the group of translations is not.

— If a group is compact the parameter labeling the irreps takes discrete values
(e.g. the spin j of the group of rotations) and if it is not compact it takes
continuous values (e.g. the momentum p of space translations).

— The finite dimensional reps of a compact group are unitary.
The finite dimensional reps of a not compact, simple group are not unitary.?

¢ The Lorentz group, that we will review in the following, is a simple and non
compact Lie group. Its finite-dimensional representations are not unitary and its
unitaty representations are infinite-dimensional (Hilbert space of one particle).

“However, if the group is not simple the reps may be unitary or not. An example of a non compact,
non simple group with unitary finite dimensional representations is the group of translations in one
dimension. The group of boosts along one direction has non unitary representations. This latter group
is a non invariant and non simple subgroup of the Lorentz group, which is simple.

14



The Lorentz group

¢ It is defined as the group of linear coordinate transformations
s M = ANxY, uve{0,1,2,3}, x*=(txvy,z)
preserving the quadratic form
xuxt = guat'x’ = # —x* —y* — 2%
Therefore, it is isomorphic to the group O(1,3). Formally,
GuAx = g (A3 (A%37) = gooa?x”  (¥x)
=8pc = gyvAﬂpAVa = (AT)pyguvAVa
=g =ATgA.

The Lorentz group

* On the other hand, from the 00 component of (15),
3 A% >1
1= (A%)? =Y (A (A >1= 0=
A% < -1

and from (16),

(detA)? =1 = detA = +1.

Therefore, we can distinguish four types of Lorentz transformations:

local/jillana

(12)

(13)

(14)
(15)
(16)

15
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(17)

(18)
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The Lorentz group

1. Orthochronous (AO0 > 1) proper (det A = +1)

They form a subgroup. It is isomorphic to SO(1,3). From now on, we will refer to j
this as the Lorentz group. Its elements are continuous transformations (Lie group)
that can be connected with the identity by successive infinitesimal
transformations. They are:

* rotations in three space dimensions:

* boosts (pure Lorentz transformations):

x x

The remaining transformations do not form a group and can be written as the
product of inversions (discrete transformations) and orthochronous proper
Lorentz transformations Ap. They are the following

17
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The Lorentz group

2. Non orthochronous (AO0 < —1) proper (det A = +1)
Transformations of the kind:
AP X {dlag(_; A _)/ dlag(_/ — +/ +)/ dlag(_; +/ — +)/ dlag(_/ +/ +/ _)}
They include the total inversion, diag(—, —, —, —).

3. Orthochronous (AOO > 1) improper (det A = —1)
Transformations of the kind:
AP X {dlag(+/ +/ —|—/ _)/ dlag(+/ +/ — —I_)/ dlag(+/ — +/ +)/ dlag(+/ Y _)}
They include the space inversion, diag(+, —, —, —).

4. Non orthochronous (AO0 < —1) improper (det A = —1)
Transformations of the kind:
AP X {dlag(_l A +)/ dlag(_/ “ +/ _)/ dlag(_l +/ s _)/ dlag(_/ +/ +/ +)}
They include the time inversion, diag(—, +, +, +).

18
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The Lorentz group

* Let us see the number of parameters of the Lorentz group (of orthochronous
proper transformations). Taking an arbitrary infinitesimal transformation
A, =60 + Wt equation (15) implies:

oo = gprypAva = gyv(ég + wyp)(ég +w'y)

Therefore, w is antisymmetric and has 6 independent parameters.

Any A can be written as the product of rotations (R), that can be parametrized by
3 angles 0 € [0,27t] about the axes x, y, z counterclockwise, and boosts (L), that
can be parametrized by the 3 components of the velocity B € (—1,1) along the
axes x,Y, z:

A = RL
19
The Lorentz group
¢ In particular,
10 0 O 1 0 00 1 0 0 O
01 0 O 0 cg O s 0 cp —sp O
Ry = , Ry = ? “|, R. = R )
00 Cop —Sp 0 0 1 0 0 S9 Cg 0
00 S Cy 0 —Sp 0 Co 0 0 0 1
v v 00 v 0 9B 0 v 00 7B
00 0O 1 0 O 0 10
Lx — ,)/IB ’y 7 L]/ - 7 LZ — 4 (21)
0O 0 10 Y8 0 o4 O 0 01
0O 0 01 0O 0 0 1 B 0 0 v

with ¢y = cosf, sy =sinfyy=1//1— B2

20



The Lorentz group

e It is covenient to replace the velocity parameter B by the rapidity # € (—o0, )

Ry

which is an additive parameter, as is the angle 6.

Namely, if we perform two boosts of rapidities 174 and #p along the same
direction 7 then Ly (74)La(n8) = La(174 + 11B)-

This is very easy to check from the properties of the hyperbolic functions, since

v = coshyn, B = sinhy. (23)

21

The Lorentz group

/

& ’ x! cos —sinf x
@ (y’) N (sin@ cos ) (y)
t’ t P\ _ [ B (¢
i, x! B x

v =coshy, B =sinhy

local/jillana
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The Lorentz group

* Let us find the generators algebra taking infinitesimal transformations:

0 0 O
1 0 0

Rx(66) =

R:(60) =

(1

0
0
0

O =

The Lorentz group

o oo =, O O O = O

o = O O
(e}

—_

S = O
_ O O O

o =k O O

=1-is0]' = Jt =

=1-i60]* = J* =

=1-i00]° = J® =

=1—-ionK! = K =

=1—ionk?® = K> =

=1-i6nK> = K> =

0
0
0

0
0
0
0

0

o O O O

o O O

ey

o o o O

0
0
0
0

0
0
0

—1

[

o O O

o O O o o o o o

- o O O O

o O o o o o o

0

c O o o o o

o O O o O O o O

o O O

local/jilla

(24)

(25)

(26)
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(27)

(28)

(29)
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The Lorentz group

e Note that, because the boost parameter space is not compact, the boost generators -
are not Hermitian ((K™)" = —K™). 8

¢ The Lie algebra of the Lorentz group is

[]k’ ]é] — iekém]m, [Kk, Kf] — _iekém]m, []k, Kf] — iekmem (k, E,m c {1, 2’ 3})
(30)

* We see that rotations close the algebra, since SU(2) is a subgroup of the Lorentz
group. However, boosts are not a subgroup.

e [t is convenient to rewrite these 6 generators as

m_l m | pm m_l m __ pm
A" = S(J" iK™, BT = (" —iK™). (31)

A"y B™ are Hermitian and satisfy the Lie algebra:

[AF, Af] = ie¥mAm, [BF,BY] = ie"mB™, A, Bf] =o. (32)

25
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The Lorentz group

* Then we see that the Lorentz group is locally isomorphic to the SU(2) xSU(2)
group, because both have the same algebra.

> This allows us to label its irreps as (ji, j2), of dimension (2j; + 1)(2j2 + 1).

> Note that we have found finite-dimensional irreps of the Lorentz group, but they
are not unitary, because it is not compact:

+7-K)}, (33)

A = exp{—i(0™]" +"K™)} = exp{—i(f- }
-K)}. (34)

Al =exp{i(f-T+7-K)} # A" = exp{i(6-

26



The Lorentz group

local/jillana

* Another way to write the Lorentz group generators is the following. We take as

parameters the 6 independent elements of an antisymmetric matrix wy, = —wyy. ‘:

Then the generators are the 6 independent components of the antisymmetric

operator [/ = —]J'F,
A i ‘M‘V

(the factor 5 compensates for the sum Vy, v instead of Vu < v) with

: ]l _ ]23 — _]32
]k — Eekémjfm - ]2 _ ]31 _ _]13
]3 ]12 ]21

Kk — ]Ok — _]kO'

The Lorentz group

* These parameters relate to angles and rapidities by

ol — 2B — _ 2

= W23 = —Ws32
Gk — %e.kﬁmwfm - 92 _ w31 _ _w13 — Wy = —wi3
03 = w12 = (2 — Wiy = —wy

77k _ ka _ _ka = —Wor = Wio.

¢ The generators can be written in a covariant way as
(7)o = i(g"67 — 8" %).
> The Lie algebra of these generators is

[, JP7] = i(gYPJHT — gHP VT — VO JHP | gl VP,

(35)

(36)

(37)

27
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(38)

(39)

(40)

(41)
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The Lorentz group || Tensor representations

¢ We have just shown the four-dimensional representation of the Lorentz group,
that served to define the group. We may ask whether it is irreducible (it is) or
whether it is its smallest nontrivial representation (it is not, as we will see). This is
the so called vector representation of the Lorentz group:

2 7o 2] i ¥
4: A = {exp{—l(f)-]%—ﬂ-l()}} = [exp{—%wal;]“ﬁ}] (42)
v v
A four-vector V¥ (or V) is a vector of the invariant irreducible vector space on
which A acts:

VE—= ALVY, Vs AV (43)

Note that A, and A,/ are equivalent representations, since they are related by a
similarity transformation S = g,

A =g A gov. (44)

It is customary to identify the term representation with that of representation
space. In this sense, we say that V¥ and V), are equivalent irreps.

29
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The Lorentz group || Tensor representations

* V), is the vector associated to V# in the dual space, so the matrix A;}’ is the inverse
of A¥ v. In fact, using (15): g

AYAY, = A ght A ov = N gue A" = grpg? = oL, (45)

* One can build higher dimensional representations by performing the tensor
product 4 ® 4 ® - - -. They are called tensor representations and their vectors are
tensors with several indices (its number is called rank). Then, a tensor of two
(contravariant) indices TH¥ transforms as:

404: TV AAY, ™Y (46)

The tensor-product representation is reducible. In particular, if T#" is symmetric
(antisymmetric) its transformed tensor is also symmetric (antisymmetric).
Moreover, the trace is invariant (scalar).?

aThe trace T = gy TH — gWAV o NG TP = gpo TP? = T, where we have used (15).

30



The Lorentz group || Tensor representations

local/jilla

* In fact, rank-two tensors can be written as the direct sum of invariant irreducible -

subspaces:

14=1H6D9, (47)

so any rank-two tensor can be decomposed in

™ = }Lgi“/T + AW+ SH,
T=guT" = Ti; (trace),

1
AW = —(TH — T"") (antisymmetric part),

1
(TH 4+ T") — 1 g"'T (traceless symmetric part).

I\)|HN

S =

* By the same reasoning as before, T, TPL, TVV and Ty, are equivalent reducible
representations of the Lorentz group.

* An example of a rank-two tensor is the metric tensor g, which is also invaria
from the definition of Lorentz transformation (15).

The Lorentz group || Tensor representations

¢ An important irrep of any Lie group is the adjoint representation, whose
dimension is equal to the number of generators, that can be built from the
structure constants,

b . cab
(Tay)te = —if.

(48)
(49)
(50)

(51)

nt

31
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(52)

> One may show, in general, that the structure constants satisfy the Lie algebra of

the group using the Jacobi identity:
[A,[B,C]] +[B, [C, A]] +-[C, [A, B]] = 0,
replacing A = T%, B = TP, C = T¢, which implies

fﬂbdfcde —l—bedfade +fcadfbde —0.

(53)

(54)

> In the case of the Lorentz group, locally isomorphic to SU(2) xSU(2), the adjoint

representation is the antisymmetric tensor representation A*".
(The structure constants of SU(n) are antisymmetric in the three indices.)

32



The Lorentz group || Tensor representations

¢ It is worth looking how the irreps of the Lorentz group transform under the

local/jillana

subgroup of rotations. In general, the reducible representations can be written as -

the direct sum of several irreps of the rotation group, each one labeled by a value

of the spin j (remember that they have dimension 2j 4-1). Then,

V# = (V9 V) € 4 under the Lorentz group,
V# € 0@ 1 labeled by j = 0,1 under the rotation group,

i.e. V0 is a scalar under rotations (spin 0) and V is a 3-vector (spin 1).
On the other hand,

T c4®4=1®639 under Lorentz

(55)
(56)

(57)

=01)®(0e1)=08(1®1)® (051 2) under rotations, (58)

where we have used that the direct product of irreps of the rotation group is

®p=l1—jl®lH—Rn+1& i+l

The Lorentz group || Tensor representations

> Therefore,

1: TeO (also a scalar under rotations)

6: AW eclm1 Al (two independent 3-vector under

%eijkAjk rotations mixing under Lorentz)

For instance, the electromagnetic tensor F/V contains two 3-vectors:
the electric field E' = —F% and the magnetic field B = —Je/*Fik,

Another example are the generators themselves (36,37).

SOO

9: SMec0d1@2 v
Sii con ZSii — g0
;

> In general, a tensor T#'F with N indices contains spins j = 0,1,..., N.

(59)

33

local /jillar

(60)

(61)

(62)
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The Lorentz group || Tensor and spinorial representations

* We have seen that the vector representation and all the tensor representations of
the Lorentz group contain representations of integer spin j (0, 1, ...) under the
rotation group.

e Strictly speaking, the representations of half-integer j (%, %, ...) are not valid,

because for them R/(0) # R/(27r) = —1. However, since the observables in
quantum mechanics are quadratic in the wave function, a global minus sign is
acceptable and we can allow them. Then the physically relevant rotation group is

local/jilla

not SO(3) but SU(2) (both have the same algebra, and hence, the same irreps). The

fundamental representation of SU(2) (group of 2 x 2 unitary matrices with unit
determinant) has j = % (dimension 2) and is called spinorial representation or
spinor. The SU(2) generators in this representation are one half of the Pauli
matrices:

. (01 , [0 i ., (1 0

The Lorentz group || Tensor and spinorial representations

35
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» Any SU(2) representation can be obtained from the tensor product of the spinors. -

For example,

®

N =
N -

 Likewise, the representations (ji, j) of the Lorentz group can be built from the
tensor product of the spinorial representations (3,0) and (0, 3),
both of dimension (2j; +1)(2j» +1) = 2.
Their vectors are called Weyl spinors ¢, € (3,0), ¢ € (0, 1) and they have two
components.

They are denoted left-handed and right-handed for reasons that we will see soon.

=0&1. (64)

36
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The Lorentz group || Tensor and spinorial representations

e Let us find the explicit form of the spinorial representations (3,0) and (0, 3):

— 1 - — = 1 - — - — - — — —
A=S(+iK), B=3(J-iK)=]=4A+B, K=—-i(A-B) (65
and recalling (33) we have
— (_j' = =g 5- = 5-
YL A—El B—0:>]—§, K——IE
Ar =exp{ (—i6 —7) - g} (66)
- = 0 - 0 - .0
ll)R A—O, B—E:>]—§, K—IE
AR:exp{(—1§+17)-g} (67)
37
The Lorentz group || Tensor and spinorial representations
e Note that (3,0) and (0, 3) are conjugate representations:
c?Ajo? = Ag. (68)

To check it, use 0?cic? = —¢

i
> We can then define the conjugate spinor of ¢, that transforms as a g, as follows:
¥ =ic*p; € (0,1) (thei factor is a convention) (69)
since 02y} — o?(ALYL)* = o2 Afo?o?pi = Ar(c?y}).
> Then, using c?* = —0?, we must consistently define the conjugate of ¥,

transforming as a 1, as follows,

Yk = —ioc*yg € (3,0). (70)

38
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The Lorentz group || Tensor and spinorial representations

e It is worth mentioning that the spinorial representations are complex, because
T |
YL He><p{(—19—17)5}1/JL, (71)
oz o O
YR |—>exp{(—19—|—11) 'E}IIJR. (72)

Although ¢ and g may be real in a given reference frame they will be complex
in another.

¢ However, in the vector representation and the higher rank tensor representations
one can impose the condition to be real, V’j =V T;‘;v = Ty, etc., which is

consistent for every reference frame because A’ is real.

39
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The Lorentz group || Tensor and spinorial representations

* By the way, the spinorial representation (3, ) has complex dimension 4.
Its vectors are composed of two independent Weyl spinors ((¢1.)a, (Cr)g),

a, B e {1,2}.

One can see that
t u d t—=u
GrO"Yr and oty
transform as contravariant four-vectors where

L= —i0’Cy, yr=ic’yi, of =(1,7), o=(1,-7)

40
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The Lorentz group || Field representations

¢ A field is a function of the spacetime coordinates with well defined
transformation properties under the Lorentz group.

In general, if the coordinates transform
Xt = A XY (infinitesimally: x* = x# + 6x") (73)
a field ¢(x) (that may have or not Lorentz indices or others) transforms

¢(x) = ¢ (x). (74)

41
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The Lorentz group || Field representations

* Our aim is to build Lorentz invariant field theories. For finding the
representations of the Lorentz group in this space of functions we have to
compare ¢(x) with its infinitesimal transformation ¢’ (x) = ¢'(x" — x):

p(x) = ¢'(x) — ¢p(x) =

= —Ewwjgvcp(x), (75)

where | g,“/ are the generators in the infinite-dimensional representation of the
Lorentz group on the field ¢. In the next-to-last step we have approximated
dp¢’(x) by 9p¢p(x), since they differ at the next order in dx, and in the last step we
have written

529 = (M ox®, (M) = (5055 — g05%). (76)

42



Field representations || Scalars

¢ Under Lorentz transformations, scalar fields satisfy

local/jillana

¢'(') = p(x). 77)

¢ Then, from (75),
5¢(x) = 5w (") (x) = = LM (x) 78)
=LM = —(J")fx79, = i(x"0" — x"9M). (79)

* Recalling that p# = i0¥, we see that the generators read L*" = x#p" — xVpt. In
particular, the generator of rotations is the orbital angular momentum, as
expected:

1

L= Eeijijk = eijkxjpk. (80)

* Note that the finite-dimensional representations of the Lorentz group may be
unitary and indeed this is unitary because the L*" are Hermitian.

Field representations || Weyl, Dirac and Majorana

¢ Under Lorentz transformations, Weyl fields satisfy
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YL(x) = P (X)) = Apyr(x),  Pr(x) = Pr(x') = Argr(x). (81)(

e Then, from (75) and focussing on ¢ (x),

Spu(x) = (AL~ 1)PL(x) + s (") ox Dy (x)
= —ww S pu(x) — 5 :

where we have applied (78) to the second term and we have replaced

i

—

N QL

1 R TL= T
AL—HE—Ewwsﬁvz—l(G-Hn-K), ] = >
e Therefore, the generators on this Weyl field representation are J}' = L* + S},

In particular, the rotation generators (total angular momentum) are J: = L' + S,
which have two contributions: the orbital part, L = eliky pk, and the one due to

spin, S' = %ai.

WL (x) = —swu ) Pr(x),  (82)

, R=—iZ. (83)
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Field representations || Weyl, Dirac and Majorana

local/jilla

The boost generators are ]gk — [0k _ %(fk, which are not Hermitian, so the
infinite-dimensional representation of the Lorentz group on Weyl fields ¢
is not unitary.

Likewise, check that for pgr(x),

i
Sr(x) = —swwlg Yr(%), Jp' = L'+ Sy, (84)
where
i -d - — - - 5’ — .(_7)-
Ag—1= —Ewwsg": —i(6-J+17-K), ]:E’ KZIE. (85)

The rotation generators, Ji, = L' + S, are the same as for ¢y (x). The boost
generators are ]%k = [% 4 %O'k, also not Hermitian, so the infinite-dimensional
representation of the Lorentz group on Weyl fields i is not unitary either.
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local /jillar

* Note that under a space inversion, denoted parity transformation (excluded from -

our definition of the Lorentz group),
(t,%) = (t,-X¥) =p— —B=>]—], K—-K=>A-B (86)

mirror

—o— [] —o—

«—P —>

This means that the representation (ji, j) of the Lorentz group is not a valid
representation when parity is included, unless j; = jp, since the
parity-transformed of a vector in (ji, j2) is a vector in (jp, j1). In particular, Weyl
spinors, regardless of whether they are in (3,0) or (0, ), do not form invariant

subspaces under parity.
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Field representations || Weyl, Dirac and Majorana

* However, we can define the Dirac field, of four complex components:

local/jilla

L(x
o) = [P 57)
Pr(x)
that under Lorentz transformations (orthochronous, proper), x# — x'* = AP xY,
A 0
P(x) = ¢/(x) = App(x), Ap=|" " (88)
0 Ag

and under parity, x# = (t,X) — I = (t, —X),

01\
)L e

Pr(X)

P(x) = (%) = (%(f)
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Field representations || Weyl, Dirac and Majorana

* The charge conjugate of a Dirac spinor is another Dirac spinor,

local /jillar

o [vk —io?yy {0 )
_ _ _ 90
’ (wi) (W) ( 0)”’ -

and, of course, (¢°)¢ = . Note that the coordinates x* do not change under

charge conjugation.

¢ Dirac fields, not Weyl fields, are the basic objects in field theories which are
invariant under parity, like QED (quantum electrodynamics) and QCD (quantum

chromodynamics).
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Field representations

Weyl, Dirac and Majorana

* Finally, a Majorana spinor is a Dirac spinor with non-independent ¥ and ¥

components,

gic*yp;

¢R—€i02¢z:>¢M—( YL ) > =1.

A Majorana spinor has two degrees of freedom, like a Weyl spinor, but it is

charge self-conjugate,

Vv = <.€2¢L*> ="M
10"y

Field representations

vector

e Under Lorentz transformations, a vector field satisfies

VH(x) — VH(x') = AL VY (x).

¢ Then, from (75) and (78),

SVH(x) = (A —

i

SV (x) — %wPULWVV(x) = —wpelf V! (x).

e Writing ]@U — L[P7 + SP7 as before, we see that

Ayv—éf,lz—

i i
E“’PU(SQ/U)P[V = _E“’W(Iw)ﬂv = S = Jr.

local/jillana

1)

(92)
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(93)

(94)

(95)
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Poincaré group

e The Poincaré group includes Lorentz transformations and spacetime translations, -
xt s X' = xF 4 aV, (96)
* Taking an infinitesimal translation a# = €,

X't = (1 —ie,PP)xt = oxt = e = —ie, PPt
= PP = io0’. 97)

We see, as expected, that the generators of translations are the 4 components of
the four-momentum operator P¥. Then, a general translation reads exp{—ia, P*}.
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Poincaré group

¢ The Poincaré algebra, written in a covariant fashion, is

[P¥,P'] =0, (98)

[PF, JP7] = i(8"P? — g""PF), (99)
[, JP7] = (7P T — g1 T — "] + gH7 ). (100)

* The last line corresponds to the algebra of the Lorentz subgroup (41). Translations
are also a subgroup. It is convenient to write explicitly the commutation relations
of the generators of translations, rotations and boosts:

[P ] =0, (101)
[Pk, ]f] — iekfmpm, (102)
[P°, K] = iPk, (103)
[Pk, k'] = iPOsk (104)
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Poincaré group

e Note that, since the Hamiltonian is H = PY (generator of time translations), we

local/jillana

have that [H, PX] = [H, J¥] = 0 but [H, K¥] # 0. This does not mean that only linear

momentum and angular momentum are conserved quatities, because K' depends

explicitly on time, and

d 0

dt ot

As a consequence, there are also conserved quantities associated to boosts, as we
will see in next chapter when we will study the Noether’s theorem.

Poincaré group || Field representations

* We have seen already that fields form infinite-dimensional represenations of the
Lorentz group, with generators

—KF =i[H, K" + —K* = 0. (105)
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JH = L' + SH, (106)

where L' =i(x#9" — x'0") and S*” depends on the field type (scalar, spinorial, ...)

* Let us find now the representation of translations. To that end, we impose that
every field component, whether it is tensorial or spinorial, must satisfy

o (') = p(x), " ==xt+at (107)

Then, performing an infinitesimal translation a# = €¥,

0p(x) = ¢'(x' —€) = Pp(x) = ¢'(x') — "0, (x) — p(x) = —€"9yp(x).  (108)

Therefore, comparing this expression to

§'(x' — €) = exp{—i(~e,) P}/ (x') = 09 (x) = iy P'g(x)  (109)

we have P¥ = iodV.
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Poincaré group || Field representations

¢ To verify that our findings are consistent, we can check the commutation rules

(99) using the representation on fields of the Lorentz group generators (106) and
the generators of translations (109) taking into account that S#¥ is independent of

the spacetime coordinates, and hence commutes with 0¥,

[PH, JP] = [PH, LF7] = [i9",i(x"9" — x"0°)]

local/jilla

= _(gl‘Pa‘T — gﬂaap) = i(gP‘PP‘T — gV‘TPP), (110)

where we have applied the rule [A, BC] = [A, B]C + B[A, C] and the identity
[oF, xV] = gM.

Poincaré group || Representation on one-particle states

* Now we have all we need to build field Lagrangians invariant under Poincaré
transformations. We will see that upon quantization the fields create and
annihilate particles (and antiparticles).

> It is then useful to identify the Poinciaré invariant Hilbert space of one-particle
states, namely what are the irreps of the Poincaré group labeled by the Casimir
operators whose vectors are identified by quantum number which are the
eigenvalues of a set of commuting generators,

) =1P.j3-- )

* These irreps must be unitary to guarantee that the scalar products of states
remain invariant under changes of reference frame,

(1 |p2) = (1| PTP [4p2)

Therefore, the Poincaré transformations P are represented by unitary operators
on this space, and the generators J' (rotations), K’ (boosts) and P* (translations)
are given by Hermitian operators.
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Poincaré group

Representation on one-particle states

¢ The Poincaré group is not compact, so its unitary representations are
infinite-dimensional. That is why the Hilbert space of one-particle states has

infinite dimension.

local/jillana

> However the field representations are not necessarily unitary, as we have seen.

Hence, it is important not to confuse representations on fields with

representations on the Hilbert space of one particle.

* The Poincaré group has two Casimir operators:

m* = P,P* and W,W",

where W# is the Pauli-Lubanski vector defined by

1
WH = — Eeuvw JvoPs.

Poincaré group

Representation on one-particle states

* Both operatos commute, because

and they also commute with every Poincaré generator, so they are Casimir

operators.

e Moreover m? = Py P¥ and W, W# are Lorentz invariant, so we can use their
eigenvalues to label the irreps, and they are the same in any reference frame.

[WF, Pf]

2

1
ervre []vppa/ P“]

1
GVVPO'(]VP[PO'/PDC] + UVPIPDC]PU')

1
— el (g5P, — giPy)Py

€D, Py 4+ €M7 Py Py = 0.

2

2

We must distinguish two cases (Wigner classification):

(111)

(112)
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(113)
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Poincaré group || Representation on one-particle states

e |Casem # 0

It is then simpler to work in the rest frame, p* = (m,0,0,0). Then,

WO =0

Wi — _%eijkojjk _ %emjk]jk _ %eijk]jk — mJ

= W,WH = —m?j(j +1).

(114)

Therefore, the |irreps are labeled by m, j | (mass and spin) and the vectors are

labeled by |j3 = —j...j;...).

> We see that massive particles of spin j have [2j + 1 degrees of freedom

This is because, once we have performed a boost to take the massive particle to
the reference frame where it has a four-moment p* = (m,0,0,0), we still have
total freedom to rotate the system in three dimensions.

> We say that SU(2) is the little group (set of Lorentz transformations leaving
invariant a given election of p#).
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Poincaré group || Representation on one-particle states

e [Case m = 0|

In this case the rest frame does not exist. We can choose one where
p' = (w,0,0,w), describing a massless particle moving along the z axis. Then,

_WO — W3 — w]3
W' =w('+K?) ¢ = WW = -[(J'+K)+ (P -K')?. (115
W2 = w(J> — K')

Now the little group is SO(2) (rotations in the plane perpendicular to the motion),

whose [irreps | are | one-dimensional | (Abelian group) and are labeled by a

number i € {0,4+1,41,...} called helicity (projection of the angular momentum
along the direction of motion):*

h=p-T (116)

aThe elements of SO(2) in the irrep h are given by R(6) = exp{—ihf}.
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Poincaré group || Representation on one-particle states

e [Case m = 0| (cont’d)

> Note that I = j3 for our choice of direction of motion, and j3 = =+j.

> The irreps h and —h are distinct (they do not mix under Poincaré
transformations), although in theories symmetric under P the corresponding
massless particles are given the same name. We just say that they are the same
particle in two different helicity states.

> Then we speak of ‘a photon’ (m = 0, j = 1) that can be right-handed or
left-handed if i = £1, respectively. The photon is a massless particle of spin 1,
but the state with j3 = 0 does not exist.

> Likewise, we will see that the massless Weyl fields ¢ and yr (m =0, = %) have
helicities h = —%, h = +%, respectively.
They represent different particles if the theory is not symmetric under parity
(e.g. in the SM the neutrino is masslees and it is vy ; the vg could simply not exist).
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Poincaré group || Representation on one-particle states

e Two final comments:

> We can always speak of helicity as the projection of the angular momentum along
the direction of motion, but it is an invariant quantity under Poincaré
transformations only if the particle is massless.
Sometimes we use the term chirality, to refer to a massless particle transforming as the left-handed or the right-handed
representation of the Poincaré group. The chirality coincides with the helicity for massless particles.

> The embedding of unitary representations of the Poincaré group (particles) into a
field theory is not trivial. For example, the vector field V},(x) describes both spin 0
and spin 1 (too many degrees of freedom).

— To construct a spin 1 unitary field theory of massive paticles we will have to
choose carefully the Lagrangian so that the spin 0 component of the field is
never excited.

— And for spin 1 massless particles we have to choose a Lagrangian that
propagates only transversely polarized states (left and right helicities). This is
achieved by introducing the gauge invariance, an invariance under
parametrizations related to charge conservation at the origin of interactions.
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2. Classical field theory

63
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Euler-Lagrange equations || Systems of N particles

= Let us first review the basic principle of classical mechanics for a system of N
particles in the Lagrangian formalism. This system has 3N degrees of freedom
described by a set of coordinates g;(t),i =1,2,...,3N.

» The Lagrangian L is a function of the g; and and their time derivatives ;,
L = L(g,4). In general, L(g,4) = ¥_; m;4> — V(q) (kinetic term minus potential).
We will assume that the system is conservative, so the Lagrangian does not
depend explicitly on time. The action S is defined as

S = /dt L(q,9)- (1)
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Euler-Lagrange equations || Systems of N particles

The principle of least action states that the trajectory of the system in the
configuration space from an initial state gi, = q(tin) to a final one g5 = g(t5),
both fixed, is an extreme of the action (usually a minimum):

tg tg

0S=9¢ | dt L(q,49) = ) dt 6L(g,4) = 0. (2)
We can write ) )
wogfo ] pla Rl o
where we have used
b 2 (W) (Ba-dn

with a being a set of parameters such that g; = g;(«, t) is sufficiently smooth, in
such a way that the derivatives with respecto to & and t commute, because we can
discretize both variations.

local/jillana
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Euler-Lagrange equations || Systems of N particles

= On the other hand, integrating by parts:®

fﬁ aLd oL i d oL
Ao M TRl ©)

Therefore,
ti oL d BL
oL d oL .
= 20 g 0| (Euler-Lagrange equations) (7)

b b
dov du
aIn fact: / dt u— = [uv]? —/ dt v—
; dt [uvla ; dt
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Euler-Lagrange equations || Systems of N particles

= Remember that in the Hamiltonian formalism the basic object is

. oL ‘
H(p,q) = Zpi%‘ —L, pi= % (8)
i qi
= Taking the differential of this expression we get
: . oL oL .

dH = ; {qidpi + pidg; — (a—qid%‘ + a—qid%> } 9)
=) {4idp; — pidg;} (10)

i

where we have used the Euler-Lagrange equations (7) and the momentum
definition in (8). This shows that the Hamiltonian H is a function of p and 4.
The previous expression leads to:

oH oH
qi ap; pi E (Hamilton equations) (11)
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Euler-Lagrange equations || Systems of N particles

= Defining the Poisson bracket of whatever two dynamical variables f; and f»

d0f19f2 aflafz}
, = - 12
fiofle =0 { 9q; dp;  Ipi oq; -
it is easy to check that
[CIr/ PS]P = Jys (13)

and the Hamilton equations can be rewritten as

gr = [er H]P ,  Pr= [Prr H]P (14)

and in general for any dynamical variable f one has

=+ (15)

where the term df /dt is non vanishing if f depends explicitly on time.

68



Euler-Lagrange equations || Continuous medium

local/jillana

= Assume now that, instead of a system with a finite number of degrees of freedom,

we have a continuous medium. Then the system is described by a field ¢(x),

qi(t) — ¢(t,X) = ¢(x) (16)

and its dymamics is described by a Lagrangian,
= / d’x L(¢,0,0). (17)

= From now on, we will call Lagrangian to the Lagrangian density L.
Then the action is

S = /dt L= /d4x L($,0u¢). (18)
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Euler-Lagrange equations || Continuous medium

= The principle of least action reads:

local /jillar

s o o o] - [or [0 s o

where the boundary condition now is not g;(tin) and g;(t5) fixed but
fields remain constant in the infinity, since

) aL ] d > oL
| @ @) = [ atxa 30,8)°7 / TS0t 0

and we have used the Stokes theorem,

/ d*x 9y, l ] / dA ny[ )5¢] (21)

(n* is the vector normal to the surface) and the boundary condition

5ply = 0. (22)
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Euler-Lagrange equations

Continuous medium

» Then we have:

oL
9P

—d

oL
_Z o0
" (o)

> Note that if one adds to the Lagrangian a term of the form (total derivative):

(Euler-Lagrange equation for field ¢).

L — L+ 0,KK(¢p)

local/jillana

(23)

(24)

the equations of motion do not change due to the boundary condition imposing

that fields are constant in the infinity, because using again the Stokes theorem,

/ d*x 9,K" = / dA n,K",
\%4 xZ

a constant term is added to the action and equation 4S = 0 remains untouched.

Euler-Lagrange equations

Continuous medium

= In the Hamiltonian formalism we define the conjugate momentum of field ¢,

_ 9L(x)

Hix) = 9(909)

and the Hamiltonian density (or Hamiltonian in short),

with

H(x) = II(x)dop(x) — L(x)

H=/d3x H(x).

(25)
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(26)

(27)

(28)

72



Noether’s theorem

local/jillana

= We will discuss the relation between coninuous symmetries and conservation

laws in classical field theory.

A global infinitesimal transformation of fields ¢;, i.e. with |e?| < 1 independent

of the coordinates, reads generically

¢i(x) = Pi(x") = ¢i(x) + €"Fy s (¢, 99) (29)

and the transformation of coordinates,

/l 4

where

XM s /M = xt 4 Sxt = x4 e Al (x) (30)

can be one index, two, ... or none.

= We say that this transformation is a symmetry if it leaves the equations of motion

invariant, i.e. the action does not change:

S(¢) — S(¢") = S(¢). (31)
73
Noether’s theorem
= Then, to first order in Jx, :
0=35(¢") —S(¢) = /d4x’ L' (x /d4x L(x /d4 (L (x") = L(x) + 9u6xF L(x)]
where we have used (32)
14 96x0 96x0
oxY ox!
4 ax't| 4 ax'! 9
d*x' = , = | 9ox! 96x! =14 0,0x" + O(6x)".
oxV oxVv —_— + —
9x0 ox!
Then, since (33)
L'(x') = L' (x) + 6x19,L(x) + O(Jx)? (34)
and 0L (x) = L'(x) — L(x), equation (32) reads
0= / d*x {6L(x) + 9, [6xL(x)]} . (35)
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Noether’s theorem

= On the other hand,

St o )]

L
2{ el R et

and from
¢i(x') = ¢i(x) + € Fy = ¢i(x' — " AL) + €"F,
we have
¢i(x) = pi(xt — €"AL) + €"F;, = ¢i(x) — € Ahougpi(x) + €°Fyy
SO

5pi(x) = ¢j(x) — i(x) = —€"[ALdu¢pi(x) — Fi]

Noether’s theorem

= Then [if ¢ = ¢ is a solution of the Euler-Lagrangian equations

equation (35) reads

0—/d4xa [Za ) 54>Z—|-5x L(x)
yz

and substituting dx# from (30) and J¢ from (39) we have

0 — & / d*x 9,1 (1),

where

) = sy AP0 — Fa(9,20) AL

local/jillana

(36)

(37)

(38)

(39)
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(40)

(41)

(42)
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Noether’s theorem

local/jillana

= Suppose we perform a local transformation, €? = €%(x), on this action which is
invariant under global transformations. Then it will not remain invariant but now -

S(¢ /d4 (¢) — (94€M)jk (9)] + O(30€) + O(€?), (43)

where the coefficient K,(¢) vanishes, because in the particular case of €’ constant
the global invariance implies [ d*x K,(¢) = 0 for any ¢.

> Let us see why we have denoted by —j (¢) the other coefficient. If every €*(x)
goes to zero fast enough at infinity, from the Stokes theorem we have

/d4x oy (€jh(¢)) = 0= — /d4 d,,€")] /d4x € (x)0uji (@) (44)
and then

S(¢ ‘/d%e )3uji (). (45)
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Noether’s theorem

local /jillar

= Now, taking in particular ¢ = ¢, a solution the the Euler-Lagrange equations,
which is an extreme of the action, the previous equation expresses a linear
variation of the action around this extreme, and hence it is zero. Therefore

0= [ dix e, () (46)

for any €*(x) and then

ay]'g (‘Pcl) =0 (47)

This means that (41) does not only implies a vanishing integral but also a
vanishing integrand. As a result, ji (¢) are conserved currents.
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Noether’s theorem

= Defining the charge
0, = / B (¢, %) (48)

we see that the conservation of the current (density) ]ff (x) implies that the (total)
charge Q, is conserved, i.e. it is time independent, since

0:Qq = /d3x oo (t, %) /d3x 9, (t, %) =0 (49)

This is because we assume the fields decrease sufficiently fast at infinity and we
have applied the Stokes theorem again.

> Two types: internal symmetries, when coordinates do not change, i.e. A} (x) =0,
and spacetime symmetries if A} (x) # 0.

The conservation of electric charge, isospin, baryon number, etc., are
consequences of internal symmetries. Next we will focus on the second type: the
invariance under spacetime translations, rotations and boosts.
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Noether’s theorem || Spacetime translations

= They are given by the following transformations of coordinates and fields
(every component if any):

s =t L et = e =¢, Al(x) =94 (50)
¢i(x) = ¢i(x') = ¢i(x) = Fia(¢,99) = 0. (51)

Hence, there are 4 conserved currents forming the energy-momentum tensor,
6", = Zaiavcpi — L, 9,6, =0 (52)

7 0(9u¢i)

and 4 conserved “charges”: the energy and the 3 components of momentum,

p, = / P 60 — / N [Z aiavcpi _sz| . (53)
—~ 9(do¢;)
Therefore, the invariance under spacetime translations implies four-momentum

conservation, P'=0, v=0,1,273. (54)

Note that Py defined in (54) coincides with the Hamiltonian, defined in (28).

local/jillana
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Noether’s theorem || Rotations and boosts

local/jillana

» For simplicity, consider a scalar field. The Lorentz transformations read

€' = wf’ = —w"P,
Xt M = XM+ 1@”(5553 — Sy0p)xy = . e ) (55)
2 Al (x) = 3(6hoy — 8Foh)x,
¢(x) = ¢'(x') =p(x) = F(¢p) =0. (56)
= Applying Noether’s theorem,
oL 1 1
Mo S5V % T (SH __sH
Jor = 5laup) 2\ ~ 0%)0vp = 5 (83 = 0 xp) £
oL 1 1, I
1 .
=5 (9ypxg — GVpr> , ay]”pa = 0. (57)
81
Noether’s theorem || Rotations and boosts
= Therefore, the following tensor contains 6 conserved currents:
THPT = —(0MPx7 — 617 xF), 0, TH* =0 (58)
and there are 6 charges which are constants of motion,
MP7 = / d3x T = / d3x (xP% — x76%), 9;MF’ = 0. (59)

Here M (angular momentum) come from the invariance under rotations

and M from the invariance under boosts.
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Noether’s theorem || Rotations and boosts

= Two remarks are now in order:
1. Note that equation (58) implies that the energy-momentum tensor must be
symmetric, because E)VOF“’ = 0 and

0 = 3, (xP617 — x76M°) = xP3,, 01 — x79,6M° + 617 5F, — GHP 5T = 6°7 — 7P, (60)

Since the 0#¥ defined in (52) is not necessarily symmetric, one has to
add a total derivative of the form 9, f**V, with fA# = — f#\V 5o that

0" = 01 + 0, fMY, 9,0 = 9,0M + 0,0, f M = 0,0/ =0 (61)
with g# = gvi and, from
/ d3x 9, fA = / dEx 0, f =0=P' = / d3x 6% = / dSx 6%,  (62)

the conserved charges are the same as long as the fields, on which f depends,
decrease sufficiently fast at infinity.

> The symmetrization of the tensor 6/ derived from (52) will be needed in the
case of the electromagnetic field, as we will see later.
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= And the second remark:
2. We are used to the angular momentum conservation (9;M" = 0) but not to the (
conservation of quantities associated to boosts (3; M% = 0).

Actually, in quantum mechanics, we have
K = MO% = pFt — / d3x xF6% = MO (t) (Heisenberg picture)  (63)

and remember that 9;M% = dM%/dt = i[H, K] + oK* /ot = i2P* + Pk = 0.
However, unlike energy, momentum and angular momentum, the quantities
associated to boosts cannot be used to label states, since the operators
representing the boost generators are not always Hermitian and moreover they
do not commute with the Hamiltonian.

> Note that these K are the representation of the generations on the
infinite-dimensional representation of scalar fields and, unlike the 4 x 4 matrix
operators introduced in the first chapter, they do depend on the spacetime
coordinates.
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= Consider first a real scalar field, ¢(x) = ¢*(x). An action describing the nontrivial

dynamics of the field must contain derivatives, d,¢. The Lorentz indices must be >

contracted, because the action is a scalar. The simplest action is®

S = %/d‘lx (Oupot'p — m*¢p?) = /d4x L(x). (64)
= The Euler-Lagrange equation for ¢ is then the Klein-Gordon equation,
oL oL 2 B _ o o

The solutions are plane waves,
¢ o« eFPY with px = pyxt and p? = pupt = (p°)? — P> = m?.

The parameter m is the mass, and by definition m > 0.

2A term ¢ = ¢, 0" ¢ is equivalent to 9, po¥¢$ up to a total derivative 9, (¢pot¢).
A linear term ¢3¢ is equivalent to the reparametrization ¢ — ¢ — c3/m?, leading to the same dynamics.
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= The most general solution of the Klein-Gordon equation is then,

d3p . .
(x) = / VP (g 4 greip® 66)
(27)3, /2E; ¢ i)
pO=Ep=++/m>+p?

The field normalization has been chosen for later convenience. Among the
solutions, there are positive energy modes (e ~'P*) and negative energy modes
(e1P¥),2 whose interpretation will emerge when the field is quantized.

= The sign of the action has been chosen to yield a positive definite Hamiltonian:

oL 1
= —8(804)) = dop = H = Ilpdop — L = = [(304))2 4 (V‘P)z + mzq)z} > 0. (67)

IT
¢ 2
The energy-momentum tensor is directly symmetric,

0" = oFpd'¢ — ¢"L and, in fact, H = 6%. (68)

4This is because interpreted as a wave function, the field ¢ ~ eFIP"t with p? > 0 satisfies the Schro-
dinger equation id¢¢ = +E¢ with energy +-F and E = p° > 0.
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Scalar fields || The Klein-Gordon equation

= As for the conserved charges associated to rotations,
Ml — / @ (0% — o) = 1 / P LIy — dpLile), (69)

where we have used the definition of LY = i(x'd/ — x/9') and integration by parts
fori # j,

/ d3x o/[px'dpp) = 0 = / d3x d/pxi9gp = — / d3x ¢px'9/9y¢p, (70)
/ d3x 9/ [0gpx'¢p] = 0 = / d3x 9/9ppx'p = — / d3x 9gpx'd/¢p. (71)
= If we define the scalar product of two real scalar fields as

(P1]¢2) = %/d% <P1§f:¢2/ fS)g = fog —dfg, (72)

we have
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M = ([ L7 | ) 73)

which is as expected, because L'/ is the representation of J¥/ on the field space.

» Let use see that (¢1|¢») is time independent if ¢; and ¢, are solutions of the
Klein-Gordon equation, that is in agreement with M/ being a conserved quantity.
In fact,

% (@rlga) = 5 [ Cx dolprdugs — g
= %/dsx {804’130472 + 10502 — p1¢pa — a049130472}
= % / d’x {<P1V2<Pz — V212 — m* 1y + m2<P1<P2}

= %/d% {=V¢1 - Voo + V1 -V} =0, (74)
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where we have used

(O+m*)Prp = 0= 12 = V1o — m*p1o

/d3x V- (4)1/2V(P2,1) =0= /d3x 4)1,2V2<p2,1 = — /d3x V(PLQ . V(Pz/l.

» Likewise, we can write

pr— [ e = (g0 )

> In fact, using again the Klein-Gordon equation and integrating by parts,
: . 1
— (910" lg) = (@lid0]¢) = —5 [ & (43¢ — (004
=5 [ S Ve - g~ @0g)

local/jillana

(75)

(76)

/d3 (V) + m?¢p* + (9o¢)?] /d3 x 6%,

Scalar fields || The Klein-Gordon equation

oA 1 i i
— (9l I9) =~ [ x (9920 — d0g2'¢

/ d3x o' papp = / d3x 60 = / d3x 0%

MY = <‘P| 1.0 |¢> — /d3x (xOQOi _ xiQOO)

= And also,

> In fact,

MO — (9] 1% I9) = =5 [ ¥ [p(x%9 — x0%)209 — 209 (x°0' — x'0%)g)

=[x Lty + S igato — aup |

— / d3x {xoaoq)aicp — %i[(aoq))z — V¢ + mchz]} .

(77)
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Scalar fields || The Klein-Gordon equation

= Note that, as anticipated, L*" and i0* are Hermitian operators, and hence we have
an infinite-dimensional unitary representation of the Poincaré group. :
Then M* are P¥ are real quatities.

= Finally, we could generalize the Klein-Gordon action to include interactions of the
scalar field introducing a potential V(¢),

S—/& { 99" — m?| (@} (81)

4

Terms proportional to ¢, ¢*, ... in the potential give rise to non linear

contributions in the equations of motion, corresponding to field self-interactions:

2 _
(O+m*)p = o (82)
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= Suppose now a complex scalar field,
. :
¢ = E((Pl +i¢2) (83)

where ¢ and ¢, are two real fields of the same mass m. Then
S= /d4x (9ugp*ot'p — m*¢p* )
t/& 00" pr — m*¢1) + l/dxyww@_m¢ﬂ
= / d*x L(x). (84)

It is clear that the Klein-Gordon equation for the complex ¢ is the same as for
(65), since both real and imaginary parts satisfy it. The most general solution is

— d3p —ipx * ipx
(x) = / o (ape™* + bre®™) (85)

PO=Ez=+/m2+p?
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» The action of this complex field is invariant under global transformations of the

group U(1),
P(x) = ¢'(x) = e Tp(x), ¢7(x) = ¢"(x) = " (x)
meaning that there is a conserved current associated (take ¢; = (¢, ¢*)):

Xt M =yt = Al(x) =0

Bx) = ¢'(x) = 9(x) —i09(x) . Fpa =—id
#(x) = 97 () = 9" (x) + 109" (x Fpa= i¢"
e Ey 05 E = i(p 0 — p3gY) = i,

3(0,9) ™ 9(0,¢%)

Scalar fields || Complex fields || Charge conservation

= The conserved charge is

Q= [ &0 =i [ @x g0 = (0l), 7Q=0,

(86)

(87)

(88)

(89)
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(90)

consistent with the generator of the symmetries e ¥ being the identity operator,

defining the scalar product of two complex scalar fields ¢4 and ¢p as

@algn) =1 [ &x 93009,

1)
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Spinorial fields || Weyl equation

= Consider the Weyl spinors g and ;. Then
YROPr, YL 92)
with o# = (1,7), o = (1, —7), are Lorentz four-vectors.

> To show this, remember that
N
PR |—>exp{(—19—l—77) -E}tpR. (93)
Consider, for example, an infinitesimal boost of rapidity 7 along direction x,

o! ol
PROVPR = YROVPR + YR 0" YR + PR SR

_ YRYR 7 YRYRTIYROTPR

. . | (94)
YRo'or = YRotpr + ot plyr,

where we have used oo/ + oot = 267,
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We see that Loy transforms under this boost like a four-vector o#,

oY

Ul

02

(95)

b
oS O 3 —
N e
oS = O O
_ O O O

03

Consider now an infinitesimal rotation 6 about the axis z,
3

B~ ko g + 093 o e — oo T
phor o~ ¢hyr
pholyr — pholyr — Ophotyr
YRo*Yr = PRoiPr +0PEol PR
prlyr = ypiodyg,

(96)

where we have used oo/ — dlot = 2ielikgk.
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We see that pto# ¢ ransforms under this rotation like a four-vector ¥,

? 10 0 0\ (o
v! 01 —6 0] |2
— (97)
v 06 1 0f[
v’ 00 0 1)\
And likewise for yio"yy.
97
Spinorial fields || Weyl equation
= Now focus on 1. The simplest action involving this field,?
S=i / d*x pfo"9, L = / d*x L(x). (98)
The factor i is introduced for the Lagrangian to be Hermitian. Let us find the
Euler-Lagrange equations, considering that ¢; and ] are independent fields:
e oty =0 :
[l’bL] ' VlI)L = Eﬂaysz =0= (80 — Ulai)l[JL =0. (99)

[yr]: —iouypiot =0

(Weyl equation for ¢r)

aWe have just shown that iy, — AL iofyYL = Yy p0Ppr, because A and 7 act on different
spaces. On the other hand, d,, — A},"ag. Then, the following term is a Lorentz scalar because

YL uyr = ¢J£‘7pAypAyUaa¢L = ¢{‘7pggaa¢L = 1o
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» The Weyl equation for ¢ is equivalent to a (massless) Klein-Gordon equation for -

its two components,

a(ﬂPL = O'iail[JL = aéqu = VngL = DIIJL =0 (100)

and furthermore provides information about the helicity of the field modes.

> Taking a positive (negative) helicity mode of yy,

pr(x) = uge” P (upe'?™) (101)

with up (7) a constant spinor and p* = (E, p) where E = || (zero mass), and
remembering that

Tz%é(ﬁ-f)uL:%ﬁ-?ruLEhuL (102)
we see that
19,y = (3g — 0’0, )ue™ = F(E+7 - Plue™* =0= 7 puy = —uy, (103)
meaning that all the modes of ;, have negative helicity h = —1.

Spinorial fields || Weyl equation

= On the other hand, the energy-momentum tensor is
g _ 0L
(L)

99
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'y — ML =il Ty, (104)

where we have used that for fields satisfying the Euler-Lagrange equation (99) the

Lagrangian £ = 0. The Hamiltonian is H = 0% = iyp[3%;.

= Moreover, the action is invariant under global symmetry transformations of the

group U(1),
pr e Py, (105)
so there is a conserved current
oL
H— T 4 — wigH -
) a(a‘uq)L)”)bL qJL(T IIJL’ a}l] 0 (106)

and a conserved charge

Q= / d3x ¥ = / d3x ply;, 9;Q=0. (107)
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Spinorial fields || Weyl equation

= Likewise one can see that the Weyl equation for ¥ is
"3, pr = 0 = (dg + 'd;)pr = O, (108)
which is equivalent to a massless Klein-Gordon equation for its two components,
doYr = —0'Pr = RYr = V>¢r = Oyg = 0. (109)

The modes of r have positive helicity h = % The corresponding
energy-momentum tensor, current and conserved charge are, respectively,

oM = iphotdVyg, = whotypr, Q= /d3x Whg. (110)
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= Note that, under a Lorentz transformation,
P — ALyr, YR — Argr, Y ALAR = ARAL =1 (111)

Therefore, 1 g and L, are Lorentz scalars.

> Under parity (yr <+ Pr) the following Hermitian combinations transform as:

(Yiyr + vRyr) —  (YIYr+ ¢rypr) (escalar)
i(plyr — Wkyr) = —i(P1Yr — PkpL) (pseudoescalar) (112)

As a consequence, the Dirac Lagrangian,

Lp = ip[o"duyr + ipro*dupr — m(PLYr + PRipr) (113)

is invariant under parity. In contrast, the Weyl Lagrangian is not.
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Spinorial fields || Dirac equation

= Let us find the Euler-Lagrange equations:

[yrl: 0oy —mypr=10
i) : —i0uypo" —myp=0 _ i0"dupr=myr
(Y] iot9upr —mypr =0 ic#9, PR = mipy.
[Yr] : —idutppo? — myf =0

This is the Dirac equation in terms of Weyl spinors.

(114)

> Note that 7 and ¢ are no longer helicity eigenstates and the 2 components of
Y, and of P satisfy a Klein-Gordon equation of mass m, because

1, —
= —E(UVGV +0'7")0,0vpL = m*yy = (O + m*)py =0, (115)
where we have used (108) and the identity c#c" + c'o# = 2¢*". The same for g,
(O+m?)pgr = 0. (116)
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= [t is convenient to introduce the Dirac field, of 4 components,

Pr(x)

and define the Dirac gamma matrices,

o (01 . 0 o 0 o , ,
N , Y= ‘ = 9t = (chiral representation),
10 A a0

(118)

P(x) = (lpL(x)) (chiral representation) (117)

satisfying the Clifford algebra,
{2 =M ot =281 (119)
> The Dirac equation is then

(ig—m)p=0, A=~"A, (120)
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Spinorial fields || Dirac equation

= We can write the Dirac Lagrangian in a compact form introducing
¢ =¢'? (Dirac adjoint spinor). (121)

In the chiral representation, ¥ = (%, 1) and

Lp = P(id — m)y. (122)
= Another definition is the matrix 95 = i9%y19?93, that reads
-1 0 _ _
¥5 = ( ) (chiral representation) (123)
0 1

Therefore, the operators P, = (1 — 5) and Pr = (1 + 75) are projectors on the
Weyl spinors ¢ and g, respectively,

P = ("“), Pryp = (0) - (124)
0 YR
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= One can chose other representations,
@) =Upx), " =urul, ) =yt 0", (125)
where U is a constant unitary matrix.
> In this way,
Lp =9 U (i7"9, —m)Uy' =9 (199, —m)y/, (126)
has the same form as the original Lagrangian.

> The Clifford algebra remains invariant, y'#9"V + y"Vo/t = 2gH.
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= A representation used very frequently is the standard representation or
Dirac representation, obtained from the chiral one by

U= — . 127
V2 -1 1 127)

> The Dirac field and gamma matrices in the standard representation read

1 R+ YL
P = % Yr+Y ) (128)
Yr — YL,
1 0 . 0 ¢ 0 1
G~ , 7= ‘ ;s = iPyly?d = . (129)
0 —1 ¢ 0 10

> The Dirac representation is convenient in the non relativistic limit, while the
chiral representation is convenient in the ultrarelativistic limit.
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= The general solution of the Dirac equation is a superposition of plane waves,
¥(x) = u(p)e P* (positive energy modes E > 0), (130)
¥(x) = v(p)e'P* (negative energy modes —E < 0), E = +4/m2+p2.  (131)

Applying (120) to these solutions we have

(¥ —mu(p) =0, (§+m)o(p) =0. (132)
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= We will find now the explicit form of these solutions in the chiral representation: -

A7) — ur(p) o(F) — oL (P) .
(7) (uR@’))’ 7) (UR@'))

> Take first the case m # 0. Then, in the rest frame system,
pt = (m,0,0,0)
(¢ = m)u(0) = 0= (v° = Du(0) = 0 = u(0) = ug(0),
(¥ +m)v(0) =0= (7" +1)v(0) = 0 = v.(0) = —vg(0).

Then, focussing on the positive energy spinor u(7), we can choose

u(0) = u0) =vm &©), se{1,2}, O =4,

Spinorial fields || Dirac equation

A

» The solutions for an arbitrary p can be found performing a boost along p =

—Lypa,,(s)
. e~ 2177y (0)
u(s)(p) _ L %) )
e+277 p-o Ug (0)

Expanding the exponentials,

a1 -
tnpF _ 2k+1
€ k;o(Zk) ; (2k+1
:coshn:tﬁ-ﬁsinhﬂ:%(Eiﬁ'&)/
m’ m

(133)

(134)
(135)

(136)
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(140)

(141)
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= One can write these solutions differently:
VE+IPI| —— )+ VE-IAl{— ¢

— (1+p-7 —(1-p-7 '
VETT (ST - vE=T (ST )| e

where we have used

u(s) (F) = (142)

>

e=1h 7 —cosh’7 tp- Usmh T _ el <1 :i:zp : U) te? (1 :sz . J) (143)

et? = V/coshyy £sinhy = \/y+ 9B = Efnw (144)
111
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» Taking the ultrarelativistic limit (E > m), p# — (E,0,0,E),
pL)
\/7 C = +V2E 0
(1+ 0% ¢
_ 3@ )
@) (5 \/E A=) g (¢ 145
w(p) =4/ 5 <(1+03)§(2) 0 (145)

we see that u(1) has right-handed components only and u(?) has left-handed
components only, so they are Dirac fields of well defined helicity (chirality), as
expected for massless fields.
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= Repeating the procedure above for the negative energy spinor v() we obtain

U(S)(ﬁ) L V (PU’) U(LS) (O) _ V (pU') 17(5) ;7(1’)']'77(5) = b, (146)
m\ -V o) \ -V ) ’
or
VER (220w vETE (R | o
v<s)(ﬁ) — (147)
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» We will see that it turns out convenient to choose

W@_m%@&$¢n_<3

Then, in the ultrarelativistic limit (E > m), p* — (E,0,0,E),

(1=
oM (p) — \/7 i +03)17(1)> (

@) (5 E( =@\ _ 0
v @)»J;vﬂ+ﬁm® = ﬁﬁ?ﬁ> (149)

meaning that (1) has left-handed components only and v(?) has right-handed
components only, so they are again massless Dirac fields with well defined

!

) e
)

helicity.
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» Introducing now the corresponding Dirac adjoint spinors,?

t,0

u=u-w, 5:v+'yo,

satisfying the Dirac equations,

u(p) (¥ —m) =0, o(p)(y+m)=0,

one can show the following orthonormality relations

aUse the identity y#T = 79#40.

Spinorial fields || Dirac equation

= [t is important to note that the 16 matrices,

1
1, Y5, ,),]4’ 7”’)’5/ — Eh’y/ 'YV]

local/jillana

(150)‘:
(151)

(152)
(153)
(154)

(155)
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(156)

are linearly independent and form a basis for the 4 x 4 matrices. Then one can

define the following fermion bilinears with well defined properties (covariant)

under Lorentz transformations,

Py, Pysy, Py, Ppytasy, Potep.

(157)

= One can also check that the Lorentz transformations of the Dirac spinor ¢ can be

written, in any representation of the gamma matrices, as
— 1 nv : wvo__ 1 nv
P — exp —waa P, ie [ = EU .

(it is sufficient to check that [HV = %(ﬂ“’ satisfies the Lorentz algebra.)

(158)
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= An interesting global symmetry that the massless Dirac Lagrangian has is the
chiral symmetry,

P — e_iBLlPL, PR — e_iGRtpR (01 and O independent), (159)
that, in terms of the Dirac spinor, can be written
e %, e Py (xand B independent). (160)

In fact, performing infinitesimal transformations,

P = wL\ — e_i“tp = (1—ia)gr =0r=0L=u (161)
¥R (1 —ia)yr
- 1PL —ifys,, (1 + iﬁ)’uL’L o _
’ (tpR T ((1 “ipge) T
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= From
P e Y =P s Ppel® (163)
P e P15 = s plelP1590 = g le P15 — pe—ihTs, (164)
using 15 =75, {7",75} =0, (165)
the invariance of the Lagragian under these two independent transformations is
evident:
P e MY = L= igdy — igel®de Y = ipdyp = L (166)

P e PP = L= ipdyp — ipe P19 0,6 Py = iggy = L. (167)
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= As a consequence, there are two conserved currents,
jr = P9y (vector current), ji, = Pytysy (axial current). (168)

= If m # 0 only the vector current is conserved. It is enough to use the Dirac
equation to check it:

iyl = my

(i —m)p =0= _ _
—idyPy# = myp, because YOyHt0 =

(169)

| Oudy = () = O+ Py Opp = imipyp — imipyp = 0
ufly = 0u(Pr*v59) = 0Py 5 + Py 50 = impysy + imPpysy = 2imPpysy.
(170)
> This is because the mass term my is invariant only if 6g = 6 because:
P = YRYL + YLk (a71)
119
Spinorial fields || Majorana mass
= A Majorana field is a self-conjugate Dirac field,
_ YL i 2ok 2 _
M = ;YR =GioTyr, [CF =1 (172)
YR
> It is evident that 1)s can be massive in spite of being made of a single Weyl
spinor. It is enough to write
(ig — m)pp = 0 = i0"9,p, = mpr = i{mo* i} (173)
leading to a massive Klein-Gordon equation for ¢y,
(O+m?)pr =0 (174)

regardless of whether ¢ is given by ¢ or not.
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= We will not write the classical Lagrangian for 1, because its mass term would be -
proportional to i

- — (it i T2 Yr
Yypm = (Y, =il pro”) 1 0) \icorps
= gyl o?y; — il Loty = —il*wlo*yr +he (175)

which is null unless the ¢); components are taken as anticommuting quantities
(Grassmann variables) because

ip] oYL = YLy7 — Yiy]. (176)
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= Even more interesting is that, although the Dirac Lagrangian is invariant under
the group U(1) of global transformations

YL e MY, Pr e VPR, (177)

this cannot be a symmetry of the Majorana field because its left- and right-handed
components are conjugate according to (172).

> This means that a Majorana field cannot have U(1) charges, as the electric charge,
the baryon number or the lepton number, for instance.

> Is the neutrino a Majorana fermion?
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= The electromagnetic field is described by the four-vector A*.
Defining the tensor FI'V = ot AV — 9" A¥,
the electric field E and the magnetic field B are

. . . . . 1 .., . Ny
E'=-—F%=_9,A"—V'A°, B = —Eelﬂfpk = (V x A), (178)
where F/k = —¢l* B! because elike/kt = ¢iikelik = 241t

Namely:

0 —-E' —-E> -E?
E' 0 -B® B?
E> B> o0 -B!
E> -B2 B! 0

FM —

123

local /jillar

Electromagnetic field || Covariant form of Maxwell equations

= Applying the Euler-Lagrange equations to the Maxwell Lagrangian,

1 1,2 =
L= —L—LPWF?“’ = E(E2 — B?) (179)

that can be also written £ = —%(8VAV8P‘AV — 0, Ay0" A'), we obtain the equations
of motion (Maxwell equations in vaccuum)

o F"" =0 & |V-E=0, VxB=09L (180)

The remaining two Maxwell equations are obtained from the dual tensor
v — %GWPC’PPU, whose four-divergence vanishes: ayﬁw = €MP70,,0,As = 0,

. F""=0| & |V-B=0, VxE=-0B (181)
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» The Maxwell Lagrangian is invariant under local transformations 6 = 6(x) of the

form

Ay(x) = Ay(x) —9,0(x)

(U(1) gauge transformation).

(182)

The existence of this local symmetry implies that A, (x) provides a redundant

description of the electromagnetic field, because we may use the freedom to

choose the gauge to constrain A;(x).

Usually one calls “symmetry” to a transformation that leaves invariant the

Lagrangian (or rather the action). However, although a local symmetry implies a

global symmetry, that has physical consequences as the charged conservation

(Noether’s theorem), the gauge invariance is not a symmetry of the physical

system, because the physical states are not transformed.

particles of spin 1 (two degrees of freedom) using vector fields of four
components (two of them are spurious). The gauge symmetry is more

appropriately a gauge freedom.

Electromagnetic field

Gauge invariance

= We may take Ap(x) = 0 choosing

Au(x) > AL(x) = Ay(x) -9, / dt’ Ag(t, ),

and then Af(x) = Ap(x) — Ao(x) = 0.

= We can further do another transformation, not changing the component Ay,

AlL(x) = Al(x) = Al(x) —9,0(%), 6(F)

-/

d3y

0A" (t, 7)

inlF 7

oy

Although it is not apparent, this 6 does not depend on ¢, because

E'= —F% = —30A" + §iA"0 = —3°4"

Remember that the gauge invariance is necessary in order to describe massless
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(183)

(184)

(185)

and as V - E = 9;E’ = 0 in absence of sources we have that 9y9; A’ = 0 and then
dof = 0. Therefore, also Ajj(x) = 0.
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Electromagnetic field || Gauge invariance

> Let us see which consequences do the gauge transformations have:

3 A" (t, 7)) 1 dA" (x) S ‘
2 . 3 2 A
V20(X) = /d VA Vi (4—n|5c‘—g’|) == =V-4 (186)

where we have used that

2 1 — _ 83z _ =

SO
o Ajl(x) = " A} (x) —M9,0(%) = V- A" =V-A' =V =0.  (189)

Then we can also take V - A = 0. This choice,
A =0, V-A=0 (189)

that is only possible in absence of sources, is called radiation gauge.
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Electromagnetic field || Gauge invariance

= Another choice, which is always possible, is :
Ayrr Ay = Ay — 0,6, 9,0"0 =9, A" (190):
in such a way that we can always take
9, A" = 0. (191)
This is the so called Lorenz gauge.® Then
0, F'"" =0 = 09,(d'A” — 9" Al) =AY = 0. (192)

We see that every component of A¥ satisfies a massless Klein-Gordon equation.
The solutions are of the form (A¥ is a massless real field):

Au(x) = eu(k)e ™ + €5 (k)e™, K =0. (193)

4Do not confuse L.V. Lorenz (Danish physicist and mathematician), who stated the Lorenz gauge,
with H.A. Lorentz (Dutch physicist, Nobel prize in 1902), who proposed the Lorentz transformations.
Also do not confuse with E.N. Lorenz (American mathematician and meteorologist), founder of chaos
theory, who coined the term “butterfly effect” and discovered the Lorenz attractor.
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Electromagnetic field || Gauge invariance

>> The condition (191) implies that the polarization vector e* (k) satisfies
ke = 0. (194)

= In the radiation gauge, which is compatible with the Lorenz gauge, the field is
transverse because its polarizations have €? = 0 and k-&=0.

= Clarification: Unlike the constraint V - A = 0, that can only be imposed in absence
of sources, the constraint A? = 0 can be always applied. However, usually one
does not take this choice when there are sources.
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Electromagnetic field || Gauge invariance

> For example, consider an observer in front of a charge e at rest at a distance r.
In this case one usually takes

- e
[ = [ —
A= (¢, ) = (10), (195)
leading to the electromagnetic field
= - e - -
o V¢ yp—ig B =V x 0 (196)
However, one could have chosen a gauge where
A= (¢, ) = (0,—57), (197)
47tr?
leading to the same electromagnetic field,
) = — A’ — / == ¢ 7 B == A ==
E=—-0A"-V¢ il B=VxA =0. (198)

Both choices are related by the gauge transformation

Al (x) = Au(x) —0,0(x), 6(x) = % (199)
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Electromagnetic field || Gauge invariance

= Let us find now the energy-momentum tensor. Applying the Noether’s theorem:

oMY — %aUAP — g;wﬁ = —FW’BVAP + }lgVVFZ, F? = Fvaw/ (200)
HAP

which is neither gauge invariant nor symmetric!

> We can symmetrize it adding d,(F#’ AY), that satisfies 0,,0,(F"* A”) = 0 and turns
it gauge invariant,

1
TH = —FIQVA, + Zg“"l—"z +0,(FMAY)

1
= F'F,’ + 1 g"F*, whend,F"* =0, (201)
> The conserved charges under spacetime translations are then
]. = —
= /d3x T = = /d3x (E* + B?) (energy) (202)
/ d3x 7Y = / d®x (E x B) (Poynting vector). (203)
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Electromagnetic field || Minimal coupling to matter

= In the presence of sources of the electromagnetic field (charges and currents) the
Maxwell equations are

oFV =i = E=p, VxB=&E+j| j=(o)) (204)

%
%

=0, VxE=—-0B (205)

o F" =0| <

> Note that the last two equations are the same in absence of sources, because
ay’ﬁw = €l'r?9,,0,A; = 0 in any case.
These equations come from minimizing the action

S = / d*x <—}LFWFW - ]'VAV) = / d*x L£(x). (206)
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Electromagnetic field || Minimal coupling to matter

= This action is gauge invariant only if j* is a conserved current, d,j# = 0, because

AL > P Ay — 19,0 (207)
and, since /d4x d,(0j") =0= /d4x 10,0 = — /d4x 09,j" = 0, we have that
/ d*x jrA, — / d*x j'A, < 9yjt = 0. (208)

> The gauge invariance is the guiding principle dictating the interactions.
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Electromagnetic field || Minimal coupling to matter

= Let us see how the gauge principle works, applying it to the Dirac Lagrangian in
the presence of the electromagnetic field. .

> The free Dirac Lagrangian
Lp =g —m)p (209)
is not invariant under U(1) gauge transformations (local phase transformations),
P s e QY P el (210)

However, the Maxwell Lagrangian,

1

is invariant under gauge transformations

Aws Ayt 0,60(). (212)
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Electromagnetic field || Minimal coupling to matter

> We can get a total Lagrangian that is gauge invariant by replacing the usual
derivative d,, by the covariant derivative

because then

Dy = (9, +ieQA, ) — (0, +1eQA, + iQaVG)e_nggb

(214)
and the resulting Lagrangian,
— . 1
L=9p(ip —m)yp — ZFvaVV
— . 1 _
= P(ig —m)p — ZPWFW —eQA Py (215)

is gauge invariant.
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Electromagnetic field || Minimal coupling to matter

» In this way, we have introduced an interaction of the form j* A,
(minimal coupling) between the electromagnetic field and the fermionic current,

j* = eQyyty (216)
allowing us to restore the local symmetry.

> Note that j# is a conserved current due the global invariance of £p under U(1)
transformations, leading to the conserved current:

Q= /d3x P(x) = eQ/de 7%y = eQ/d3x ¢ty (electric charge).  (217)

> Other types of gauge invariant couplings are possible, but they involve field
interaction terms of canonical dimension higher than four, that must be multiplied
by coupling constants with dimension of mass raised to a negative power.

For instance, the magnetic dipole moment interaction: £ = apo#'¢F,,, [a] = M1,
Such couplings will naturally emerge when quantizing the theory, providing
corrections to the minimal coupling to higher orders in perturbation theory.
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Electromagnetic field || Minimal coupling to matter

= In general, let {T"} be the generators of a gauge symmetry group, {Wj;(x)} the
gauge bosons asociated to each generator and {6%(x)} the parameters of the
transformation. It is easy to check that if the fields transform as

(fundamentalirrep) ¥ +— UY, U = exp{—iT"6"(x)} (218)
(djointirrep) W, UW, U — é(ayu)u*, W, = TWy, (219)
(Y is a multiplet of fermionic fields) then introducing the covariant derivative
Dy, = 0, — igW, (220)
one has
D,Y — UD,Y¥Y (221)
and the resulting Lagrangian
L=F(ED - mY¥ (222)

remains invariant.
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Electromagnetic field || Minimal coupling to matter

> For a group of non Abelian symmetries, the invariant gauge field Lagrangian
(211) must be extended to include, besides the kinetic terms, cubic and quartic
self-interactions, fixed by the structure constants:

Lyn = —%tr (WWWW) — —}ngvwalw (223)
where Lyym = Liin + Leubic T Lquartic is the Yang-Mills Lagrangian:
Lio = —}L(ang QW) (@ — 3r W) (224)
Leusic = — 8" (e — B, W WP W (225)
£ quartic = —}lng“’”f“” Wy Wt (226)
with
Wy = 9, W, — 3, W,, — ig[W,,, W,] == UW,,, U’ (227)

=W, = 9, Wi — 3, Wyl + g fWIW. (228)
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Electromagnetic field || Minimal coupling to matter

> In the particular case of the group U(1) of electromagnetism the only generator is -
a multiple of the identity: .

T = Q (the charge of the field in units of the coupling g = e).

From now on we will call it Q, because it will be the electric charge (in units of e)
of the fermion f annihilated by the quantum field .
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3. Quantization of free fields

140

local /jillar

Scalar fields || Fock space

= Remember that in order to quantize a classical system of coordinates ' and
momenta p' in the Schrodinger picture we promote g’ and p' to operators and
impose the commutation rules (in natural units):

a1 =idy, [a.d]=[p.p]=0. (1)
= In the Heisenberg picture, where operators depend on time,
Ty (1) = &gl M, pl(r) = e ple ! 2)
(= 9y = iHdy —iqyH = —ilqn, H], if 3/ = 0)
we impose the equal-time commutation rules,

(1), P (D] =05, (g (1), 4 (B)] = [Pl (1), Ply(B)] = 0. 3)
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= In a field theory we have replaced g%, (t) by ¢(t, X) and p;(t) by I1(t, ), so in

order to quantize the tields we promote them to operators and impose®

[p(t, %), TI(, )] =i0°(X = §), [p(t, %), ¢(t,H)] = [[1(t, %), T1(, )] =0

second quantization

> We will study first the case of the scalar field.

local/jillana

(4)

4This procedure is called canonical quantization. There is an alternative procedure, the Feynman path

integral formalism, that is particularly useful to quantize gauge field theories.

Scalar fields || Fock space

= Consider a free real scalar field ,

d’p —i t i 0
(age'P* +aze'?), p’=Ej

P(x) :/—(2n)3\/2715f, p P

.I. .
where now ¢, ags and a 5 are operators. Recalling

i, . RE - [E: . i
109 <009 = [ 55 (/) o =i

it is easy to check that (4) implies

I
_|_
§N
+
=

lap,af] = (2m)°(F—4), lap ag] = [a},af] =0
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(5)

(6)

(7)
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Scalar fields || Fock space

> In fact,

i d3p e i = i s o
. ip-(x—¥) —ip- (X)) — i53(% — i7
2/(2n)3 (e +e ) i0° (X — ) (8)
where we have used
d3p .-
3(7) — P ip-X 32\ — 53(%
5°(X) /(2n)3e , 07(—=X) =6°(X). )
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Scalar fields || Fock space

> The commutation rules (7) remind us of the creation and annihilation operators of
the energy modes fiw of a harmonic oscillator with Hamiltonian °

P> 155,
H=I 4=
+ —mw*x*, (10)

whose solutions are found by introducing the operators
(we reinsert the 7 to refresh our memory):

B h + L hmw
x = zmw(a—l—a), p = —iy/ 5 (a—a"), (11)

satisfying the commutation relations,

[x,p] =ih = [a,a'] = 1. (12)
From them we derive

H = hw(ata+1). (13)
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Defining the state of minimum energy (the vacuum) |0) as the one annihilated by

the operator a and applying (12)

[H,a'] = hwa', [H,a] = —hwa, (14)

we have that, normalizing (0(0) =1,

1

al0)=0=a'aln) =nln), |n)=——(a")"|0) (15)

- V!

from where a'a is the operator number of modes, |0) has energy Ey = 3hw
(zero-point energy) and |n) has energy E, = hw(n + 3).

The Hamiltonian eigenstates {|n)} form the system’s Hilbert space, called the
Fock space.

Scalar fields || Fock space
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= Coming back to our field theory, we see that (7) are the commutation relations of -

an infinite set of harmonic oscillators, one per value of pj, except for a
normalization factor, which is the (infinite) volume of the system, since

lim (277)383(F — §) = lim [ d3x e 1F-D¥ = V(— o). (16)

> Then, we can construct the Fock space of states using the operators creation (u;ij)
and annihilation (a5) of modes of momentum p, from (7) and a5 [0) = 0.
This way we obtain the multiparticle states:

P, P2, ) = /2Ep,\/2Ep, - - -ak b -+ |0). (17)
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Scalar fields || Fock space

> The state normalization has been conveniently chosen to be Lorentz invariant.
In fact, taking to simplify the state of one particle of momentum p,

|P) = \/2E5 a3 10) = (§|P) = \/2Eq/2E5 (0 agaf|0) = 2E5(27)°0°(F —7)  (18)

we see that this scalar product is a invariant because performing e.g. a boost

along the direction z,

E'=9(E+Bpz), pi=pv pPy=py p-=7BE+p:) (19)
we have
P(F-q) _ECF-§) _Eq .
B (7 —7) = = = — 537 —
7| Bs—+1
op:
= Epd>(F' — ) = Eg&(F — 1) - (20)
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Scalar fields || Fock space

In the first step we have used

(£ (x)  f(x0) = ‘ d‘}(( "")) . &) =P =BE+ps), @D
a X = Xy

dE  p: B 9 | =
dp. E’ because E = /m* + p= . (22)
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Scalar fields || Fock space

= Let us see now what is the energy of the multiparticle states. For that, we will
express the Hamiltonian in terms of the creation and annihilation operators
(at t = 0 to simplify, because the Hamiltonian is a constant of motion anyway):

H= /d3x H(x /d3 1% + (ch)2 + m24>2>

o it
2 (27)3, 2E; / (27)3 2E~
{ E E= ( _,aq.e (p+q) _|_ a aqe (p+q) aﬁa}ei(ﬁ_q)'f _ ataqe_i(ﬁ_q’)'f)

— p q ( _,a_,e (P+0]) + a_,a_,e (p"’ﬂ) aﬁa%:ei(ﬁ_q)'f — ataqe_i(ﬁ_q’)'i’)

P4 pa
+ mz (aﬁaﬂ_].ei(ﬁ+‘7) + a_,aq,e (P+‘7) + al_ja}ei(ﬁfﬁ)'f + a;_;,aq,efi(ﬁqu'f) }
1 [ d&p t d°p too 1
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Scalar fields || Fock space

> The second term is the sum of the zero-point energy of all oscillators,
1 [ d%p Evae 1 [ d% (
E — V_ E = — = — —E_’. 24
vac 5 / (2 ) = Pvac v 5 / (27_()3 7 ( )

It is not worrisome that the total energy of this infinite-size system is divergent,
but, moreover, the vacuum energy density pyac is infinite. This is also not a
problem, because we are interested in energy differences,” so we can subtract the
zero-point energy and declare that H is

3
H= / d3x :%(HH (V9)? +mPg?) : = / (‘zin’;?, Epatay (25)

where : O : is the normal ordering of O, consisting in writing all creation
operators to the right of the annihilation operators. Therefore,

(26)

—.»

. = t —
P = aﬁap.

"31""

4This cannot be done if gravity is included, because then the vacuum energy is relevant. The zero-
point energy is related to the cosmological constant. See discussion in Maggiore’s book, p. 141.
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Scalar fields || Fock space

> This way, the vacuum has zero energy and

H|pif2...) = | o5 Epabag, /2B, \2E5, - 0)

:(Epl+Ep2+ )b ), (27)

where we have used aﬁa;i = (2m)38%(p — ;) + a%aﬁ from (7) and a;|0) = 0.
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Scalar fields || Fock space

> As for the moment,

d3x aO(Pal . /d3 / /
/ (2m) 1/ZE (27)3 2E~

X { — Eﬁqiaﬁaqe ipta)x _ E qla+a+e1(P+‘7) +E~q a~a~e (p 9)x Eﬁqia;aqei@*q)x}

1 [ &p t &p iy
:2/(27r)3 p:(—aza_ p—aﬁa 5T ag a +a 7)== /(27‘[)3 p azag, (28)

where the first two terms in the sum are null because they result from the
integration of an odd function in a symmetric interval.

Therefore,

Pi|f9’1fa’2...>:/ E p'atag,/2Eg \/2Ep, - - -a% ak ---|0)

=(P1+P2 ) g2 ) (29)
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Scalar fields || Fock space

= Note that the multiparticle states |F17...) are symmetric under the exchange of -
any pair of particles, because the creation operators commute with one another. *

> On the other hand, remember that from Noether’s theorem scalar fields have zero
spin, so quanta created and annihilated by a scalar field are spin-zero particles.

> As a consequence the spin-statistics connection stating that particles of integer
spin (0, 1, 2, ...) are bosons, i.e. they obey the Bose-Einstein statistics, implies that
their states are symmetric under particle exchange.

> We will see that imposing anticommutation rules for the quantization of spin %
fields, necessary to prevent that the Hamiltonian is unbounded from below, leads
to multiparticle states that are antisymmetric under particle exchange,
accordingly to fermions.

> Therefore, in quantum field theory the spin-statistics connection is not a postulate
but a theorem.
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Complex fields || Antiparticles

= If the scalar field is complex,

_ d3P —ipx | 1t ipx (
¢(x) /m (e + bre™), (30)
+ _ d3P +_ipx —ipx
Then,
9(4,7),T1(1,7)] = i6%(% — ) _ lapaf) = g bf] = P0G -7
[9(6, %), ¢(4,7) = (ML), T(LG)] =0 [aga5] = [by, bg] = [a5,b5] = [ay, b5 = 0.

(32)
In analogy to the case of the real scalar field, we construct the Fock space from
a5 |0) = bz |0) =0, (33)
applying a% and b;g, successively.
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Scalar fields || Antiparticles

m [t is easy to show that, taking the normal ordering,

H= /d3” Ep(atas + biby), Pi:/(d3§3p( j+b5by). (34)

We see that the quanta of a complex scalar field are two species of equal mass

created by a;g and b;_;, respectively.
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Scalar fields || Antiparticles

= The conserved U(1) charge is
R 3 3
Q:i/d3x:c/>+80gb::i/d3x/ d’p / g
(27)3, /2E; (2n)3 2E7
X { (utei”x + bﬂe_ipx> do (aqe_iqx + bieiqx) do ( el* + bge lpx) (aqe_iq" + b};eiqx)

=[x/ 2y \/E/ 25

X { ( age elP* 1 bge 1’”“) E; (a;f b+ “’x> + E; ( elP¥ — br—,»e_i’”‘) (aq»e_i"x + b:-;»ei”’x>
ST B3 )

>> Therefore, the state a;g |0) has charge Q = +1 and bg, |0) has charge Q = —
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Scalar fields || Antiparticles

> We can now interpret the negative energy solutions of the Klein-Gordon equation: -

* The coefficient of the positive energy solution of a complex ¢ becomes the
annihilation operator of a particle (of a given charge) while the coefficient of
the negative energy solution becomes the creation operator of its antiparticle
(of opposite charge).

e For the field ¢ it is the other way around, because the roles of particles and
antiparticles are exchanged.

e [f the field is real, a5 = bﬁ, then it creates and annihilates particles that coincide
with their antiparticles.
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= In order to quantize the Dirac field, which is a complex field,

d3 : ,
P ¥ (g (e + 5,00 (B)e7),  G6)

P(x) = / (273 \/TE,a»s_l,z

+ d3g Fo () g (1)t (=2 a—igx
0o = [l ¥ (b @ by e, @)

(27)3, J2Ez =12

we promote the coefficients a5, by

and their adjoints, as we did for the scalar field.

and their complex conjugates to operators
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Spin ] fields || Dirac field

> Before imposing any (anti)commutation relation on them, let us see which is the -
Hamiltonian operator (taking again t = 0 to simplify, because we know it will be -
time independent):

H = /d3x900 /d3x¢’1ai,b /d3/27t \/E/zn o

< L {afapse TP @) () — by b TP @B (7

—at bt e (¢7+5)'fu(7)*({7)1;

Gr95,s€ 7 G075 5
L d3p Mt (346 (5 Y ()t ()
- a*—prb;ﬁsu“>*<—ﬁ>v<s><ﬁ> b0 (P (7))
d3p .
/ 271) (773 PZ 7,549, bﬁ,sbﬁ,s>/ (38)
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Spin 1 fields || Dirac field

where we have used
u (B u(B) = 2E50,5, 0 ()0 (B) = 2E 6y,
WP (=)o) () = o (— )b () =0, 9)

> If now we imposed the same commutation rules as for the complex scalar field
and applied the normal ordering (subtraction of the vacuum energy), we would
get a Hamiltonian unbounded from below, because the states created by b;g, the
antiparticles, for all momenta would contribute with an arbitrarily large negative
energy. In order to produce a meaningful energy spectrum, we are forced to
rather impose anticommutation rules:

{p(t,2),0y(t,7)} =i —7),  {9(t,2),p(t,§)} = {ITy(t, %), 1Ty(t,7)} =0



Spin ] fields || Dirac field

Therefore, we must consistently define the normal ordering for fermionic
operators as

local/jillana

Dag,ak, = —ak ag,, bybyoc=—bl bs,, (41)
leading to the Hamiltonian
Hz/d3x :1/)+iao1p::/ anp Ep) (af.aps +bf bpe). (42)
S

Likewise, for the momentum operator one has

Pi:/d?’x :GOizz/d?’x iy =

Spin 1 fields || Dirac field

= The angular momentum (conserved Noether charge associated to the invariance

P Y (ah a5 + b5 bgo). (43)
S
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under rotations) has an orbital part (identical to that of the scalar field) and a spini
part (in addition). Applying the general expressions for the Noether currents, one

can show that the spin part in the chiral representation is

. 0
S= [ &x ;¢S wherexi= 7 . (44)
0 o

Expressed in the Fock space, the spin about the z axis reads

oot
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Spin ] fields || Dirac field

> Then the spin |, of a state created by a . 10) or b+ ¢ 10) in its rest frame (7 = 0) is
obtained by applying S, to those states Remember.

u(0) = u(0) = vm &), o(0) = =0 (0) = vy  46)

) () ()l e

The last line in (45) vanishes applying (39) and we get

1 1
Sz aj1]0) = +§”8,1 0), S:af,[0) = _5”8,2 0), (43)
1 1
Sz b6, 10) = +5b0,110), Sz b2 [0) = =5, 10), (49)
where we have used that : br—,»,sb;;’ = —b; sb,s- Note that, thanks to our
convention of taking the antiparticle spinors 1(5) = —ig?¢(®)* for a given s, which

is an eigenvector of o> with opposite eigenvalue to that of &), the states of
particles and antiparticles with the same s are in the same spin state.
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Spin 1 fields || Dirac field

> As [Ks, Jz] = 0, the state resulting from performing a boost along the direction of -
axis z (the one used to define the spin) is still an eigenstate of spin. Remember :
that the projection of the spin along the direction of motion is called helicity.
One can check using the explicit expressions of the spinors that

5.5 uV(p) = +uV(@),  p-2u®@) = —u?(p) (50)
p-Zo(p)=—V(E), p-Zo?(p) =+ (p), (51)

and hence the results of (48) y (49) can be extended to the helicity states:

. 1 1
p- 1 0) = 2 ;57‘,1 0y, p-S a*z 0) = 5“;%,2 0) (52)
. g 1 o 1
p-Sbk,0) = +§b;§,l 0), p-S bl,]0) = _Eb%z 0), (53)

namely, states of particle and antiparticle with the same s have the same helicity.
Remember that the helicities are Lorentz invariant only for massless states (and
then they are called chiralities).
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= As for the U(1) charge:

Q:/d3x:¢*¢:=/ S

5sb7s)-

ps pS (54)

Therefore, the quantum field ¥ annihilates particles and creates antiparticles of

equal mass, spin % and opposite charge.

166

Spin ; fields

Dirac field
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= Let us see now what is the meaning of the spin eigenstate labels s = 1, 2.

We associate s with the spin of the fermion about a given direction. Consider an

arbitrary direction 71(6, ¢). Then the spin eigenstates in that direction are

(In particular, &) =

[
) since (71-3)&(1) = +E(1),  (55)
elq’sing
P T
€I dince (- 3)E(L) = —£().  (56)
\ cosg

(& (1), ¢ (2)) are the spin eigenstates in the z axis.)
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Spin ] fields || Dirac field

> Now, the state with opposite eigenvalue to that of any ¢ is 7 = —ic?¢*, because if
(n-0)¢ = ¢ then

(7-0)y = (- 8)(-i0?¢") =ic* - F°¢" = —(~i* ) = =1, ()
where we have used that o> = —¢?7*. Therefore, we can also denote
g9 =9l = —ie?g = (2(1), —¢(1)) (58)

to remind us that these are eigenstates with opposite eigenvalue to the one given.

— Note, by the way, that a double inversion of the spin of ¢ takes it to
_10.217* — _10.2(_10.2(;{*)* — 0.20.2*§' — _g (59)

which does not coincide with ¢, reflecting that a rotation of 27t does not take a
spin 3 system back to its original state (a rotation of 477 is needed).
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Spin 1 fields || Dirac field

> To summarize, take the spinors introduced in the previous chapter:

O — [ VP EY O - [ VPTET
u(p) = (\/ﬁg@))’ vN(p) = (JP—U'C(S) : (60)

We have seen that, given the field {(x) of (36), the operator a5, annihilates
particles whose spinor u(*) (%) contains the &*) and the operator b;f]./ ; Creates
antiparticles whose spinor v(*)(7) contains the &(~*).

This will simplify things. For instance, we will see that the charge conjugate of a
field ¢(x) exchanges particles for antiparticles preserving the same state s,
namely, in the same spin state or the same helicity.
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Spin 1 fields || Weyl fields (massless)

> And if we take the ultrarelativistic limit (E > m) to

d3 S) (3| ,—ipx S) ( 3\ LipX
P 3 (apau (e + b} 0l (p)e™)

P(x) = / (271)3\/715]55:1,2

remember that

M(l) — 0 , u(z) — uL , ’()(1) = UL ’ ’(](2) — 0 . (61)
UR 0 0 UR

Therefore:
o The field ¢;:
o annihilates particles of helicity # = —1 (spinor u2))
o and creates antiparticles of helicity 1 = —1—% (spinor ().
* The field yg:
o annihilates particles of helicity h = +1 (spinor u(!)
o and creates antiparticles of helicity # = —1 (spinor 02y,
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Spin ] fields || Charge conjugation

= The charge conjugate of the classical Dirac field (in the chiral representation) is

iy (x)

—ic? _
PE(x) = ( v ‘PR(X)) — i) (= i (). ©)
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Spin ] fields || Charge conjugation

> Let us see the result of the charge conjugation operation on one-particle states. -
For that we need to introduce a unitary operator C, with C? = 1, transforming the-
creation operators as follows,

Car—,»/sC = Ucbﬁ,s , CbﬁlsC = qcaﬁ,S , (63)

where 17% = 1, so that 7c = £1. Then, from (60) we have

[0 (P)]* = ( \/p_‘T(_i(TZC(S)*) )* _ (—iaz\/ﬁ (j(S)*) '

/o= | T\ ety g
0 —ic?\ [ /po &l . 5 (3
=|., il = —iv’ul(p),
i 0 \/po &)
(64)
(first we have used 0?¢c? = —7* with (¢2)? = 1 and then ¢** = —¢?) from where
ul(p) =~V @), o (F) = —in? 1 (P (65)

(because (7?)? = —1.)
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Spin ] fields || Charge conjugation

> This way the operator version of (62) is satistied:

d3p . i
Cyp(x)C = ¢ / =) (b (e P + af o) (F)e?
") @np 25, L (b o))

ﬁ S

d3 . .
— 2 p L [H(8) (3 ]*a—ipx t 71,,(8) (7% alpx
- /(271)3\/273?25 (bl @+ ) (7))
= —incy’y* (x). (66)

Therefore, the charge conjugation exchanges particles for antiparticles preserving
the spin state, i.e. keeping the helicities.
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Spin ] fields || Charge conjugation

> For Majorana fields, that at classical level satisfy :
P (x) = T pm(x) (67)

one has that?

Cym(x)C " Pm(x)
d =\ _—ipx S) [ =\ ipx
=c [ o & (b P O )

\/2E5 s

d3p (8) (Ao t =
= [ ———=Y" (a5 (B)e " + b} o) (p)e*
/ (27)3, /2E; ;( ' & )
=a5s =1c bys, (68)

namely, particle and antiparticle coincide, because
Cal (|0) = Caf, CC[0) = 5cbf [0) = a;  |0), (69)

where we have taken C |0) = |0).

4The complex phase {* to the right of the equality (67) is incorporated in the definition (63) introduced
to the right of equality (68), so we can say that 7 = { and hences it must be real, because ¢ = £1.
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Complex scalar fields || Charge conjugation
= For a complex scalar field, ignore spinors and spinorial indices:
Co(x)C = nc¢*(x) = CatC = ncby;, CbiC = ycay. (70)

> The Majorana field is the analogous to the real scalar field.
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Spin ] fields || Parity

= The parity transformed of the classical Dirac field (in the chiral representation) is -

P(x) = ye(x) > IPR(JE) =90 wL(JE) = 1y%(%), where ¥ = (t, —%).
Pr(x) pr(%) Yr(%)

(71)
> We need that on one-particle states the parity acts as follows:
Paﬁ,sp = ﬂﬂa—ﬁ,s s Pbﬁ,sp = Wbb—f)’,s s (72)

where P is a unitary operator, with P> = 1, and 7,, 7, being phases that we will
call intrinsic parities of particles and antiparticles, respectively.

We will assume P |0) = |0).

Because observables depend on an even number of fermionic oparators, from the
constraint P> = 1 we may take 72,72 = +1

(the minus sign with be needed for the Majorana fields).
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Spin ] fields || Parity

= Then,
Pyt )P = [ gt (P 7 0 (e
(277)3 ,/2E~;(“ P b, )
d3p (s) s + I
= [ ———=Y (a5’ (=P)e " + bl o) (=)
/ (271)?, /2Eﬁzs:( P ’ )
d3 . .
_ 0/ 9P (s) (3 a—iPX _ t (s) =\ Lip¥
= / Naapst > (F)e™ " —1yby 0™ (P)e
(273, /ZEﬁ;< o ’ )
= 1a7"P(t,=%), if e = -5, (73)
where we have first changed p for — 7, which implies replacing px by p&% and
u®(=p) = P (F), o9 (=p) = =10 (p). (74)
If it is a Majorana field, then 4 = b and the constraint 1, = —1#, forces 1, = =i
(7> = —1), as we had anticipated. Otherwise the intrinsic parity of a fermion

1, = *£1 is opposite to that of its antifermion, 17, = —#,.
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Spin ] fields || Parity

= The value of 7, (o 1) is irrelevant for any observable involving only fermions
(or antifermions), but the sign difference has consequences if both fermions and
antifermions are present.

(See for instance the positronium system, a bound state of electron and positron.)

178
Scalar fields || Parity
= For a scalar field, ignoring spinors and spinorial indices, it is straightfoward that
Po(t,X)P = nap(t, =X), sita =1 (75)

Namely, the intrinsic parities of a spin-zero particle and and its antiparticle are
the same.
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Spin % fields || Time inversion

= We need that the time inversion T changes
ts —t, B —p, J— —J.

Note first that if H is invariant under time inversion then T must be an

antiunitary operator because Te ! = !HIT.

Then for any couple of states,
(Ta|Tb) = (a|b)” = (bla), T(zla)) =z"T|a).
The action of T is defined by

Taﬁ,ST = {Z,F-,*,,S ’ Tl’)ﬁ’ST = b,r-;,,s ’

where

a_p—s=(a_pp,—a_51), b_j_s=(b_po, —b_p1).

Spin % fields || Time inversion

> Therefore,

R d3 S) [ =\ ~—ipx S) [ =\ .ipx
Tq;(t,x)T:/—pZT(aﬁ,su()(p)e P +b;-§,sv()(p)ep )T

(zn)3\/szf, :

s/local/jillana

76)

(77)
(78)
(79)
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Time inversion

where first we have used

(=) = (V’”_‘? “"25“)*)) _ (?@W ¢<S>*)

VPT(—i02g)*)

local/jillana

(81)
(82)

and then we have changed s for —s and p for —p that amounts to the substitution

of px by —px’ with " = (—t,¥).

Scalar fields

Time inversion

= For a scalar field, it is easy to show that

Top(t,X)T = p(—t, T).

C, P, T of fermion bilinears

» From the transformation properties of ¢(x) we can get those of the fermion

bilinears:
C P T CPT
S(x) = p(x)p(x) 5(x) 5(%) 5(—%) 5(—x)
P(x) = 9(x)7s¢(x) P(x) ~ —-P(x)  P(=%) —P(-x)
VIx) = po)rryp(x) | =VHx)  Vu(®)  Vu(=%) —VH(-x)
Al(x) = p(x)y'ysp(x) | AF(x)  —Au(X)  Au(=%) —AF(—x)
TH(x) = p(x)o"yP(x) | =T"(x) Tw(X) —Tw(-%) TH(-x)
with ¥ = (t, —X).
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Electromagnetic field || Quantization in the radiation gauge

= Remember that in the radiation gauge, -
A(x)=0, V-A=0, (84)

the three non zero components of A*(x) satisfy a massless Klein-Gordon
equation,

OA! = 0. (85)
The solutions are of the form

A(x) = / &k y (5(% My e % 1 & (K, \)a eikx) (86)
o ( & ’ kA ’ kA

with

k-g(kA) =0 = V.A= (87)
and €(k, 1), &(k,2) two polarization vectors orthogonal to each other.
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Electromagnetic field || Quantization in the radiation gauge

> Let us find the conjugate momenta,

oL 1
0 —= —= 1 = —— v
IT(x) 3(3070) 0, since £ 4FWF (88)
, oL . , .
i _ _ 10 — _ 204t — [l <L
IT(x) = 300A) F”(x) d0°A'(x) = E'(x) (electric field). (89)

We see that A(x) = 0 (in this gauge) and I1%(x) = 0 (in general),
so they are not dynamical variables.

> In order to quantize the electromagnetic field we promote, as so far, A(x) to an
operator imposing

[“E,A'“;L,A/] = (2m)°8 (k — 7)oan 93 1 Ag0] = [“%,A' “;W] =0 (90)

where a%’A (a; ,) are operators on the Fock space creating (annihilating) photons.
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Electromagnetic field || Quantization in the radiation gauge

> Note that previous commutation relations imply

363(k — §)drn

A2, Bt 9)] = =i [ W | e

X {e_i(“’ﬁ_ AN Y ek, A)e* (3, M)
M
+ei(wE—wﬁ)te—1Ef q-y) Zez* k )L €]<q )\)}
AN
1 d3k ik (X—y
- - ) i j*
2/(2n)3{ e e (.2

d’k iE-(f—y’)l ir i ix ]
:—1/(2n)3e S {dE N EA) +e (E NI (E )
A
% oo/ Kk
] S (o) cgaen o
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Electromagnetic field || Quantization in the radiation gauge

>> In the last step we have used that the term in braces must be covariant under
rotations and hence it is a combination of the rank-two tensors under rotations
that can be written using 0 and k', that is,

.. 1 — . —
A + B& = 12{ (K, A)el* (k) + € (— k,/\)ef(—k,)\)}. (92)

Multiplying by k', and from (87), we have that
A+ Bk =0= A= —B, (93)

and taking, for example, k= (0,0, wE), E(%, 1) =(1,0,0) and 5(%,2) = (0,1,0) itis
enough to check the term i = j =1 to find

A=%(1+1)=1. (94)
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Electromagnetic field || Quantization in the radiation gauge

> If not for the term kik/ /K2 in (91) we would have got

y 3k . o y
—iél / %elk“ V) = —i615% (% — i) = ig163 (X — 1) . (95)
This term is responsible for the transversality condition of the electromagnetic
tield to be satisfied in the radiation gauge (k-&=0), coming from V - A = 0 and
also V-E = 0. Then,

&Pk

[V - A(t,%),E/(t,7)] = V:[A(t,X),El(t,7)] = —i/ Wel DK —K)=0

(96)

A7),V - (6 7)] = Vo Al 7), B )] = —i [ K oG- (1 _ iy — g
[A'(t, %), V - E(t, )] = Vy[A'(t, %), E(t,7)] Ok ( )
97)

0]

—

That is why we have introduced in (91) the transverse delta 6;.(¥ — 7).
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Electromagnetic field || Quantization in the radiation gauge

= We are ready to construct the Fock space by acting with a% , on the vacuum

defined by az , |0) = 0. Applying the normal ordering to the classical expression,
for the reasons we already know, we obtain

L (s . #, m. d’k
:E/dx B+ B ':/(Zn) Z:wk k/\ak)\’

3 d’k e
d’x :Ex B: 2np Y kag,ap, . (98)

A=1,2

> Therefore /2wy a% \ |0) is the state of a massless particle with energy w; and

momentum k. It has two possible polarizations A = 1,2 that we will analyze next.
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Electromagnetic field || Quantization in the radiation gauge

= Applying Noether’s theorem one can find that the quantity conserved under
rotations is (show it!)

M = / d3x 9 AX (X' — ¥/ Ay + / d3x (Al9gAl — AlgyA"). (99)
The first term is the orbital angular momentum and the second is the spin part.
Let us focus on the spin:

Sl = / d3x : AI9gAl — AJgyA' -

VPt o |
= 1/ (27733 Z (el(q’ /\//)e’] (q, /\/) — el* (q’ /\/)e](q’ )\//)) a_’)vaq . (100)
A\

Then, using (90),

agarar  0) = [agn,af ]10) = (277)363(§ — k)6 v 0) (101)
we get
Sija%,)\m):iZ(ei(E,)\)ej*(E,)x’) (%, ANl (K, A)) at 0y, (102)
/\/
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Electromagnetic field || Quantization in the radiation gauge

> Take now k = (0,0, “JE) and find the spin in the direction of the z axis, S3 = 512,

Let us choose the basis of linearly polarized states &(k,1) = (1,0,0) and
&(k,2) = (0,1,0), that is, €’(k, A) = &}. Then,

3(1%1 0) = +1a~ ,10)
a—» = 12 (S/\d/\/ 5/\/5/\ , |0> = ’ (103)
kA 3(1%2 0) = mq L 10)

We see that the linear polarizations are not helicity eigenstates.
However, circular polarizations are helicity eigenstates:

— 1 — —
€k, £) = —=(€(k, 1) £ i€(k,2)) (104)
because V2
1 .
S%a; |0) =+af [0), af = —2(a;1 +ial ), (105)
1 .
S3a%,_ |0) = —a%_ 0), a%’_ = —2(11%,1 — 15%2) . (106)
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Electromagnetic field || Quantization in the radiation gauge

> Then, the states /2wy a%/i |0) describe massless particles of spin 1 and
helicity +1.

= A final comment is in order: although the Lorentz covariance is broken by the
choice of frame in this gauge, one can check that the Poincaré generators written
in terms of creation and annihilation operators satisfy the Lie algebra, as they
have to.
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Electromagnetic field || Covariant quantization

= We would like to be able to impose a covariant quantization,
AR R), 1T (4, )] = ig" S F—7), [A'(LE), A (LH)] =0  (07)
However this is not possible because, as we have seen in (88) and (89), I1%(x) = 0.

Instead, if the Lagrangian was

1 1
L= —ZFWFVV — E(E)MAV)Z , (108)

which is not Maxwell Lagrangian, we would have

/ I = —0,AH
() = —25 () = =0, 47(3) (109)
d(doAy) Hi(x) = —F0i — Ei(x) (as before)

193



Electromagnetic field || Covariant quantization

> Rewriting
L= @A A — AR AY) — gD A AT

the Euler-Lagrange equations are

oL’ 5 oL’
04, "9(9,A))
= UAY —0"0,A¥ +-0"0, AF =0
= A" =0,
so A¥ is massless, where we have used

=0 = 9, (F + gM9, A%) =0

9, FM = 3,(9F A” — 3" AM) = DAY — "9, A
9,(g" 3 AY) = 3“0, AF

whose solutions are
3

Al (x) = / 2y Zwk )y (e” (k,A)a _lkx—|—€V*(%, /\)a%/Aeikx) .

A=0

Electromagnetic field || Covariant quantization

> Because this time we have not imposed €’ = 0 or k,e# = 0, the field A" has
four degrees of freedom, labeled by A = 0,1, 2, 3.
Obviously the Lagrangian £’ is not gauge invariant.
In particular, it we take k* = (k,0,0, k) then e (E, A) = 5%:
e (k,0) = (1,0,0,0),
e'(k,1) = (0,1,0,0),
e"(k,2) = (0,0,1,0),
et (k,3) = (0,0,0,1).
Only €#(k,1) and € (k 2) satisfy ke = 0.

l

> It is easy to check that the commutation rules (107) imply

[ k/\’ ] CAOAN (27[) ‘53(k 67) ’ [ak A q)x’] = [a%’)\'a%)d] =0,
where

Co=-1, Ci=0=0=1.

local/jillana

(110)

(111)

(112)

(113)
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(114)

(115)
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Electromagnetic field || Covariant quantization

= The one-particle states,

E,A> = \/ka at o) (116)f

have a negative norm for A = 0, because

(i

) = 2 (0l agaat 10) = 2 (0] laga,af ] 10) = 228 — 7).
(117)

This is not acceptable, because the norms are interpreted as probabilities.
In any case, £ is not the Lagrangian of electromagnetism and, if it were, the

states E,O> and

E,3> are not physical.
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Electromagnetic field || Covariant quantization

= We can think of recovering the electromagnetism by requiring that
on the physical states,

(phys'| 9, A" |phys) = 0. (118)

Then, instead of taking 9, A* = 0 at the Lagrangian level, we will suppose that the
Lagrangian is £’ but we impose the constraint above on the physical states.
This is known as the Gupta-Bleuler quantization.

Let us see that in fact this is sufficient to eliminate from the Fock space all
unphysical states.
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Electromagnetic field || Covariant quantization

> For that purpose, let us denote
9y Al = (9, AM)T + (9, AM)~ (119)

where we have separated the states of positive and negative energy,

d3k 3 N ]
(3, AN = —i / AKXy et (® A e R
L (277)3\/2_“’75);) # kA

d3k > . .
AN =i [ =Y ket (k, A)al e 12
( U ) 1/ (27_[)3\/2—%);:0 ]Je ( ’ )ak,/\e ( 0)
As (9,A")~ = [(9,A")*]T, the constraint (118) is satisfied as long as
(0,A¥)™ |phys) = 0. (121)

Moreover, as (9, A*)* is a linear operator, if |[phys;) and |phys,) are physical
states then an arbitrary combination « |phys;) + B |phys,) is also physical.
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Electromagnetic field || Covariant quantization

> Then, given a physical one-particle state

) = ;W% 0) (122)
the constraint (121) implies

d3q
0= (9, A" |p) = —i/ —————Y" crque"(§, N )az yvat . |0)
(2)3, 2w; 7k

AN

w—»
ZC,\C)\kﬂey k)\)|0>—0:>1 —k(C0+C3)|0>:0:>C0+C3:0
£/2 V 2

if k= (wk, 0, 0, wk) and e#(k, 1) = d}. (123)
As a consequence, a physical state is:

e An arbitrary combination |1) of tranverse states created by a% and a%z
as expected.

* And it is also physical a combination of the form (cy + c3 = 0):

¢) = (af, —af,)0) . (124)
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Electromagnetic field || Covariant quantization

> Therefore, the subspace of physical one-particle states of momentum k is of the
form

¥) =lyr) +clg) . lgr) = ) aag, |0), (125)

A=1,2

where we will see that, first

(plg) =0, (¢rlp) =0= (Y[¥) = (Prl|Pr) (126)

and, second, |¢) and |¢r) have the same energy, momentum, angular momentum,
etc. Thus, we can introduce an equivalence relation

) ~ lpr) it [¢) = [9r) +cle) (127)

and choose any |¢) in the class of |¢7), transverse or not, because this choice has
no physical consequences.
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Electromagnetic field || Covariant quantization

> Let us prove the first statement:

(@19} = (0] (ay — ag;)(at, —at ) [0) = (0] (agat, + agsat,) [0)

7

= (0| ([aﬁo,aio] + [aﬁ,y”ig )[0) =0 (128)

(prl¢) = (0] (cFag, + caap,)(az ) — az ;) [0) = 0. (129)
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Electromagnetic field || Covariant quantization

> And now let us prove the second: the energy and momentum are given by

dsk + t «
H = | %00 T Z ag g (130)
’ A=123
_, d3k -
]P:/—k —al a + Y al ) (131)
(27-[)3 ( k,0 k0 A3 EATEA

If we calculate the matrix elements of these operators, that always contain the

combination (—a + aﬂ 2% ;) between two physical states, we must take into

k 0%k
account that on a physmal state lp) = |gT) + ),

(g — ag5) [9) = clagy —ags) [¢) = clag, —agy)(af —a;)[0) =0  (132)
and, then
(phys'| (—a ko ap, +af 1z 5) [phys) = (phys'| (—a ko apo+ap (g — ags) +af,a;5) [phys)
= (phys'| (—ag \a 5 + a3 ,a; ) [phys) = — (phys'| (a3 ) — Eg,)az,g;) [phys) =0, (133)

i.e. to energy and momentum contribute only the transverse oscillators.
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Electromagnetic field (| C, P, T

» Finally, let us find the transformation properties of A*(x) under C, P and T.

> As Cyy'ypC = —¢y"ip, for C to be a symmetry of the QED Lagrangian we need
that Lopp D qypy* A, remains invariant, namely

CA¥(x)C = —A¥(x) = ncAl(x) & Cap . C =ncaz ., (134)
from where the charge conjugation of the photon is r7c = —1.

> Regarding P, as A(x) is a vector we have (consistently with P conserved in QED)

PAy(t, X)P = Ay(t, —J_C") = PQE,iP = 17p[1_k*,i , (135)
from where the intrinsic parity of the photon is #7p = —1, as it corresponds to a
state with | = 1, consistent with a parity (—1)L = —1 for a system of orbital

angular momentum L = 1, whose wave function is given by YM(6, ¢).
> And regarding T (conserved in QED),
TAK(t, X)T = Ay(—t, %) & Tag T=a ., (136)
the same as for the vector T[ip(t, X)y*¢(t, X)]T = p(—t, X) v p(—t,X).
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C,P T || CPT theorem

» This completes the transformation properties under C, P and T of scalar (70, 75, -
83), spinorial® (66, 73, 80) and vector? fields (134, 135, 136), which are the building2
blocks used to construct Lagrangians describing elementary particle physics. The
interactions involve Lorentz invariant products of these fields and their
derivatives.

> We know that weak interactions violate C, P, CP and T, but strong and
electromagnetic interactions conserve these three discrete symmetries.

> The CPT theorem states that any local quantum field theory (Hermitian and Lorentz
invariant Lagrangian) is invariant under the combined action of CPT,

CPT L(x) CPT = L(—x) . (137)

This can be checked on any Hermitian scalar combination of femion bilinears,
scalar and vector fields and their derivatives.

4In particular, it is useful to derive the C, P and T properties of the fermion bilinears from these
properties of spinorial fields. Do it!
PFor a complex vector field the charge conjugation is not (134) but CA*(x)C = — A" (x).
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4. Field interactions
and Feynman diagrams
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The S matrix

¢ We have quantized free fields.
Now we will assume interactions:

H=Hyt+Hue, Hi= [ &% Hinlx) = = [ & Lin(
(if Lint does not contain field derivatives)
For example: in QED, Lint = epy#pA, and in the Ap* theory, Lin = —%4)4

> We will always assume small coupling constant = perturbation
(the relevant parameter in QED: a = ¢?/(471) ~ 1/137 < 1)

* Our aim: find transition probabilities in a scattering process
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¢ In the Schrodinger picture states depend on time:

|a(t)) is the time evolution until a time ¢ of an initial state |a) = |a(t;))
labeled by compatible observables with eigenvalues a (e.g. p; and s)
= |b(tf)) in the final state after the scattering

> The probability amplitude that |a) evolves to |b) is then
(bla(ts)) = (ble™ = |a)

We call S matrix to the evolution operator e U =4) in the limit (tf —t;) — oo,
where H is the Hamiltonian of the field theory.

The scattering amplitude is given by

(b|S|a) = lim (p|e HEH) |g)
(tf—ti)—mo
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> Note that if (a|a) =1 and |n) is a complete state basis, ) _ |n)(n| = 1, we have

n

1—Z| n|Sla)[> =) (a| ST |n)(n| S |a) = (a] 'S |a)

n

meaning that S St =1,s0Sis unitary. Therefore, the unitarity of S expresses the
probability conservation. It is convenient to write

S=1+4iT

= —i(T-T) =TT"
SSt =1

Then, defining T;, = (b| T |a) we have

—i( Ty, — ZTbnT;‘n = 2ImT,, = Z | T |2

that leads to the optical theorem
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¢ In the Heisenberg picture the operators, not the states, depend on time.
This is more appropriate for the QFT, where the fields are time-dependent
operators ¢(t, %), P(t,X), Au(t, X) ...

> The states |a) = |a(t;)) and |b) = |b(ts)) are in the Heisenberg picture
|a) ; = el |a(t)) and |b),; = e |b(t)), independent of time

> Then, defining the Heisenberg picture states |a; t;) = e'f!!i |a) and

bitg) = e'fl's |b)
the S matrix reads

(b|Slay = lim (ble HU gy = lim (b;t;

(tf_ti)_>°° (tf—ti)—>oo

a;ti)
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* Next we will see the S matrix between initial and final states of the same species
labeled by their momenta (assume for simplicity that they are spinless),

(P1p2--Pnl S ‘E1E2"'Em> = <ﬁ1ﬁz-'-ﬁn;tf E1E2"'Em;fi>

where it is understood that t; — —oo and ¢t f— +00, can be expressed as a
function of the vacuum expectation values of time ordered products of fields
(that we will soon define).

> To that end, let us first note that for a free real scalar field,
d3 p

Ptree () /W\/Tfjﬁ(aﬁ

e—ipx + a%eipx)

then
. — . >
VJ2E; a; =i / d’x € 9 Pgree(x) ,  (/2E; ab = —i / d’x €7 9 dpree(x) . (1)
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> In fact,
/d3x e1kx aO qbfree /d3 / 2E (aﬁelkx dg e P¥ 4 a;e1kx 9 elpx>
3 ; i(k— .t i(k+
a l/d / 2154 (_mf”(Eﬁ + Ep)e! P tial (Ey — Epe' p)x)
ZEE a% .
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* One expects that

() —— ZV%pu(x), p(x) —— Z2%gou(x), @

t——o0 t—+o0

where ¢ (x) and ¢out(x) are free fields (before and after the interaction,
respectively) and Z is a constant factor called wave function renormalization
(whose meaning will be understood later). Then, using (1),

£

\/2E; aE(l N = _jzm1/2 tgmoo d3x e ik 80 $(x), 3)
_ tlout) _ 1/2 3. —ikx

\/ 2Eg a; = tgrﬂ)o d’x e 8 $(x) . 4)

Therefore

(P sty [l Fuit) = \[2Bg, (Bifa- - Pustyl g™ [fa -+ it

= —iz"1/? Jim dx e Y (B1ps - Pusty] 30 ¢(x) ’kz ks ti> :
(5)
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The LSZ reduction formula

> It is convenient to write previous expression in a covariant fashion noting that

2E; (Prp2 - - ﬁn;tf| o) KooKt
\/\1 ky
:\/ﬁ<ﬁ1ﬁ2 < Pty (El%l(in) — agl(out)) ‘Ez sk ti>

acts on (p1p2 - - - Pust f| annihilating a particle in the final state of

+(out
because aic.(ou )
1

momentum k; and, given that in the scattering process there are no spectator
particles (no Ei coincides with a p;), this operation vanishes.

This is because we are actually computing the part iT of the S matrix.
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The LSZ reduction formula

> And, on the other hand, from (3) and (4),
\/ZTSE (ag(in) _ a;(Out)): iZl/z/d4x 9 (eikx gg 4’)
—iz 12 / d'x 9 (7 *90p — page )
_ iZl/z/d4x [e—ikxa%¢+m_w_¢agequ]
_ iZ—l/Z/d4x [e—ikxa%(f) — (V2 — mZ)e—ikx}
—iz1/2 / d'x e (38p — V2p + mg)

= iZ_l/Z/d4x e M (O4+m?)g(x), (6)
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The LSZ reduction formula

where in the first equality we used

(tgr_noo—tgrﬂoo) /d3x f(t,x) = —/_O:odt %/df‘x f(t,x) = —/d4x o f(t,X),
()

R
with f(t,¥) = —iZ71/2e7k* g ¢,

in the next-to-last one we have replaced
(Pa%e—ikx _ (P(VZ o mZ)e—ikx ,
because k* = m?, and in the last one we have used

/d3x V(e FVep) =0 = /d3x (Ve ™)V = — /d3x e y2¢
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The LSZ reduction formula

from where
0= / dBx V2 (e Hxg) = / d3x Vv [(Ve_ikx)gb + e—ikxw]

= / d’x [(vze—ik’mp +2(Ve ™) Vg + e V%
— / dx [(V2eTH)p — e ey

= /d3x PpV2e ik = /d3x e 24
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The LSZ reduction formula

> Then, we can in fact write (5) in a covariant fashion,
<51}72 v Pty ‘klkz - 'km;ti>

= iZ_l/z/d4x e_iklx(D + mz) <ﬁ1ﬁ2 < f_jn; tf‘ 4)(x) ’EQ ce Em; ti> .

We will next proceed by iterating previous procedure until all initial and final
state particles are eliminated, leaving only a product of fields acting on vacuum.
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The LSZ reduction formula

> For that purpose, we write now

(PP Pusts| p(x) ‘Ez . 'zn;ti> = \/2E5 (P2 Puity] a;fiut)q;(x) ‘}’2 . 'Em;ti>

&out) .

= 25, (P2 Pty T{(a") = ai)g(x)} o - Kot )
(8)

(in)
1

where we have used that a Ez e Em ; ti> = 0 and we were forced to introduce

the time ordered product,

T{g(y)p(x)} = {
¢

which implies

T{ai"p(x)} = p(x)ay” , T{a"p(x)} = al"p(x) .
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The LSZ reduction formula

> From (6) we have
ZE*(Q%OUt) . agn)) _ iZ_l/z/d4y eipy(Dy + m2)¢(y)
and substituting this in (8) one gets

(Pip2- - Puits| 9(x) (752 - 'Em;ti>

local/jillana

=iz [ aly @y 4 ) (B sty TOWO) [fo Rt

Then, we already see that

<ﬁ1ﬁ2 . ﬁn}tf’E1E2 .. '%m}ti>

- (iz—1/2>’"+” / (ﬁd4xi eikixz-) (ﬁd4y]- e%w)
. 1

i=1

X (Ox, +m?) -+ (Oy, +m?) (O] T{P(x1) -+ p(xm)p(y1) - - (ym) } 0) -

The LSZ reduction formula

> If now we define the N-point Green’s function,
G(xy, - xn) = (O] T{g(x1) - - - ¢(xn) } 0)

and we write it in terms of its Fourier transform G,

N d4~, i .
G x J oo ,x — / l e_l ixi G J J J 7
(x1 N) 111 ) (71,---,4N)

:tiqx)

we see that (substituting (Je™7* = —g%

<ﬁ1}72 e f?’n;tf‘a%z oo Ko ti>

10\ T n d*%ki e -
— (—1Z 1/2) / Hd4xi (27_()14e 1(k1+k1)xl(kf—m2)>

i (27)4
_ ( 1z—1/2)’”+" (H(k3 —m2)> ( - (P —m2)> C(—ky, .., —km, p1,
i=1 j=1
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ooy Pn)
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and solving for é(—kl, coes—km,p1,.- . Pn),

m iv/7 n iv/7Z oL o
(1—[ ivVZ )( %) <ﬁ1ﬁzﬁn|1T‘k1k2km>

] 2
j=1Fj =

-/ [Tat ") / (ﬁ d'y, e*ipfyf> O T{g(x1) -~ p(xn)P (1) - - $(ya)} [0)

j=1

©)

This is the LSZ reduction formula (Lehmann-Symanzik-Zimmermann). Remember
that for a physical particle the relation p?> — m? = 0 is fulfilled (it is said to be on-shell
or to be on its mass shell). Then, the right-hand side of the LSZ formula will have
poles when the incoming or the outgoing particles are on-shell, that (as expected and
we will see) will cancel the poles of the prefactor of the S matrix element on the
left-hand side, so the S matrix has a finite value.
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Perturbation theory

* The fields ¢ of the LSZ formula are solutions of H = Hy + Hjn and hence they are
not combinations of plane waves, whose coefficients were interpreted as operators"
creation and annihilation of particles at the quantum level.

¢ However, we can define the field in the interaction picture,
¢1(t, %) = et g, 3)e Holt=to) (10)

which is a field coinciding with the field ¢(¢, X) of the Heisenberg picture only at
a reference time t = ty, that is by definition a free field,

= d° = i
or(t, %) = /m—p(aﬁe P alel)

$\/2E5

whose time evolution is then determined by the free Hamiltonian Hj.

222



local/jillana

Perturbation theory

> Remember that a field in the Heisenberg picture evolves with time as
gb(t, 55) _ eiH(t_tO)(P(to, f)e_iH(t_tO) _
So, from (10)
o (to, ¥) = e—iHo(f—f0)¢I(t’ f)eiHo(t—to)
we see that ¢(x) and ¢;(x) are related by
(P(t/ J—C’) — eiH(titO)eiiHO(tito)(P[(t, f)eiHo(tfto)efiH(tfl’o) — u'|'(t, tO)(PI(t/ J—C')u(t, tO) ,

U(t, tO) — eiHo(t—to)e—iH(t—to) )

223
Perturbation theory
> We will write now ¢ perturbatively as a function of ¢;. For that, note that
. d _ AiHp(t—tg) —iH(t—tg)
1§U(t, th) =e (H—Hp)e
— eiHo(t—to) . @~ iHo(t—t0) iHo (t—to) o —iH(t—to)
= Hi(t)U(t, to) (11)

where we have introduced the Hamiltonian in the interaction picture®

Hi(t) = eiHO(t*tO)Hint e—iHo(t—t)

2Note that in general [Hy, H| = [Ho, Hint] # 0.
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Perturbation theory

> The solution of the differential equation (11) with the boundary condition
U(t,t) = 11is (check it by replacing the solution in the equation):

U(t, t()) =1+ (—i) tdtl H[(tl) + (—i)2 /t dty " dty H[(tl)Hl(tz)

) )

fo
t f t
+ (—1)3/ dtl/ dt; | dts Hy(t1)Hj(f2)Hi(t3) + - ..
to to t

0
t

=1+ () tdtl Hi(ty) + (—1)2% /tdh dt T{H;(t1)Hi(t2)}

to to

fo
31 t t t
+ (—i) 5/ dtl/ dty [ dts T{H(t1)Hi(t2)Hy(t3)} + ...
" to to

=T {exp l—i tdt’ HI(t’)] }

to

(Dyson series)
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Perturbation theory

> Another way of writing U which allows us to derive useful properties is

u(t, t/) — eiHo(t—to)e—iH(t—t’)e—iHo(t/—to)
that indeed satisfies U(¢t,t) = 1 and (11) because

i%u(t, t') = elth(t=h) (H — Hy)e H(-H)eiH(t"—to)

_ eiHO(t_to)Hint e—iHO(t—i’o)eiHo(t—to)e—iH(i’—t/)e—iHo(t,—to)
= Hi(t)U(t,t') .
> From this one obtains easily that U is unitary and
U(t, t2)U(to, t3) = eiHo(ti—to) o —1H(f1—t2) o —iHo(t2—t0) o1Ho (f2—to) o —1H (t2—t3) o, —iHo(t3—to)
= U(t,t3)
$U(t1, t3)U+(t2, t3) = U(tl, tz)
:>U+(t2, tl) = U(tl, tz) .
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Perturbation theory

> Let us see how to calculate (0| ¢(x1) - - - p(x,) |0), where we take the x; already
time ordered (t; >t >...> t,),

(0[¢p(x1) - - - P(xu) |0)

= (oju’ )P1(x1)U(t, to
= (0| U (ty, to)pr(x1)U(ty, £
= (0| UT(t, to)U(t, t1)pr(x1)U
= (0] U™ (¢, to) T{¢pr(x1)--- 1

— (0| Ut (¢, to) T{qbl(xl)---cpl(xn)exp l—i/_ttdt' Hl(t’)]} U (=t t) |0)

and where we have introduced t > t; > t, >... > t, > —t and substituted

U (ta, to)pr(x2)U t2, to) - - - U (tn, to)pr(xn) U (tn, to) |O)
¢r(x2)U(ta, t3) - - U(ty—1,tn)Pr(xn)U(tn, to) [0)

b t) - U(tn1, )1 (o U (b, —) U (—1, 1) [O)

e U(E, 1)U (b, ) - - Ul(tn, —£)} U(= ) |0)

tl/ tO

)
)

—~ o~ o~ o~
—

Ut(ty, to) = UT(t t)U(t 1),  Ultn, to) = U(ty, —)U(—t, to)

U(t, t)U(ty, t) - - U(ty, —t) = U(t, —t) = T{exp {—i/_tt dt’ Hl(t’)]} :
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Perturbation theory

> Taking now ty = —t with t — oo and substituting the adjoint of

U(co, —co) [0) = e*[0) , el = <O|T{exp l—i/_(: dt’ Hl(t’)} } 0)

we have finally that

O T {grlx0) - giCen)exp | =i [ dtx 20| 10)

(0| T{exp l—i/d‘*x Hl(x)] } 0)

> Series expanding the exponentials in this expression and using the Wick theorem,

(O] T{¢(x1) - - - p(x0) } [0) =

(12)

to be introduced next, we will be able to calculate order by order in perturbation
theory the scattering amplitude from the LSZ formula (9) resorting on Feynman
diagrams, also to be seen below.
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Perturbation theory

> It is worth noting that the functional dependence of H; on ¢; is the same as that
of Hint on ¢. For example,

A

_ 4
Hint - I
HI — eiHO(t_tO)%¢4e_iH0(t_t0)
— % (eiHo(f—to)(Pe—iHo(t—t0)> (eiHO(t_tO)(Pe_iHO(t_tO))
% (eiHo(t—t0)¢e—iH0(f—t0)) (eiHo(t—fo)(Pe—iHQ(t—to)) — %4)411 )

local/jillana
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Feynman propagator

* Let us find the Feynman propagator, defined by

(01 T{1(x)¢r(y)} 0) -
From now on the index I will be omitted and we will always refer to fields in the
interaction picture, that can be decomposed as ¢(x) = ¢+ (x) + ¢~ (x) with
d3p

ot (x) = /— age PV, ¢ (x) = /L ateiPx
(27)3, [2E; (27)3, 2E; "

local/jillar
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Feynman propagator

> Remember that ¢t |0) = 0 and (0| ¢~ = 0. Then,?

if x0—y0>0:
TH{p(x)p(y)} = ¢ (x)¢(y
= ¢ ()¢ () ¢ ()" (¥) +¢~ (x)¢" (y) + ¢ (x)¢ ()
=1 p(X)p(y) : + [97(x), ¢~ ()],

where we have substituted

¢T(x)P™(y) =9~ ()" (x) +[¢7(x), 9 (y)]
=T ()¢ (y) : +[9" (). 0™ (v)] (13)

af 2 = 10 the fields are already time ordered, so then

T{p(x)p(y)} = ¢(x)P(y) = p(x)¢(y) : +[¢" (x), 9™ (y)]
because in this case [¢p7(x), ¢~ (y)] = [¢pT(v), ¢~ (x)], as can be explicitly checked in (17, 18).
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Feynman propagator

> Likewise,
if x0—1°<0:
T{p(x)¢(y)} = o(y)¢(x)
¢ ()¢ (x) + o (W) () + 9~ (V)T (x) +¢ ()¢ (x)
p()P(y) : + [0 (), ¢~ ()],
because : p(x)9(y) : = : P(y)p(x) -

Then, T{p(x)9(y)} = 9()p(y) : +Dr(x —y)

where

Dr(x —y) = 0(x" —y°)A(x —y) +0(y° — x°)A(y — ) (14)

and since [a, azli] = (27)36%(F — 7),

3 .
A —9) = (470 = [ e e

232



local/jillana

Feynman propagator

> So the Feynman propagator is

(01 T{¢(x)¢(y)} 0} = (O] (: ¢(x)¢(y) : +Dp(x —y)) [0) = Dr(x —y)

Let us see that we can write (Feynman prescription)

dp i -
) — —ip(x—y) - + 15
Dr(x —y) /(271)4p2—m2+iee , withe =0 (15)
> In fact,
/ dp i ey / Ep_ i) / Tdpl e D
(277)% p2 — m2 + ie ) (2n)3 oo 270 (p)2 — E3 +ie

where we have written p?> — m? = (p°)? — p*> — m? = (p)? — E%
remembering that E5 = +1/m? + p2.
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Feynman propagator

> On the other hand, note that

d3p . d3p L e—iEﬁ(xo—l/O)

Alx—y) = /— e iP(x=y) :/ P (17)
(x=v) (27)32E; (2n)? 2E;
d3p ip(x— By e e TEEY)
— plx—y) — P oif (77
Aly —x) / (27)32E, / ) © 2F, (18)
(in the second line we have changed p by —p).
> So it is enough to show that
© qp0 je—ir’(x*—y°) e—iEﬁ(xO—yO) e-l—iEﬁ(xO—yO)

S e ) g e ) S — 9

o p 5 tie 7 7

where note that, when ¢ — 0,
0\2 2 .
(p")" — E5+ie =

0 . € 0 . €
o (i) - ()]
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Feynman propagator

> To calculate the previous integral with respect to p” one has to choose the
appropriate contour in the complex p" plane. The factor ie slightly moves the
poles away from the real axis. The pole p° = Ej is moved downward,
p = Ej —ie/(2E5) and the pole p° = —Ej is shifted upward,
p’ = —Ej +ie/ (2Ej).

Feynman propagator

> Then if x® —y® > 0 it is convenient to close the contour in the lower half plane,
around the pole p? = E; —1i0™ clockwise so that

§l§f(z) dz = —27i Res(f,z = z9) if (x°—y%) >0
%)

local/jillana
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(e ip®(x%—10) e iE5(x"=y°)

* dp" TG - 0
= —2mi 1 —E; —
/_oo o - Y T e B ) T 25

And if x% — ? < 0 it is convenient to close the contour in the upper half plane,
around the pole p? = —E5 410" counterclockwise so that

ygf(z) dz = 27ti Res(f,z = zp) if (x°—-y%) <0

iefipo(xofyo) e—l—iEﬁ(xO—yO)

* dpY je 1P (x"—y") o 1 0,
/oo 2 (p9)2 — E}%—Hs N 7'(1p0_1>n_1Eﬁ(]9 + Ep) (27)(p° + E5) (p° — Ep) N 2E

=i
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Feynman propagator

> Then,
dp i
—y) = —ip(x—y)
De(x —y) /(27r)4 p> — m? +ie
_ d3p ip-(¥—¥) 0 0\ ,—iEz(x0—y9) 0 0\ LiEz(x0—10)
[ G, &7 B i) o)

as we wanted to show.?

> The expression (15) is very useful because from it one can directly read the

Feynman propagator in momentum space, Dr(p),
dp i

) = —ip(x=y) D D =5
Dp(x y)_/(2n)4e Dr(p) = Dr(p) p* —m? +ie

4We can now unterstand why we had introduced a factor of 2 in the covariant normalization of states.
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Feynman propagator

e Also note that Dr(x — y) is a Green’s function of the Klein-Gordon operator
(Oy + m?) because

4 i e .
Ot mDr(x—y) = [ e (P ) O = sy

(regardless of the prescription adopted to circumvent the poles) which justifies
that we have called (0| T{¢(x1) - - - ¢(xn) } |0) the N-point Green’s function.

> Further note that the Feynman propagator is not the only Green’s function of the
Klein-Gordon operator, because others are obtained by changing the prescription.
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Feynman propagator || Causality

local/jillana

The Feynman propagator Dr(x — y) provides the probability amplitude that a
particle created in y freely propagates to x where it is annihilated, if x° —° > 0,
or propagates from y to x, if x% —y° < 0. In fact, if ¥ — y° > 0 then

(0[@(x)9(y) [0) = Dr(x —y) = Alx —y) = [¢7(x), ¢~ (y)] = (0] 9T (x)9™(y) |0) .

Let us see that, apparently, a problem arises: the probability of propagation of a
particle from y to x with (x — y)? < 0 (spacelike interval), namely, beyond its light
cone is not zero but falls exponentially for large distances.

In fact, one can choose in this case a reference frame in which (x —y) = (0,7) and
then (here p = || and r = |F|):

d3p elP 7 2n pipr cosf
Alx —y) :/(2n)3 ZEﬁ = 3/ dq)/ dcos@/ dpp N —|—m2
elPr _ o—ipr pe1pr
2\/;9 +m? ipr T (n )er/md’j 2+
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Co
—im

* We can calculate this integral in the complex p plane following the path in the

tigure (the integrand has branch cuts starting at the poles p = +im).
Applying Cauchy’s residue theorem:

(/CO+/CR of +/Cp+/q+/cz)dpf<p>

In the limit ¢ — 0, p — 0, R — oo the integrals over c,, cg, and cg, vanish.?

The integral over c, vanishes p — 0 because lim (p —im)f(p) = 0.
p—im
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Feynman propagator || Causality

> Then,

8t~ Jiﬂ/dpf ==t ([ + [ ) o s

— (27[ er (/ dp PelPr(P —f—m 1/2 / dp pelpr(p +m ) /24 2ni>

100

B i ) pelpr
(2 7-[) 22r im \ /P 24 m2

1 .
where the factor e 227 —

done to the other side of the branch cut,® and we have exchanged the integration
limits flipping the global sign. It is then useful to do the change of variable p = ip,

—1 takes into account that the second integration is

Mr—y) = 212/ dore 1 /ood e
y - (27'()221’ m ,0 1/‘0 —m2 4:7T21’ m p \/pz—mz.

aRemember that log z = log |z| +1iarg(z) has a discontinuity of 27ti when crossing the branch cut and
172 Z exp{~} log(p? + n?)}.

one can write (p? + m?)

241

local/jillar

Feynman propagator || Causality

> And finally changing p = mt,

m [®  te "t m m T
AMx—y)=—"2 [ a S - —mr
(x =) 47027 /1 21 472y 1(mr) w1 a2\ 2mrS

where we have used the limit of the modified Bessel function Kj.

* This result seems to indicate that causality is violated. However this is not the
case. In quantum mechanics what matters is whether two observables measured
at points x and y commute when there is a spacelike interval between them, i.e.
when (x — y)? < 0. It they commute then they are not correlated and one is not
affected by the other.
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e In practice, the causality principle is preserved whenever the commutator of two -
tields at two points separated by a spacelike interval vanishes. i

Let us see that in this case the commutator is zero, as wanted.

1px+a+ ip x) (aq»e 1qy+a 1qy)]

9(x), $(y)] /m oAk [ e qu<

_/(271)3\/2\]55/ (271)3\/271507 e ”’y)[ ]+e e [a 4 ]}
_ / (;1:;1;3 [erinled) a0} — A(x—y) — Ay~ ), 22)

where we have used [a3, a;f,] = (2m)38% (7 — 7).
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> Now, if (x —y)? < 0 we can choose a reference frame in which (x —y) = (0,7)
and then (y — x) = (0, —7), and recalling that for points separated by a spacelike
interval A(x —y) depends only on the modulus of 7 (21) we have that
A(x—y) = Ay — x) and

[p(x), ()] =0, if (x—y)* <0,

as we wanted to show.?

Af (x — y)? > 0 (timelike interval) we can choose a frame in which (x —y) = (t,0) and then
y y

Bp e B ag o e WP
—y) = = s = [ dEVEZ—m2e iEt emimt (4
A -y) / (2m)3 2Ejp (27T)3/0 v N T / VE —me (t = o)

so A(x —y) — A(y — x) # 0 in this case.
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¢ At this point several important comments are in order:

1. For a complex scalar field the propagator is defined as

Dr(x —y) = (0] T{p(x)$" (v)} |0)
= 0(x" — %) (0] p(x)9" (v) [0) +6(y° — %) (0] p" () (x) [0)  (23)

expressing the probability amplitude that a particle created at y freely
propagates to x where it is annihilated, if ' — 4% > 0, or else the probability
amplitude that an antiparticle created in x freely propagates to y where it is
annihilated, if x° —y° < 0.

Remember that for a real field particle and antiparticle coincide.
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¢ At this point several important comments are in order:
2. To better understand the meaning of the two contributions to the Feynman
propagator (14) canceling in (22) when (x — y)? < 0, let us find the complex
scalar field commutator,

—ipx b 1px> , (b(ie—iqy + a}eiqy)]

[p(x), ¢ ()] /Zﬂ \/E/ 27)3 2E~

—i(Px—qy) lap,af] + ol(px—qy) b, by }

/27r \/E/ 277)3 2E~
= (0] ¢p(x)¢ ()|0>—<0|4>() (x)]0) =A(x—y) — Ay —x)  (24)

where we see that A(x — y) is the probability amplitude that a particle created
in y propagates to x while A(y — x) is the probability amplitude that an
antiparticle created in x propagates to v.
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¢ At this point several important comments are in order:

>> So if antiparticles did not exist the causality principle would be violated! as
both contributions are needed for the cancellation, that occurs because the
commutators (22) (or (24 for complex fields) yield identical results beyond the
light cone preventing correlations between observations causally disconnected.

3. Finally, note that above it was key that scalar fields satisfy commutation rather
than anticommutation relations, or otherwise the causality principle would not
be held. And it can be shown that fermionic fields must anticommute for the
same reason. This brings to light the tight link between the spin-statistics
theorem and causality at the quantum level.
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¢ We have seen that the time ordered product of two fields in the interaction picture
is T{¢(x1)p(x2)} = : ¢(x1)p(x2) : +Dp(x1 — x2). Let us find now the time 8
ordered product of n fields ¢; = ¢(x;).

* The Wick theorem, to be proven next, states that

every combination of normal ordering

T{¢1- P} =:¢p1- - Pu:+ (25)

and contractions of two fields

where contractions of two fields ¢(x;) and ¢(x;) mean

1 1
(p(xl)cp(x]) = Dp(xi — x]) , or in short (P14)] = Dij ,
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and every combination of normal ordering and contractions of two fields means, -

for example,

1 1 1 1
T{p102¢3ps} = : P12¢3s : + 1 (P192P3¢4 + P1P2P3¢Ps + P1P2P3Ps + P1P2P3Ps

+ 01020301 + Q1020394 + P1P2P3Ps + P1P2P3Ps + Prpo3ds) :,

where

1 1 1 1
L P1P2P3Ps = P13 paps i = D1z i s i, L prdops3ps i = D1pD3y,  etc.

Then, the vacuum expectation value of the time ordered product of fields receives

contributions only from terms where all fields are contracted, for example,

— —— | =
(O] T{ 102034} |0) = 12§34 + P1P2P3¢P4 + P12P3s

= D12D34 + D13D24 + D14Do3

and it vanishes for an odd number of fields.

Wick theorem
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> To prove the Wick theorem one proceeds by induction. We already know that for -

n = 2 it is fulfilled. Assume now that it is true for n — 1 fields.

Then, starting with fields already time ordered (x? > ... > x%),

T{p1p2Pn} =192 Pn = P1T{¢2 - Pn}

_ every contraction of two
(‘Pf‘i"l’l):{(PZ"'(Pn"'( )}

fields not involving ¢,

On the other hand,
¢1 A{P2Puti=:{¢y P2 - Pu}:

because ¢; indroduces at on the left, already normal ordered, and

¢y {2 put = {2 put ¢ ¢, {p2 o Put ]

z:{gbfgbz-H(])n}:—i—: (ql;lq)z%.“_i_“- i ( simple contractions )) :

involving ¢

(26)
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Wick theorem

> Let us check the latter statement with an example:
(@1 23] =100, 07 03 + Py p5 + Py 05 + P59 ]
= o5 g7 leEtrT 0+ 03 07, 93]+ (97, 03105 + ¢y ot
+ (07, 97107 + 05 lets T + oy 95 1
1 1 1 1 [ 1
= ¢, P13 + P193dy + Pr1pags + Prgagps =: (Pr1¢a¢3 + Prehags) :

m
where we have used [A, BC] = B[A,C] + [A, B]C and ¢;¢; = [4)?,4)]._], as x¥ > x]Q.
Then,

simple contractions
. (27)
involving ¢;

(07 +1) A2 Pu} =12 +: (

) I _. [ every contraction of two
Repeating the procedure for (¢;” + ¢; ):
fields not involving ¢,

we will find the terms with the remaining contractions (double, triple and so on).
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Feynman diagrams

* The LSZ reduction formula allows us to write the S matrix in terms of vacuum
expectation values of time ordered field products in the interaction picture,

O T {gln)etaa) - p(rexp | i [ @t ()] o)

that can be calculated order by order in perturbation theory (PT), by series
expanding the exponential.
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Feynman diagrams

e At zeroth order (no interactions) we just need (0| T{¢(x1) - - - ¢(x,)} |0), that
applying Wick theorem, involves products of propagators of particles between
different spacetime points x; # x;.

This provides a physical view with a simple graphical representation:

1
(0| T{¢1¢2} [0) = P12 = D12

B 1 2
— = 1 =
(Ol T{p192¢394} [0) = P1P2P3Ps + P1P2P3¢4 + P1P2¢3¢4 = D12D34 + D13Dog + D14 D23
1 2 1 2 1 2
3 4 3 4 3 4

and so on. These are the Feynamn diagrams in position space.

253

local/jillar

Feynman diagrams

* From the first order in PT we find local interactions involving products of fields at
the same spacetime point x, also with a simple graphical representation in terms d
of Feynam diagrams.

The perturbative calculation is very complex but it can be organized with the help
of Feynman rules. Let us illustrate the procedure with an example.
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> Consider the 2 — 2 scattering
(two particles in the initial state and two in the final state)
in the self-interacting scalar field theory A¢*.
The LSZ formula written in terms of fields in the interaction picture is:
Z A iz
kg —m?

<ﬁ1ﬁ2\iT‘E1E2>

local/jillana

017 {plx)g(e)gas)otn) exp | iz [ atx gt 1o

4
_ 4 i(p1x1+paxo—kixz3—kox.
_/deie(Pll pax2—kix3—kaxy)

i=1 (0| T {exp [—i% /d‘*x ¢4(x)} } 0)

(28)

Feynman diagrams || 2 — 2 [(A¢?)

— Zeroth order. In absence of interactions the denominator is 1. The numerator is

4 .
No = / [T déx; elrmntpaahiss k) (o] T{p(x1)p(x2)p(x3)¢(xa)} [0)

i=1

4
— /Hd4xi el(p1x1+p2x2—k1x3—k2x4)(D12D34 + D13Dy4 + D14Dy3)
i=1

_ /d4x d4 Xd4y d4Y ei(p1+P2)X+i(p1—pz)%—i(kl-i-kz)Y—i(kl—kz)% DF(x)DF(y)
+ /d4x d*X d*y d*y ol(P1—k1)X+i(p1+k1) 5 +i(p2—k2) Y +i(p2-tka) 3 Dr(

+ /d4x d* Xd4y d*y ei(Pl—kz)X+i(p1+k2)%—i(k1—p2)y_i(kl+p2)% Di(

2 2
o O
g g
/—
< <
S~—

= (2m)*s* 2mm)46* (ky + k ! !
(271)70%(p1 + p2) (270)76% (kr + 2)p%_mz+i€k%_mz+ig

270)4 6% (py — ky) (270)46* (po — k ! -
+ (27)%6% (p1 — k1) (20)"6% (p2 — k2) P2 —m? +ie p? —m? + ie
1 1

+ (271)*6* (p1 — k2) (270)*6% (p2 — Ky )

2 02 Ui k2 — 2 4
py — m* +ie ki —m* +ie
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(29)
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where in the first term of the third equality we have changed:

X=X1—X2, Y=X3—X4 xlzX—i—;, x3:Y—i—%
=
X1+ x2 X3+ X4 X y
X 7 ¥ 2 2 27 M 2
g 0n -
dx 90X 2
dx;dxp, = dxdX = dxdX =dxdX, etc.,
9% 9% 11
ox 90X 2

the second term is analogous to the first if x; <> x3 implying py < —ky;
and the third term is analogous to the first if xo <+ x4 implying p> <+ —k».

In (29) there are terms with just two poles, not enough to cancel the four poles in
the left-hand side of (28), so
(P1p2|1iT ’E1E2> =0 at zeroth order.

This result (vanishing amplitude) is general for disconnected diagrams
(those with at least one external point no connected to the others).
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— First order. Expanding the exponential of the numerator at O(A) we obtain
products of fields evaluated at the same spacetime point that, applying Wick
theorem, leads to an interaction vertex.

The only way to get connected diagrams is by contracting each ¢(x;) with ¢(x):

—==1 |
(O T{¢p(x1)p(x2)p(x3)p(x4)¢* (x)} |0}, = 4! : P1¢2P3Padrprprps :

X1 X3

X2 X4

There are 4! possible combinations of such contractions, all identical: ¢(x1) with
one of the 4 ¢(x), ¢(x2) with one of the 3 ¢(x) remaining, ¢(x3) with one of the 2
¢(x) remaining and ¢(x4) with the ¢(x) remaining. The 4! cancels the 4!
introduced in the definition of the coupling constant (hence its convenience).
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Thus, at first order, the only relevant contribution to the numerator of the 2 — 2
amplitude is given by the following Feynman diagram in momentum space:

k1 P1
4 .
— /Hd4xi el(Prx1+paxa—kixs—kaxy)
i=1

. (‘2> N / d*x Dr(x; — x)Dr(x2 — x) De(x3 — x) De (x4 — )
k2 pz 4!

4
— —iA/]_[d4yi d4x ei(P1+P2—k1—kz)xei(myl+P2y2—k1y3—k2y4)DF(yl)DF(yz)DF(y3)DF(y4)
i=1

= —i/\(27r)4c54(p1 +pr — k1 — kz)ﬁF(Pl)ﬁF(P2)5F(k1)5F(k2) (30)

where the change of variables y; = x; — x has been performed.

259

local/jillar

Feynman diagrams || 2 — 2 [(A¢?)

: - A 4. 4
— Let us now fin the denominator (0| T {exp {—15 /d X ¢ (x)} } |0), that order by -

order is composed of disconnected diagrams without external points, given by
combinations of vacuum-vacuum diagrams:

V; € 8 § @ O@ .y (3D

Take one of these diagrams with n; pieces of each type V;. Calling also V; the

value of the piece of type i, it is easy to see that this type of diagrams contribute
nj

to the denominator with Z , where the n;! comes from the exchange
nj

i
) 1’11'!
symmetry of the n; copies of V;.
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To check this, consider just one type V;, and take it to be the first of the
vacuum-vacuum diagrams listed in (31).

Then
it [t o3 Sy = v,
1 A 2 — 1 1
8 8 =5 (_15) dhx pupaatpy | Ay pypypypy x 3% = V7
1 3
and so on.
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Then the total contribution to the denominator will be

1(5%) e}

i

given by the exponential of the sum of all vacuum-vacuum diagrams.
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— Note that in the numerator we have, for each connected diagram, the contribution:’f
of an arbitrary number of vacuum-vacuum diagrams. °

For example,
O -
R

><< SR OO:: +©©©+--->

??

Therefore, the general contribution to the numerator can be written as

Z(connected) X exp {Z Vl} .
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> Thus, the vacuum-vacuum contributions to numerator and denominator in the
LSZ formula cancel each other and we conclude that in order to find the m — n
scattering amplitude it suffices to calculate, order by order, the sum of
disconnected diagrams with m + n external points.

Using these results and ignoring for the moment the Z factors (we will see soon
that Z = 1+ O(A?)), we can calculate the 2 — 2 scattering amplitude at first
order, derived from (28) y (30),

A R .
Hint = I(P4 : <p1p2| iT ‘k1k2> = —1)\(271’)454(]?1 + P2 — k1 — kz) + O()@) .

> We could already write some of the rules allowing us to obtain diagrammatically
the scattering amplitude, but we cannot get them all yet because we have not yet
encountered the case of diagrams with internal lines nor loops.

264



local/jillana

Feynman diagrams || 2 — 2 [(A¢?)

> To illustrate the case of diagrams with internal lines, let us suppose that our
2 — 2 scattering process is due to a different interaction, Hint = %¢3(x).
Looking for connected diagrams at lowest order yielding a non vanishing
contribution we find that it is at O(A?) and is given by the following diagrams:

X1 1 x X Y1 xa ¥ / n
X y + + +(x < y)
X2 Yr X2 Y Y X2 Y 2

Let us calculate in detail the contribution of the first diagram (including the same
with x and y exchanged) that we will represent by the following Feynman
diagram in momentum space:
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k1 P1

k2 pz
- / d4x1dixdty; dy, ellPmtre k=)

1 /—ir)?
<51 (S ) 672 [ dtdty Der — x)De(ra = x)De(x — y)Dely ~ y)Dely ~ v2)

— .|ﬁ\‘

p(x1)P(x2)p(y1)P(y2)p(x)p(x)p(x)P(v)P(y)p(y):
= (—iA)? / d*x1d4%,d g A4 gadtxdy ellPrtr)x—illtk)ytilpiirtpafa ki —kap)
x Dp(%1)Dr(%2) Dr(71) D (72) De(x — )
= (—iA)*Dr(p1)Dr(p2) D (k1) Dr (k2) /d4fd4y elPrip)THilprip kil Dy (1)

= (—iA)?(27)*6* (p1 + p2 — k1 — ko) D (k1 + k2) De(p1) De(p2) D (k) D (k2)
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where the factor (3!)2 comes from all equivalent Wick contractions and the factor
2 comes from the exchange of x and y. We have also changed the variables
Xi=xi—x,Ji=yi—yand ¥ =x —y.
As in (30), we have obtained:

- a factor (—iA) for each vertex,

— a factor (271)*5*(p1 + p2 — k1 — ko) from the four-momentum conservation, and

- the product of the four propagators of the external legs, that will cancel when
we solve for the scattering amplitude in the LSZ formula.

— Moreover, we had to introduce the propagator of each internal line.

Note that the factor 3! in the denominator of the coupling constant has canceled
when summing over all equivalent Wick contractions.
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Therefore, summing the three diagrams in momentum space

k1 r ki — P ki — / P1
itk + k-m + ki—p2
k2 Pk =" T~ k P (33)
we have
A R [ )
Hint = 5 3 . <p1p2| iT ‘k1k2> = (—1)\)2(271')454(}71 + Pz — k1 — kz)

x [Dr(ky + ko) + De(ky — p1) + Dr(ky — p2)]
+O(AY).

Note that the integration over the spacetime coordinates of the interaction points
gives the four-momentum conservation at every vertex.
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> Now let us see what happens when there are loops in the diagrams.

Go back to the A¢* theory. In order to calculate the contribution at O(A?) to the
2 — 2 amplitude we need to compute the following connected diagrams:

X1 1 x1 X 1 x X /y1
X y + + +(x < vy)
X2 Y2 X2 Y Y2 X Y Y2

They all feature a loop made of two internal lines sharing initial and final points.?
Focus now on the contribution of the first of these diagrams (including the same
with x and y exchanged) represented by the following Feynman diagram in
momentum space:

4A loop may also come from an internal line starting and ending in the same point. See e.g. the
diagram of (34).
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kl q P1

. 1 /—id\?
— /d4x1d4x2d4y1d4y2 el(lﬂlxﬁpzxz—kwl—kzyz)g (_1>

ky 7 kit+ka—q \ p,
x (4 x3)* x 2 x 2/d4xd4y Dp(x1 — x)Dp(x2 — x)D%(x — y)Dr(y — y1) Dr(y —12)

p(x1)(x2) (1) (y2)p(x)p(x)P(x)p(x)p(y)P(v)Pp(v) P (y):
(—iA)? [ d#dimdiy digdicdty el(Prtp2)y—itkitha)y+i(pititpata—kigi—kad)
x Dp(%1) Dr(%2) De(1) De(72) DF (x — )
(—iA) DF(Pl)DP(Pz)DF(kl)DF(kz)/d4fd4y ellPP)THiprtp -y D2 ()
(—ir)2(27m)*6*(p1 + p2 — k1 — k2) De(p1) De(p2) Dr (k1) Dr (k2)

X/(SNZ Dr(q)Dr(ky + k2 — q)

NI =

I\)I b—‘I\JI —_
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where we have substituted

. ~ . ~ 4 o~ o~
/d455 el(k1+k2)xD12:(f) _ /d43? el(k1+k2)xDp(f)/ (an)zl e—quDP(q)

_ [ 5 (ki +ky —q)D
= / )t Drkt ke —a)Dr(g)
We see that, besides the usual factor (271)*6%(p1 + p2 — k1 — ko) from global
four-momentum conservation, a factor (—iA) for every vertex and a propagator
for every internal line, there is an integration over the loop four-momentum
divided by (277)*.

We also obtain a symmetry factor % from the counting of factors of 1/4! and
equivalent Wick contractions. These are a frequent source of errors in the
computations.

And there are propagators of external legs in momentum space whose poles will
cancel when solving for the amplitude in the LSZ formula.
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> Repeating the procedure for the three diagrams in momentum space:

k1 q P1 k1 p1 k1 / p1
ky 7 kit+ka—q \ p, ko p2 ko p2

we get (Hint = 51¢%)

>

(PiP2iT [fiko) = (27) "6 (p1 + p2 — k1 — ko)

g ~
f —ine 52 [ S Be@) Dl + k=)
+Dr(q)De(ki — p1 —q)

+ De(g)Dr (ki — pa— q)]} Lo
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* The explicit calculation of these loop integrals yields a divergent result in the
ultraviolet: they approach infinity when g gets large.

> In order to make sense of this infinite correction to the prediction that we had
obtained at lower order in PT one has to renormalize the theory.
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¢ So far we have ignored the Z factors (wave function renormalization) appearing
in the LSZ formula. We have also ignored diagrams where the propagator of any -
of the external legs gets corrected, as for example:?

ki, g P
k1 = (2m)*6*(ky + k2 — p1 — p2) (—iA) Dr(k2) De(p1) De(p2)
. (34)
~ 1, . dg i ~
k2 ) XDF(kl) X E(_l)\)/ (271_)4 qz —m2 X DF(kl)

Apart of the loop correction (infinite, by the way) this expression contains a
double pole in Dr(k;) that cannot be canceled by the simple pole of the LSZ
formula, yielding another infinity.

4From now on the ie of the Feynman prescription will be omitted, although it is always assumed.
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> Note that the correction to the external leg factorizes and can be read directly
from the following diagram:

~ ~ 4 i
il ) =D, =y [ Gt 69
p p

We can resum all these corrections to the propagator,

- A 00 -

:FP Fp—lBDpp—l—DFp FP_IBDFP
= Dr(p) |1+ (=iBDr(p)) + (=iBD(p))* +. . |

Pp1+1Bf)F(p)_p2_m2 1 — B _pZ_mZ_B'

—m?

275

local/jillar

Feynman diagrams || 2 — 2 [(A¢?)

> We see that the net effect of these corrections amounts to a mass shift
from m? to m? + B.

> We could add other corrections, as for example the O(A?) 4»@—»

(that, unlike the previous one, depends on p?) and everyone else.

> To that end, we sum all two external leg diagrams that are one-particle irreducible
(those that cannot be separated into two disconnected parts by cutting a single
internal line) and call —iM?(p?) the contribution of all 1PI diagrams (removing

+@+ = —iM2(p?) . (36)

the external propagators),
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> Now we can resum all corrections to the propagator using the same procedure as
before. We will rename m( the mass parameter introduced in the Lagrangian. :
Then the full propagator is (to any order in PT):

1 1 1

= + [—iM?(p?)]
p2—mg  p*—mg

14 M2<p2)2 n (Mz(p2)2>2+...]
0

2
pe — my

—_— +...
p? — mj

(37)
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* The physical mass m is defined as the pole of the full propagator,

=0. (38)(

p2=m?2

p* — m§ — M*(p?)

Series expanding around p? = m? we find

dM?

p2=m?2

p> —m§— M*(p*) = p* — mj — M*(m?)

dM?
= (p* —m?) (1— e

_>_©_>_ = pz+zmz + regular near p2 = mz (39)
m? = m3+ M*(m?), Z= (1 3

~1
: ) | o)
p2=m?

This residue Z is the same factor introduced in (2) to account fo the field renormalization due to interactions.

) (near p? = m?) .
p2=m?

Then,

where
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> We see, in particular, that the first correction to Z = 1 is of order A2, as
anticipated, because the correction of order A to the propagator (35)
does not depend on p?.

* In view of what happened to external leg corrections, it is convenient to define
amputated diagrams as those obtained by removing every subdiagram associated
to external legs that can be separated by cutting a single line. That is, when we
eliminate the full external leg propagators. For example,

amputate
_—>.

/N
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Feynman diagrams || 2 — 2 [(A¢?)

> Then the four-point function of interacting fields

2
/H d4xi
i=1

has the following diagrammatic form

2 .
[ Taty; eSS4 (0] T{g(x1)g ()9 1) 2)}0),

j=1
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Feynman diagrams || 2 — 2 [ (A¢?)

> And in general, using (39) we can rewrite the LSZ formula (9) as

Feynman diagrams || Feynman rules

* We can now list the Feynman rules for real scalar fields in momentum space,

assuming interactions of the form Hins = %cpN .

To compute the scattering amplitude for a process of m — n particles:

1.

local/jillana

(41)
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Draw every connected and amputated diagrams with m external legs incoming

and 7 external legs outgoing linked in vertices of N legs.
Impose four-momentum conservation in each vertex.

Write a factor (—iA) for each vertex.

~ i
Write a factor D = 7

#(p) p? — m? + ie
Integrate over every four-momentum g not fixed by external momenta and
diq

(2m0)*

momentum conservation, one per loop with measure

Multiply by the corresponding symmetry factor.

— for every internal line of momentum p.
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Feynman diagrams || Feynman rules

7. The sum of the contributions of all Feynman diagrams leads to the so called
invariant amplitude iM (Ky - - - Ky — Py - - - P related to the matrix element
S =1+iT by

(1 Pu]iT ’El . ~k’m> = (27r)%s* <Zpi -~ Zk]) iM, (42)
i j

m—+n
where iM include the factors (ﬁ) , which are irrelevant for calculations

at lowest order in perturbation theory, but are important to compute higher
order corrections.
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On the virtuality of intermediate states

* Consider a diagram with internal lines, as for example (32). The LSZ formula
requires incoming and outgoing particles on-shell,

K=k=p=p=m

and conservation of the four-momentum at every vertex, so the intermediate
particle propagating between two vertices will be off-shell,

Pinterm = (k1 +K2)? = K + 15 4 2(kika) = 2(m* + kiky) -
> Choosing, for example, the center of mass frame for the incoming particles,
ki = (E,0,0,k), ky»=(E0,0,—k) = kiko = E? + k> = m? + 2k
= Pinterm = 4(m* + k%) £ m* .

It is easy to ckeck that p2 ... of the internal lines of the other two diagrams in
(33) is even negative. So in QFT the intermediate states propagating between
interaction vertices are virtual particles, i.e. off their mass shell.
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local/jillana

e Fermionic fields appear in pairs in interaction Hamiltonians, belonging to bilinear -

covariants.

¢ Fermionic fields satisfy anticommutation relations, forcing us to define the
normal ordering of fermionic operators in a consistent way. As for example

Likewise, we must consistently define the time ordering of fermionic fields,

x1)P(x x9 > xJ
T{wxl)wxz)}:{ Pyl

—P(x2)Pp(x1), xf <xf

and similarly for T{¢(x1)y (xz)} and T{1p(x1) (x2)}.
Thus, for example, if xg > x1 > x4 > x2 then

T (1) (x2)p(x3)p(xa) } = =9 (x3) 9 (x1)P(xa)p(x2) -

Feynman rules for fermions

o We will see now how to define the Wick contraction of two fermionic fields in
order to obtain an expression analogous to that of scalar fields,

TP} = 9P : +PE)P)

Separating the components of positive and negative energy,

e _/(27T) \/E;a“” Y —/(27'() \/Ezb

W(’C)/m)@;b“v e W’”/(zn)@;%”

we have?

a1f x0 = ¥ then the fields are already time ordered and

(T} = EF) = 9B : {0 (@), F 1)} = pEFY) : +pEFW)
because in this case {¢ (x), ¥ (y)} = —{¥ " (x), ¥ (v)}, as can be explicitly checked in (43).
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elP¥

elPX
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Feynman rules for fermions

T{p(x)P(y)} = 0(x" =) p(x)P(y) — 0(y° — ") p(y)p(x)
= 0" =) [y (P W) + 9T ()P ()
—00° =) [P WY () + P W)y (%)

= 9(x0—y) 4)*() () Hy " (x), 9 (y

lP
@

W‘ <y>}}
—0(" =) [ B)p() : +{y~ (1), 8 W)} ]
— Y +9PW)
Feynman rules for fermions
where we have used that : P(y)p(x) := — : ¢(x)¢(y) : and defined

P(OP(y) = 00—y {p (), ¥ (1)} —0y° =)y~ (x), 9" (1)}

> It is easy to check that, as {aﬁls, b;ﬁ/r} = 0, the following contractions vanish,

P()P(y) = p()P(y) =
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Feynman rules for fermions

> It can be shown that the Wick theorem has the same form for fermionic fields.
One has to pay attention because the normal ordering of fermionic Wick
contractions can imply a change of sign. For example,

I el
P = =y
—— 1 — o
SP1iaspy 0 = —P1Psihayy

As the vacuum expectation value of normal ordered operators is zero, we have
that, like in the case of scalar fields, the Feynman propagator for fermions is

O T{p(x)B()} 0) = P(x)P(y) = Sr(x — ),

that can be written, using the completeness relations, as:
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Feynman rules for fermions

selx )= 00 [ g Y e
= G(xo—yo)/(gi’;z]lsﬁ(%er)elp(xy)
-8 =) [ (3332;( —m)ePy

~ 000 (it m) [ SRt
p

= (idy + m)Dp(x — y)
dp i —ip(x—
— (i ip(x—y)
(19 +m) / Qr)ip? —m? +ie '
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Feynman rules for fermions

> Therefore,

_ d4p 1(% + m) —ip(x—y) _ d4p i —ip(x—y)
SF(x_y)_/(Zn)4p2—m2—|—ise _/(27r)4;zf—m—i—ise

(43)

and, in momentum space,

q ipx i
SF(}?) = /d4x SF(JC)ep = m

where we have used that #y = p. We see that the fermion propagator is a
Green’s function of the Dirac operator because

(igy — m)Sp(x —y) = —(Oy + m*)Dp(x —y) = id*(x — y) .

It is very important to note that Sg(p) # Sg(—p), so one has to pay attention to
the sign of the momentum.
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Feynman rules for fermions

¢ To find the S matrix between fermionic states we need to solve for the creation
and annihilation operators of the free field e,

d3p (s) ( =\ o—ipx t . (8) (72 Lipx
Pree (X) :/(ZH—Z[”%S” (P)e P +bﬁlsv (p)ep]

)3, [2E; 5

leading to

ZE" x /d3x u lkx7 l/"free( )
261 = [ @390 B)e 1 Ppa(x)
2E—' % /dsx q}free ik ()<E)

ZEE b%,i’ - /d3x Efree )’Y elkxv( )(E) .
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Feynman rules for fermions

> In fact,
[t <E>eikx70¢free<x>
/d3 Z [ﬂﬁ,sﬁ(r) (E)r),OM(S)(ﬁ)ei(ka)x+b%sﬁ(r) (E),YOU(S)(ﬁ)ei(ker)x]
2154 : ,
[ 7 % @) + b 70 B (D) = 2, a,

\ /2E~

where we have used that
u") (k)y°u® (k) = 2Ez6,5,  u") (k)72 (k) =0

and likewise for the others.
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Feynman rules for fermions

> As for scalar fields, we expect that

p(x) —— Zl/z@”lﬂ( ), Plx) —— Z1/2¢out( ),

t——o0 t—+o0

where this Z is the renormalization of field ¢. Then,

2E; a%(in) = lim Z~ 1/Z/d?’x P (x)Pe ) (k)

s t——o0

t(out) ;. ~1/2 3 ik 7
\/2E; ag = tgrﬁ)oz /d x P(x)yle ¥ ) (k)

whose difference yields a covariant expression that we will need as a first step to
tind the LSZ formula.
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Feynman rules for fermions

> Using (7),

(a5 o) = 2 =t ) [ ot
=272 [ i oy ()% ) w0 R
K= m)u(k) =0

—

= integrating by parts and using (

_ iz / dx B(x) (L e +m)e ) () .

> Likewise one can get

kro kr
V2 (o) ) = iz2 [ et et i - mg()
. _ - . .
ZEE (bg?) o bgjut)) — _iz—l/Z/d4x ¢(x) (i ax _|_m)e1kxv(r) (k) ‘
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[the calculation]

local/jillanz

Use integration by parts:

As a consequence:

_ / dx3g (P e ) (F) = — / dx(3P) 7% (k) — / Ay (—ik?)e k3, ()

—; / dx (i, Gyt + Prm)e ¥ u(F)

= i/d4x$(i ny +m)e * ¥y (k)
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Feynman rules for fermions

> Then we can substitute in the S matrix an incoming fermion of momentum k1 and

spin r by

(vt o) = (o (3 ) oo

= iZl/z/d4x e~ (P pn/tf‘ P(xq }kz >(1 Jr, +m)u g )(kl)
(44)

and next substitute, for example, an incoming antifermion of momentum %2 and
spin s by
(Fr- - Puits| Pl ‘EZ...E -t~>
— \/E@l P b T{p(x1) (20 bﬁ (out), }‘k t1>
- iZ‘1/2/d4x2 e thax2 55(5) (kz)(iaxz —m) <;‘9’1 o Buste| T{P () (x2) } ]k’g > -Em;ti>
(45)
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Feynman rules for fermions

> Iterating the procedure one can find the LSZ formula for fermions. Suppose that -
among the m (n) incoming (outgoing) particles there are m (15) fermions of spins-
T (r;.) and the rest are antifermions of spins s; (s;.). Then:

£ m nf 1\/2 n \/? o L .
e B [iT Rk - - Ry
(q ) (z lm_[+1 ]’{l+m) (Eﬂ]—m) (jl;l—i—l ]._|_m) (P1p2 Pl ’ 1K2 >

K —
<Im11 1kixi>/(nd4yj e+in]/j> H 7 ﬁ (S/)(Pj)

j=1 i=ms+1 j=1
My i no my n ,
OT{ H p) [TeC [Tww) T1 lP(]/j)}())Hu(“)(ki) [T "))
i=ms+1 i=1 j=1 j=ns+1 i=1 j=ns+1
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Feynman rules for fermions | (Yukawa theory)

* Let us focus on a simple particular case, direct application of the results we have -
found in (44) and (45). We will study the 2 — 2 scattering >

fermion(kq,r) + antifermion(ky,s) — scalar(py) + scalar(ps)
in the Yukawa theory, whose Lagrangian is
L = Lpirac + Lxc — PP = Hine = gP¢p -

To alleviate the notation, suppose that all fields have the same mass m.
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Feynman rules for fermions | (Yukawa theory)

> The scattering amplitude is given by

(P1P2|1T |k1kz)

2 2 .
_ (iZ;1/2> (izlzl/Z) /d4x1d4x2d4x3d4x4 el(p1x1+p2x2—k1x3—k2x4)(Dx1 +m2)({jx2+m2)

< B (k) (i, — ) (O] T{p (1) (x2)P(x3)(x4) } [0) (i ¥ +m)u) (k1)

= (_izq;l/Z)z (iZ1;1/2>2 (P% . mz)(p% . mZ) /d4x1d4x2d4x3d4x4 ei(p1x1+p2xz—k1x3—k2x4)

< D) (ka) (— Mo — m) (O] T{(x1)(x2)P(x3) 9 (xa) } [0) (—a + m)u) (ky)

where we have used the Fourier transform of the Green’s function, as we did to
obtain (9).

These fields are not free.
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Feynman rules for fermions | (Yukawa theory)

> To write the fields in the interaction picture we replace

(O] T{p(1)9(32)9x5) 9 (x2)}0) by
01T { gl taPlasplxoexp | i [ @t 1] | 1o

Then apply the Wick th and focus on connected contributions (arising at O(g?))

(A) ¥ y_ .-
+ (x < y)
X4 X Tt X2
%’14?24’3% 1l)xl/]x4|7x ¢y¢y4|)y : ({)1(’?2_311[)4 ¢x¢xdfx &ylrbyqlb]/
11 rara
= _¢1¢y (01008 ¢4¢x IIquf’yl,L’yng, = _(,m_lx (,Pn_ly 11[,)4_|_y Eb'y_laxlrbx,_%
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Feynman rules for fermions | (Yukawa theory)

(B) "3 y » M
+ (x < y)
X4 X D X2
3 <l|?1<ll>2¢3¢’4 Py xx %‘Py‘/l’y : : 4|>1<l|>2¢3¢4 b Pax %‘/’y‘il’y ‘
1 a1 rara
= —P1Px P2y Paip, ¢x¢y¢ylp3 = _(f,)l_(ll)y 4,)2_|(Px lllj‘l_lay ll')y_lwxl;)x_lw3

> Consider diagram (A), whose contribution gets multiplied by 2 if we include the
diagram resulting of exchanging x and y.

Note that there is a change of sign after normal ordering of the contractions:
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s/local/jillana

(P1P2|1T |kika) 4 -
172\ (- 1/2\? (2 o ovi 2 o9 e A h i(pigtpara—Kuxs—Katy)
:ZX(_lsz ) (—1Z¢ ) (Pl_m)(Pz_m)/deidXdye p1x1+paxa—kixz—koXy
i=1
x (—ig)?5; x (=1) x Df(x1 = y)Dp(x2 — x)

x 0 (kz) (Ko + m)Sr(xa — x)S(x — y)Sr(y — x3) (Ha — m)u') (ky)
= —(—ig)2(p? — m?) (P2 — m?) /ﬁd4£id4xd4y el (P11 +pafathi T3 —kaTa) gi(p2—ko)x-+i(p1—k1)y
x Df(%1) D(%2)7) (k2) (2 + ml):SlF(sz)SF(x —y)SE(%3) (b — m)u") (ky)
_ —(—ig)zi2/d4xd4y oilp2—k2)xHi(pr K1)y
i
—kr —m K —m

= (_ig)Z/d‘lgd‘ly el(Pa—k2)Zoi(Prtpa—ki=ka)y5(8) (8,) S (%) u™) (k7 )

« 5) (ko) (o + m) (#y — m)u (ky)

Sr(x —y)

i -

= (—ig)*(27)*6* (p1 + p2 — k1 — k2)2") (Ez)m”m (k1)
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Feynman rules for fermions | (Yukawa theory)

where we have changed ¥; = x1 —y, ¥ = xp — x, 3 =y — x3, ¥4 = x4 — x, later
¥ = x —y, and we have taken every Z = 1 because their contributions are of
higher order in g.
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local/jillana

> The diagram (B), including x <> y:

\ «
(P172|iT |kika) g = —(—ig)*(p3 — m*)(p5 — m?) /Hd4xid4xd4y el(Prxtpaxa—kixs ko)
=1
x Dr(x1 — x)Dp(xa — y)3°) (k2) (K2 + m) Sp (x4 — x)S(x — y)Se(y — x3) (¥ — m)u' (ky)
4
x D (%1)DF(%2)0® (ko) (K2 + m) Sp(%4) SF(x — y) Sk (%3) (#y — m)u' (ky)
— _(_18)212/d4xd4y ei(pl_kZ)x+i<p2_kl)y

x ) (ko) (Ha + m) —1%21— % (kl m)u”) (ky)

= (_ig)z/d‘lfd‘ly el(P1—k)Zei(prtpa—ki—ka)y5(5) (§,) S (%) u™) (kq )

i -

p— o — mu(r) ()

mSp(x — )

= (~ig)*(21)*8* (p1 + p2 — k1 — k2)7®) (k2)
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Feynman rules for fermions | (Yukawa theory)

where we have changed ¥; = x1 —x, ¥, = xp —y, ¥3 =y — x3, ¥4 = x4 — x, and
later ¥ = x —v.
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Feynman rules for fermions | (Yukawa theory)

> We can express both diagrams in momentum space:

kq Rz k1 P1
\\ "'-' P
ki —p1 + ki—pa2y N
_—r i _—r ; \\‘

ko == st o ko ‘P2

> The momentum direction in a fermionic line is relevant. It is taken incoming for
initial states and outgoing for final states. This direction coincides with that of the
fermion number flux for internal lines and for external particle states (for the
electron one takes the negative charge flux), but it is opposite to the fermion flux
for external antiparticle states.

> The fermion lines are represented by solid lines and the fermion flux by an arrow
inserted in the line.
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Feynman rules for fermions | (Yukawa theory)

> From now on we will reserve the dashed lines for scalar bosons.

> To write the Feynman rules, follow every fermion line in opposite direction to the
fermion flux, assigning spinors, vertices and propagators in the order that they

appear.

> Let us summarize the Feynman rules of the Yukawa theory that follow from

previous calculation:

1. The invariant amplitude i/M is defined, as before, from the S matrix element
extracting the factor (271)%6*(%; pi — )i kj). To write it, skip external
propagators of scalars and fermions, as they cancel in the LSZ formula. Draw
all connected amputated diagrams. You may ignore the v/Z factors to lowest
order in PT, but they must be included in higher order corrections.
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Feynman rules for fermions | (Yukawa theory)

2. Assign spinors to external fermion legs as follows
(suppose that time flows from left to right):

incoming fermion: outgoing fermion:
p p
—— =) Nl —ae)
incoming antifermion: outgoing antifermion
e =7 (p) S =0(p)
p—» . e

3. Vertex (impose conservation of four-momentum at every vertex):

_____ = —ig
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Feynman rules for fermions | (Yukawa theory)

4. Propagators:

i

VY=

o p? —m? +ie

i(f+m)

T PP —m?rie

Yy
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local/jillana

5. Pay attention to the relative signs of diagrams involving several fermion lines, -

coming from Wick contractions. For example, the following diagrams
contribute with opposite signs to the amplitude because they differ in an odd
permutation of fermionic fields:

kq P1 k1
¥ +

/\
ko p2 ko

P

- - -
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Feynman rules for fermions | (Yukawa theory)

6. Assign a factor (—1) to every closed fermion loop, because

RN === mmman .
Q = PPPPPPPP = —Tr [ww R svtp] — ~Tr(SeSrSrSe)

local/jillar
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5. Observables in field and particle theory

313

Observables || Relativistic and non-relativistic state normalization

local/jillana

= In non-relativistic quantum mechanics the wave function of a particle of
momentum 7 freely moving in a box of volume V = L3 is

L 1
=(¥) = (X|¥) =Ce”* con /d3x (D*P=1=C=——
(%) = (X|P) . |5(%)| v

and the possible momenta p' are quantized, p; = (27t/L)n; with
n; = 0,4£1,£2,.... Then, in momentum space,

F)™ = [ @x Gl i) = [ Ex 050 = o5
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Observables || Relativistic and non-relativistic state normalization

= In QFT, which is a quantum relativistic theory, previous normalization is not
Lorentz invariant. That is why we had introduced the normalization

(Plq) = 2E5(2m)°0°(F — 7)

which is the limit when the volume approaches infinity of

because remember that
lim (277)38%(F — §) = lim [ dx® e 1P~ = V(5 o0) .
p—q p—q
Comparing both normalizations, we see that
~ _\ (NR
7) = (2E;V)1/2|p) NN

n

Bip2- - u) = [ [REs V)2 |Bip2 - - pu) V)
=1
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Observables || Relativistic and non-relativistic state normalization

» In non-relativistic QM the S = 1 4 iT matrix element between |i) and |f) is
Sgi = 05+ (210)*6* (Pr — Py) iTyi
where for convenience we have factored out (271)*5*(Pr — P;) that expresses the
energy and momentum conservation.

» Likewise, in QFT we have introduced the invariant matrix element M between
two relativistic states |i) = ]Elﬁz > Em> and |f) = |p1pP2- - - Pn), so then
m

My = H(ZE@V)UZH(ZE@V)UZEI' : (1)
]:

(=1
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Observables || Decay width

» Take as initial state |i) = ’E>, a particle of mass M and momentum k, and as

final state |f) = [p1p2 - - - Pn), 1 particles of masses m; and momenta p;.

» The probability that the initial particle decays to n particles (1 — n), |f) # |i), is

dw = |(27)*6* (P — P,)iTs|*dNf = (2m)*6*(Ps — P,)VT|T5[*dNy
where we have symbolically substituted (277)*5*(0) = VT from

lim (271)%6%(p — ) = li dix ellr=9x — y7(—
plgg( )*6%(p — q) lim e (— o0)

local/jillana

and dNy is the number of n particle states with momenta between p; and p; + dp;.

Observables || Decay width

> Let us find first the number of one-particle states of momentum between p and
p + dp. For that we need the completeness relation

d3p
1= [ e
(27'()3215]3
that is easy to check, because

3 3
1= | G PO = | Gy 191255000 =1 = 1
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which allows us to write dN as the product of the probability that a particle has a

momentum between g and p + dp, namely (p|p) = 2E;V, and the density of
states in that interval,

d3p Vd3p

dN = 2Eﬁv(2n)32Eﬁ =
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Observables || Decay width

> Therefore, in the case of n particles in the final state, we have

n Vd3p.
ANy =[] 5= -
f ]11 (27)3
> Thus the decay probability per unit of time, that we call decay width, is given by
_dw 404 , T VdBPJ'
dl' = — = (271)°0°(Py — P)V| Tl 11 @ap (2)

which, using (1), can be written as

1 2

where we have introduced the volume element in the n-body phase space,

d®, = (2m)%s* (
J

n n d3p.
. _ P J
=1 Pl)B(zm?’ZE
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Observables || Decay width

The decay width has the dimensions of energy or inverse of time in our natural
system of units.

If we work in the decaying particle rest frame the energy is the particle mass,
E; =M.
k

The total width is the sum of the partial widths of every decay channel.

The inverse of the total width is the particle lifetime,

T=r"1

320



local/jillana

Observables || Decay width || 1 — 2

= Consider now the decay 1 — 2:
P, m

B,M
P2, My

The Lorentz invariant phase space (LIPS) integration for n = 2 final particles in
the center of mass (CM) frame gets reduced to an integral over the solid angle of
one of them (the other has opposite direction):

d3 d3
/dq)z = (27'5)4/54(;91 + po — P) (ZH)?;’?;El (ZN)?;’?;EZ

d3p1
= | 0(E1+Ex— ECM)W

_ / P70 EiEr / 71O 3)
(27T)24E1E2 |ﬁ|(E1 + Ez) 167T2ECM !
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Observables || Decay width || 1 — 2

where we have used
d’py = |p1[*d|p1 O

O0(E1+ Ex — Ecm) = 0(f(|P1]) = ’;/((”];11” _:||r_;|\))|

Ei=/mi+|p1|?, E»= \/m%+|—;71|2
5 af 8E1 af 8E2 ‘ﬁ1| ‘ﬁ1| - El—l—Ez
! - — — — + - *
f (|p1|) 8E1 a|p1| 8E28|p1| E1 E2 |P1| E1E2

> Note that Ecpy = M and, for this particular 1 — 2 case, the masses M, m; and m;
fully determine the final energies and momenta:
M? —m3 + m? M? — m? + m3

b= oM r Ba= oM ’

5y — L2 = (1 m2)2)IM? — (g — ma)?])
2M

1/2

Pl =11l =
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local/jillana

2
P
AI
<

\
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>
it il

Z ®e

e

[ ] ® ../
.I
-

e _o1\9

o [
44.44.44 _

= The cross section ¢ is the effective area of a particle (target) as seen by a projectile
(in the incoming beam).

> Suppose that in the target there are Nt particles and the collision area is A.
Then the collision probability is
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Observables || Cross section

> It ther are Np particles in the beam, then the number of events is NgP,

N # t
(# events) = NB% =0 = %A .

> The beam is made of a cloud of particles of density p moving at speed v, so

(# events) ~ (# events)
pvotANT = pov tNy
__ transition probability per unit of time

Np = pvtA = 0 =

incoming flux

n Vd3p
(27-[)454(Pf - PI)V|7}1|2H (27_[)3]

= do = = - , @)

where we have substituted the transition probability per unit of time (number of

events per scatterer) by the analogous expression for the decay width in (2)
(equivalent to the number of decays if the initial state was a single particle).
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> We will find now the incoming flux pv corresponding to one particle per unit of
volume,

1. -, 1|k & Erk, — Egk kikp)? — M2M3 /2
pv:_|1_02’:__1__2:|T1 ko] _ {(kik2) sM3} -
4 V|Eg Er

VERET VERET

where (71 — 7,) is the relative velocity of a particle in the beam and a particle in
the target, with masses M; and M respectively, that we will assume collinear
(%1 | |E2),a so, in fact, we find an expression for the flux that is invariant under
boosts in the collinear direction,

ki = (Eg, k1), ko= (Er, k2)
= (kikp)? — M?M2 = (EgEr + |kq||k2|)* — M3M3 = |Erky — Egka|*,

where we have used kq -k, = — |%1 | |E2| because k; and k, are parallel.

4This is valid both for fix-target collisions, as in the figure, and for particle colliders.
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Observables || Cross section

— —

> Therefore, from (4) and (5), the cross section |i) = ‘?1ﬁz> — |f) = |P1P2- - - Pn)

reads
270)*6* (Pr — Pi) | Til? n Vdp;
do = ( ) ( f 21)|2fz| ZEHZEBV2 P3] '
4 {(kikp)? — MfM5}1/2 il (2m)
and substituting (1), we have finally
do = ! | Mg [2dD
- 4{(lako)? — MEMER2T

> If there are n, identical particles of species r in the final state then the total cross
section (integration over phase phase) must be divided by the symmetry factor

S:Hnr!.
r

> If the initial state is unpolarized and/or the polarization of the final state is not
measured one has to average over initial polarizations and/or sum over final ones.
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= Consider now the particular case of the 2 — 2 scattering in the CM frame:

k1, My p1,m

ko, My P2, Mo
> The LIPS integration can be read from (3). The flux factor is obtained from
ki = (E, k), ko = (Ea, k), Ecm = E1 + B, 4{(kiky)? — M2M3}V/2 = 4Ec\lk] .

Then

do 1 17|

- TM'Z-
do 64n2EgM|k|| i
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= A comment on the dimensions of the physical magnitudes we have introduced:

S5i = 31+ (2m)*6 (P — P)iTys = (S5 = lenergyl’ ,  [Ty] = [energy]*

ni+nf
My = H (ZEjV)l/Zﬁi = [./\/lfi] = [energy]4_”i_”f
=1 n 3

d®, = (271)** (P — P; —_— |42

| Mi|*dD,
4{(kik)? — MiM3}1/2

= [d®,| = [energy

= [0] = [energy] ? = [length]?

do(nj=2—n)=

1 _
dl(nj=1—n) = m'Mﬁ'quD” = [[] = [energy] = [time]
The following conversion factors are very useful:
h~6582x1072 MeVs, (hc)?~0.389 GeV? mbarn

They are easy to remember from:

1=hcx~200MeV fm, cx~3x108m/s, 1fm=10""°m, 1barn=10"% cm?

328
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» Taking the non-relativistic limit (NR) the calculations done using Feynman
diagrams (QFT) must reproduce the results from the non-relativistic quantum
mechanics, where the particle interaction is described in terms of a potential V(X).

k/
6

1%

y =4

To find the form of the potential remember that the elastic scattering cross section
of a mass m particle off a potential V (X) is

d
15 = FOF ©)

where 6 is the scattering angle and f(6) is the non-relativistic scattering
amplitude, that can be calculated perturbatively.
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Non-relativistic limit: interaction potentials

> At first order (Born approximation),

—

fO) =~ [@xe V), G-F-F, k=F=F. 0
For a central potential, V' = V/(r), previous expression can be written as
f(0) = _27711/ dr vV (r)singr, q=1q] = 2ksin§ :
0

Consider k < m (as corresponds to the NR limit) and let the target generating the
potential be a very heavy particle of mass M4 > m. This is, for example, the
typical situation when an electron is scattered by a nucleus, so the nucleus recoil
can be neglected. Diagrammatically:

k K k K

\\
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Non-relativistic limit: interaction potentials

> The elactic cross section (k = |k| = [k'|, Ecm ~ M) reads
1 |K
AL, 1

1
2 ~ 2

do, elast —

To find the corresponding non-relativistic expression, remember that
M = QEV)V2(2E, V)Y (2E4V) 2 (2EAV) 2T m AmMaV* Ty,

so in the NR limit, neglecting the factors of V that we know will cancel with the

right normalization,
)
d0elast ~ R|7}i|2d0
which, comparing with (6), tells us that
£(0) = 5=Tsi,
where the global sign is the correct one as we will show in an example.
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Non-relativistic limit: interaction potentials

> From (7),
- 3. A—if-Xy7 (2 = d’q i§-XT (=
Til@)= - [ dxe TVE = V() = - [ S e Ty (q)
N 1 d3q i7-x -
= V(E®) = g [ e M @), ®

Note that the interaction potential is a non-relativistic concept, describing an
instantaneous interaction. However, the more precise QFT description is based on
the exchange and propagation of particles, as shown along this course.
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6. Elementary processes in QED
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Lagrangian and Feynman rules of QED

= The quantum electrodynamics (QED) describes the interaction of electrons
(or any other charged particle of spin 1/2) and photons.

= [t is most convenient to perform a covariant quantization of Maxwell field. And it
is customary to generalize the non gauge-invariant term of the Lagrangian by
1 1
L=—-F,F" — —
4 2
where ( is a free parameter. In a preceding chapter we used ¢ = 1 but one can

show that, regardless of the value of ¢, by imposing that d,, A" vanishes between
physical states, the physical spectrum of the theory is given only by transverse

(0, AM)?, (1)

photon polarization states.
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Lagrangian and Feynman rules of QED

> The net effect of the second term in (1), called gauge fixing term, is breaking the
gauge invariance of the Lagrangian, but the matrix elements between physical
states will be independent of the choice of ¢.2
However, the field commutation rules and the progagator will depend on ¢.

> It is recommended to use a generic ¢ and check that the calculation is correct by
verifying the cancelation of ¢ in the matrix elements between physical states.
Nevertheless, depending on the type of problem, the calculations get simplified if
from the beginning an appropriate value of the so called R¢ gauge is chosen.
In particular,
e ¢ = 1is the 't Hooft-Feynman gauge,
e ¢ = 0is the Landau gauge, and

e ¢ — cois the unitary gauge (with only physical degrees of freedom involved).

?In the presence of interactions the non-dependence on ¢ is achieved as long as A, couples to matter
respecting the gauge invariance, that is, when it couples to a conserved current.
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Lagrangian and Feynman rules of QED

> Let us find the photon propagator. In order to write the Euler-Lagrange equations
for this Lagrangian note that ]

L= 2 (AR A" — A0 A") - ;—égﬂvayAyaaA“
and hence
oL oL 1
= _9 = | LA T =
A 8;48(8#1%) 0= 9, F" + 68 A, =0

= 0a" - (1- 1) 994, =0

- oo (1) o] a, =
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Lagrangian and Feynman rules of QED

> We already know that the propagator is a Green’s function of the operator acting
on the field in the equation of motion. In momentum space, the photon :
propagator is then, up to some phase factor, the inverse of

—k2gM + (1 — %) KHKY . 2)

Note that this operator is invertible thanks to the introduction of the gauge fixing
term, because —k2¢"V + kMkV is singular (it has a null eigenvalue for the
eigenvector k#). This has to do with the gauge invariance: the vector field

Ay, = Ay + 9y is also a solution of (g"'[J — 0#9") Ay, = 0 but the introduction of
the gauge fixing term has broken the gauge invariance.

The inverse of (2), including the Feynman prescription as earlier discussed, is the
photon propagator

kFkY
K2

D} (k) —g" +(1-¢) 3)

i
k2 +ie
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Lagrangian and Feynman rules of QED

> In fact,
~ 1 .
DY (k) l—kzgyp + (1 — 5) kvkp] =id} .

The choice of global sign is the right one, opposite to that for scalar fields, because
the commutation relation of creation and annihilation operators of the scalar field,
a5, a}] = (27)36%(p — 7), differ from those of the photon Maxwell field with & = 1
in a minus sign, apart from the g, s factor from the polarization vectors:

353

[ag 0 a0k ] = Caoan (270)°0%(F — ) = —gan (270)°6°(F — 7).

= Remember that Maxwell equations in presence of sources are given by the U(1)
gauge-invariant Lagrangian obtained by the introduction of the covariant
derivative, leading to the minimal coupling of the electromagnetic field to charges
and currents j¥ = (p,f). This provides the classical electrodynamics Lagrangian.

In quantum electrodynamics, j* = eQpy*1, where Qy is the electric charge in
units of e of the fermion f annihilated by the field .
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= To describe the electromagnetic interaction at the quantum level (QED) one has to

fix the gauge, as in (1), and interpret the interactions between quantum fields as
the exchange of particles (photons, electrons and antielectrons or positrons).

The full Lagrangian is

_ 1 1
Loep = Y —m)yp — ;LF;WFW T 2F

that contains just one type of interactions of the form

(0,AM)?, Dy =0, +ieQrA,

Lint = —eQrAupy'y . (4)

Lagrangian and Feynman rules of QED
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= To compute perturbatively the scattering matrix of a QED process one has just to

apply the corresponding Feynman rules. Compared to the cases studied in the

preceeding chapters, what is new is: the photon propagator in (3), the interaction

vertex that can be readily derived from (4) and a factor accounting for the
polarization of the photon when it appears as an external leg.

Let us summarize next the Feynman rules of QED:
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Lagrangian and Feynman rules of QED

— External legs:

incoming fermion: outgoing fermion:

P . P () (s

—J =) J—— =)
incoming antifermion: outgoing antifermion:

— 50) (5 — o) (p

=7 =0

—f_T{ (7) b_—<_p_’ (7)

incoming photon: outgoing photon:

AL e P ZalEd
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Lagrangian and Feynman rules of QED

— Vertex:
>«v\h o= —ieQy¥
— Propagators:
NN = — (- ( — é)@
P e |8 K2
r i(f+m)
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A simple process: ete™ — utu~

= Consider the annihilation of an electron and a positron to give a muon and an
antimuon. In QED this process is described at lowest order in PT (tree level) by
the diagram in the figure:

> The muon has the same charge as the electron, Q;, = Q. = —1, and a mass M
about 200 times greater than the electron mass m.

> Let us calculate step by step and in full detail the cross section of this process.
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A simple process: ete™ — utu~

= First, assign momenta to all particles in the diagram, using the four-momentum -
conservation at every vertex. This fixes the four-momentum of the virtual photon *
momentum propagating between the two interaction vertices,

q:k1+k2:P1+P2.

> The external legs are fermions, whose spinors are labeled by indices 71,17, 51, 52
taking any possible values in {1,2}.

= Applying the Feynman rules, following every fermion line in opposite direction
to the fermion flux, the invariant amplitude is then given by

iM =72 () (ieyf )0 (1) (;21) gap — (1 —¢) q;;/ﬁ o) (Kq) (e )u) (kz) -
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A simple process: ete” — utyu~

> Note that because external fermions are on-shell they satisfy the corresponding

Dirac equations,
]{10(7’1)(%1) — _mv<rl)(E1) , ]{Zu(rf) (%2) — mu(rZ)(Ez) ,
so the amplitude will not depend on the parameter ¢, as it must be, because

70"V (k1) y*u?) (ko) = 20 (k1) (#1 + o) u'") (ko) = 0 .

local/jillana

> We could have worked from the beginning in the 't Hooft-Feynman gauge (¢ = 1)

and obtain directly the same result. Therefore

= £ 76 (5y) 9060 (7)) 50 (Ky )yau () .

A simple process: ete™ — utu~

= To compute | M|?, note that

(uy"0)* = o' "% = 0799909, %u = 5y"u

where we hav used
U= u+,yo , ,),m‘ = Ve, ')’0')’0/)’0 _ ,)/uc )

This is a complex number that can be multiplied in any ordering. The same
happens to the other fermion line.

> It is then convenient to write

64

M = ) (F2)y* o) (1) 0 (Fr)rPu (7o)
o) (ky ) a1 (Kp) 712 (ko) v 50" (k)

We can now use the properties of spinors and Dirac matrices, leading to a
plethora of identities (Diracology).
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(5)
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A simple process: ete™ — utu~

> In particular, one can see that the two spin states along the Z axis satisfy

uD ()u) (p) = (p +m

2 7

where n* = (0,0,0,1) in the frame where p* = (m,0,0,0).

In general,

(i n) = (4 m) 1

project on well defined polarizations along a given direction n*, with n? = —1

and p,n# = 0.

A simple process: ete™ — utu~

o(p,n)o(p,n) = (¥ —m)

1+ sl

local/jillana
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> If we choose, for simplicity, the Z axis as the direction of motion, p* = (E, 0,0, |7 N,

previous operators project on the two helicity states of particle and antiparticle,

respectively, taking n* = £(|p|/m,0,0, E/m).

> In particular, in the ultrarelativistic limit (E >> m) the left and right chirality

projectors of particle and antiparticle are:

W ()0 () = (p+m) -

W (FE(F) = (f+ )t
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A simple process: ete™ — utu~

> Another property that can be easily derived from the above is

u(p,n)Tu(p,n) =Tr |T(¥+ m)1 +275¢ , o(g,n)To(p,n) =Tr |T(Y—m) 5

where I in an arbitrary 4 x 4 matrix.

> On the other hand, if fermions are not polarized the calculation becomes much
simpler because we can directly apply the completeness relations,

Z u =yp+m, Z v =y-—m,
leading to

Zu (F)Tu® (B) = Tr [T (¢ + m)] Zv (P)To®™) () = Tr [T ( — m)] .

A simple process: ete™ — utu~

= Coming back to our calculation (5) suppose for simplicity that initial and final

local/jillana

1+’Y51f
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fermions are not polarized. Then we have to average over initial polarizations and

sum over the final ones:

Y YIMP =YY IMP

ri S rl Si

4q4Tr[v (#1 — M)vP (B2 + M) Te[ya (o + m)yp(bs — m)]

which is the product of the traces of two fermion chains.
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A simple process: ete™ — utu~
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= To calculate the traces we resort again on the Diracology. We need in particular,
Tr[# impar 7's] = 0
Tr[yFy"] = 4g""
Te[y" "y y7] = 4(g" g7 — 8/ ¢"" + 81 ¢"")
where
Tr[y*($1 — M)YP (B2 + M)] = Te[y* 1y Piha] — MPTe[y"9P]
= 4(p5ph — (pr1p2)g™® + phph) — am2g™P
Tr[ya (Ko + m)yp(Ky — m)] = Tr[yakaygha) — m*Tr[vayg)
= 4(k10¢k2ﬁ — (klkZ)gtxﬁ + klﬁk2a) — 4m2g,xlg
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A simple process: ete™ — utu~

and then,
;;I q4 [(pik1) (p2ka) — (p1p2) (kika) + (pik2) (p2ki) — m*(p1p2)
— (p1p2)(kik2) +4(p1p2) (kikz) — (p1p2) (kika) + 4m (p1p2)
+(pik2) (p2k1) = (p1p2) (kike) + (pikn) (p2k2) — m?(prp2)
— M?(kikp) + 4M?(kiky) — M?(kiko) + 4M?m?]
8ot

= ?[(mh)(pzkz) + (pika) (paky) + m?(p1p2) + M?(kiko) +2M*m?] .
(6)
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A simple process: ete™ — utu~

» The following step is choosing a reference frame. Assume the center of mass
frame and let 0 be the angle of the outgoing #™ with the incoming e™,

K = E(1,0,0,B:)
Ky =E(1,0,0,—8;), Bi=+1-m/E?,
pi‘ = E(l,ﬁfsinf),O,,chosO) ,
py = (1,—,8fsin0,0,—,8fcosé)) , Bf= \/m
Then,
> = (k1 +k2)* = (p1+ p2)* = Egy = 4E7,
) = (p2ka) = E*(1 — BiBscosb) ,
) = (p2k1) = E*(1+ BiBcosb) ,
(pp2) = E*(1+ B}) = E*(2— M?/E?),
) = E*(1+ B}) = E*(2— m*/E?)
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A simple process: ete™ — utu~

and expression (6) reads

—~ 4
YN IMPP= %[2#(1 + B7 B3 cos” 0) + 2E2 (m* + M?)]

ri S;
2 4 2 4 2
1+4M—l— (1—£> (1—£> c0529] .
ECM CM

= The differential cross section of the process is obtained from

do 1 |
dQ  64m2E2,,

d 2 EZ - 4M2 2 2 4 4 2
= | [ (1 (1P ot
d 4EGy || Egy — 4m Ecm CM

where we have substituted the fine structure constant a = ¢?/ (471).
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A simple process: ete™ — utu~

> Note that Ecyy > 2M > 2m, the threshold energy of the process.
The total cross section is

U:/dﬂj—g :2n/dc059§—g.
> In the ultrarelativistic limit (Ecypg > M > m),
do N o2
dQ) 4E%M
2

(1 + cos?6)

i

3ECM

Comments (| About the propagator and the polarization states

= For the covariant quantization the Maxwell field we had to introduce four
polarization vectors e* (%, A) that satisfy the following orthonormality and

completeness relations:

6;@/)\)5“(%/)\/) = =0, Co=-1, OL1=0=03=1,

3
Y- Daet (k A)et (K A) = —g .
A=0

local/jillana
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(7)
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Comments (| About the propagator and the polarization states

> Let n* be a spacelike vector that satisfies n,n* = 1 and n° > 0.
We say that e/ (k,0) = n is the scalar polarization vector.
We will call e#(k,3) the longitudinal polarization in the n — k plane if
ey(E,?))nV = 0 and ey(E,B)EV(E,B) = —1, namely,

= Kkt —(kn)n#

e(k,3) T

The remaining two are the so called tranverse polarizations e#(k, 1) and e/ (k,2),
that we take orthogonal to each other and perpendicular to the n — k plane, so

en(k, \)et (k,A") = =6y, AN =1,2.
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Comments (| About the propagator and the polarization states

> For example, in the reference frame where the propagation vector k defines the 2
axis, i.e. k" = (w,0,0,w), and n* = (1,0,0,0), from the above we can derive that

e"(k,0) = (1,0,0,0), €"(k,3) = (0,0,0,1),
and we can choose several bases for the tranverse polarizations, as
e"(k,1) = (0,1,0,0), €*(k,2) = (0,0,1,0) (linear)
or
et (%, L) = (0,cosb,isinf,0), € (E, R) = (0,cos 6, —isin6,0) (elliptical)

(which are called circular polarizations when 6 = 77 /4).
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Comments (| About the propagator and the polarization states

> We have already seen that the scalar polarization state k,

> has a negative norm. -

> On the other hand, the classical electromagnetic field in absence of sources
(radiation) has just two polarization states, while its quantum version seems to

have four.

> Both problems are related and are solved, as we have seen, by imposing that 9, A¥
vanishes when evaluated between physical states (Gupta-Bleuler quantization):
only the two transvere polarization states contribute to physical observables, so
we don’t need to care about scalar and longitudinal polarizations.

> However, all of them contribute to the propagator, that is not an observable.
Let us see this.
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Comments (| About the propagator and the polarization states

> Take the 't Hooft-Feynman gauge (¢ = 1), in which the propagator is

igh"
k2 +ie

Dy’ (k) = —

that using the completeness relations (7) can be written as

By () = meﬂkm e (k1)

Separating the tranverse, longitudinal and scalar contributions we have

[k — (kn)nt][k" — (kn)n"|

~HV U Uk I Y
Dy (k) = kz e AZ et (k,A)e* (k,A) + (k) — 2 ntn
The last two terms can be rewritten as the sum of
1Y intn" HHV 1 UV _ VoVt
Dq (k) = (k)2 — 2 and Dy (k) = k) — [kKFKY — (kn)(K*n" + K'nt)] .
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Comments (| About the propagator and the polarization states

> If we use the reference frame where n# = (1,0,0,0), i.e. n* = ¢"°, kn = kY and
(kn)? — k? = k2, we see that the first term reads

d*k ~ —ik(x—x'
DE (x ) = [ (5D (e =)

:/ d3k gﬂogvoeiﬁ-(f—f’)/ dko e—iko(xo—x’o)
(270)° k2 (277)
1 gyogvo
T4 |X— ¥

5(x0 — %) .

To understand the meaning of the different contributions, consider a process
mediated by the exchange of a photon (e.g. as the one before).
In this situation we are in the presence of sources.

> The matrix element of this process can be written as

/d4 /d4x' j1 () DY (x — x") o (x) (8)
where ﬁ (x)y ]5 (x") are currents interacting by the mediation of the photon field.
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Comments (| About the propagator and the polarization states

> The piece D! of the propagator, in the reference frame we have chosen,

/d4 /d4 /{417;2]2(_”?5(3(0_%0) ,

which is nothing but the instantaneous Coulomb interaction of both charge

contributes with

densities j?(x) and j9(x’) in the same instant of time!

> As for the Remaining piece D%’, note that (8) in momentum space is

4 ~
[ (9B W0

and the currents are conserved, namely, d,j*(x) = 0 or k,j* (k) = 0. Therefore the
terms proportional to k¥ or k¥ in 5?/ are irrelevant and 5§V(k) does not contribute
to the interaction. This is the reason why the 't Hooft-Feynman works: if we had
not taken ¢ = 1 there would be extra terms in the propagator proportional to
k¥k", that would be irrelevant because they couple to a conserved current.
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Comments (| About the propagator and the polarization states

> We see that field of the electromagnetic interaction has a triple nature:?
1. One part is completely arbitrary (due to the gauge invariance);

2. Another one, the so called constrained field (the coulomb interaction, in the
reference frame we have chosen), is completely determined by the sources;

3. And the third part is dynamical, consisting of independent degrees of
freedom, is the pure electromagnetic radiation, that in quantum
electrodynamics corresponds to the photons.

2This also happens with the rest of fundamental interactions.
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Comments (| About the propagator and the polarization states

> The dynamical contribution, present even in absence of sources, can be
subdominant with respect to the constrained contribution.

> It is the Coulomb interaction that explains in first approximation the atomic
structure of hydrogen: the Coulomb potential is given by the position of the
electron.

> The quantization of the atomic energy levels has to do with the fact that position
is an operator in quantum mechanics, not commuting with the momentum
operator, and hence the Hamiltonian has a discrete spectrum. However notice that
the quantum degrees of freedom of the electromagnetic field do not play any role
at this point. The truely quantum effects of the electromagnetic field manifest as a
small correction (the Lamb effect, for instance).
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Comments || About the relative signs of diagrams

local/jillana

= In QED we work with fermion fields and we have seen already that one has to be -
careful because the Wick contractions of these fields can give rise to relative signs -

between several diagrams contributing to the amplitude of a given process.

Remember that one has to see whether the reordering of spinors corresponds to

an even or an odd permutation. We show a few examples below.

— Bhabha scatttering: eTe™ — eTe™

3 2 3 2
\\
4 1 4=="" 1
U10V3Uy —U1U40307

Comments || About the relative signs of diagrams

— Moller scattering: e" e~ — e e™
4 3 4 3
\‘\{ }/
2 T 1 2 1
ﬁluzﬁ3u4 —H1u4ﬂ3u2

2 1 2/ 1 2 1

Uy +uqup

— Compton scattering: ey — ey (no change of sign!)
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Comments || About identical particles

= Remember that when there are identical particles in the final state (for example,
v, eTe™, e”e™) the total cross section is

1 do

Comments (| About vector boson polarizations

— The case of a photon.

The photon has two (transverse) polarization states. Take the reference frame
where k* = (w,0,0,w) (Lorentz covariance ensures that our conclusions will be
independent of this choice). Then, they can be

linear: €*(k,1) = (0,1,0,0), e"(k,2) = (0,0,1,0)
elliptical: e”(l?,L) = (0,cos0,isinb,0) , e”(E,R) = (0,cos 0, —isin6,0) .

In any case, summing over polarization states,

1 00 O
Y e e ®A) = gt Qus Qu= |0 o 0
R 000 O
00 0 —1

Let us see that, due to gauge invariance, one can ignore in practice the term Q.

local/jilla
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Comments (| About vector boson polarizations

— The case of a photon.
In fact, the amplitude of an arbitrary process in QED involving an external
photon of momentum k (take an outgoing photon) can be written without loss of
generality as

MK, A) = €;,(k, )M (k)
and any observable, in this reference frame, will be proportional to

YIMEMNP = Y ek A)eu(k, A) M (k)M (k)
A A=1,2

= [M'(K)]? + |MP(R)* )
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Comments (| About vector boson polarizations

— The case of a photon.
We know that the photon field couples to a conserved current by an interaction
[ d*x j#(x)Au(x), with 9,,j#(x) = 0, so

B = [ dtre ifljhx) I

where initial and final states include all external particles except for the
concerned photon.

Because the gauge invariance must be preserved also at the quantum level, from
the current conservation and the expression above we have®

kMM (k) = / d*x e (f|9,j#(x) |i) =0 (Ward identity)

= kMM (k) = wMO (k) — wM3(k) = 0 = MO(K) = M3(K) .

0= [ dtea, [ (f1 1) 1] = ik [t (7] 1) + [ dt e (B () 1)
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Comments (| About vector boson polarizations

— The case of a photon.
Therefore we can rewrite (9) as

Y. en(k A)ey (K A) M (k) MY* (k)
A=12
= [M (&) P+ M)+ [MEE) P — [MOK)
that corresponds to replacing

Ze;;(%,A)eV(E,A) - —Quw
A

(not an equality!)
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Comments (| About vector boson polarizations

— The case of a massive vector boson.
A massive vector bosons has three degrees of polarization (one longitudinal and
two transverse). In this case we can choose the rest frame, k* = (M, 0,0,0) and the
polarization states

e'(k,1) = (0,1,0,0), €"(k,2) =(0,0,1,0), €*(k3)=(0,0,0,1).

Summing over polarizations,

1000

Y er(kA)es(A) = —guw + Qu s Quv = 0000

' 0000
0000

valid in the rest frame.
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Comments (| About vector boson polarizations

— The case of a massive vector boson.

We can obtain the expression valid for k* = (k%,k) with M2 = (k%)% — k2

performing a boost with ¢y = k%/M, v = k/ M,

Y vB1 YB2 YB3

M= 12 0+ (7 = 1)5;?
B3
leading to
*(k k 0 AO kykv
Zey(kr Aev(k,A) = —guw + A AN = =g + A

Comments || Crossing symmetry and Mandelstam variables

local/jillana
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» The matrix elements of processes like 1 +2 — 3+4 and 1+ 3 — 2 + 4 are related

by the so called crossing symmetry: the S matrix is the same replacing the

momenta accordingly.
1 3 3 4

crossing

\
I

A
N

1+2—>3+4 1+3—>2+4

> In this case,

crossing
kl/ kZ — P1, p2 < ’ kl/ —P1 — _k2/ P2
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Comments || Crossing symmetry and Mandelstam variables

= Before giving some examples of processes whose amplitudes are related by the
crossing symmetry, it is convenient to introduce the Mandelstam variables that
result very useful to describe the kinematics enabling a simple application of this
symmetry:.
For the same process of previous example,
5= (ki +k2)* = (p1+ p2)?
t=(k1—p1)* = (p2— ko)’ (s, &, u) <
u= (k1 —p2)? = (p1—k2)?

It is easy to check that that

crossing

> (£, s, u)
kp>—p1

s—i—t—i—u:Zm?‘
i

(the sum of squared masses of the four external particles)
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Comments || Crossing symmetry and Mandelstam variables

> Then, in terms of Mandelstam variables, the kinematics of the process previously
studied in detail, ete™ — p"u~, reads 8

leading to

P wnor= | (5)+ (5]

ri Si

We say that this reaction proceeds through the s channel.
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Comments

Crossing symmetry and Mandelstam variables
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= The crossing symmetry allows us to write the amplitude of the “crossed” process -
etu™ — eTu~ exchanging s with t in previous expression, .

This proceeds through the t channel:

Y Y [ Metp = etu)P =

ri 5

ete” = utu

crossing

B 8¢t
7

A

s>t

~N

(

)G

H e H
e — e
etu — ety

Comments

Crossing symmetry and Mandelstam variables

= Other examples, where two channels contribute, are:

£

Bhabha

ete” —ete™

7~ PR

Compton

Ye — ye

crossing

A

S<u

crossing

~

A

54>t

Moller

e e —e e

s

/

Annihilation

ete™ — yy

I~
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7. The Standard Model

456

— Gauge Theories

local/jillar

> The gauge symmetry principle

> Quantization of gauge theories

— Spontaneous Symmetry Breaking
>> Discrete symmetry

> Continuous symmetry: global vs gauge

e The Standard Model

> Gauge group and particle representations

— Electroweak interactions
> Case of one family
> Electroweak SSB: Higgs sector, electroweak gauge boson and fermion masses
> Additional generations: fermion mixings (quark sector)
> Complete Lagrangian and Feynman rules

>> Electroweak phenomenology

Strong interactions
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Gauge Theories

The symmetry principle || free Lagrangian

= In addition to [ spacetime | (Poincaré) symmetries, the free Lagrangian

(Dirac)  |Lo = 9(id —m)p| d=9"3,, ¥=uv'°

= Invariant under |internal | global U(1) phase transformations:

P(x) — ¢'(x) = e QP(x), Q, 6 (constants) € R

= By Noether’s theorem, divergentless current:

and a conserved «charge»

o= [&x g, aQ-0
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The symmetry principle || free Lagrangian

= A |quantized | free fermion field:

d3p

P(x) = / (2@3\/2»15;35;2

(a5 (B)e™#* + b 0 (et
— is a solution of the Dirac equation (Euler-Lagrange):
(i —m)yp(x) =0, (f—mu(p)=0, (F+mp(p)=0,

— is an operator from the canonical quantization rules (anticommutation):

{a,-;,r, EI%IS} = {bﬁf’ b%/s} = (27'()3(53(;—9*_ K)oys {ap’,r/ aj{,’s} —...=0,
that annihilates/creates particles/antiparticles on the Fock space of fermions
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The symmetry principle || free Lagrangian

= For a|quantized | free fermion field:

= Normal ordering for fermionic operators (H spectrum bounded from below):

: by, b = —bL b

L=t
ax. :=—a. 7,0 r

< gy q,s q,saf?',?’ ’ pr¥gs

= The Noether charge is an operator:*

_ d3
Q = Q/d3x 51,b’)/01p T = Q/ (27:;3 Z (El;—;»/sﬂlﬁls — b%,sbﬁzs)

s=1,2

by i , t o) — Ot art
Qap 0) =4+Q a . |0) (particle), Q by 0) =—-Q by |0) (antiparticle)
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The symmetry principle

gauge invariance dictates interactions

» To make £ invariant under local = gauge transformations of U(1):

px) = ¢/ (x) =7 PWp(x), =0(x) €R

perform the minimal substitution:

dy — Dy =9, +ieQA, (covariant derivative)

where a gauge field A;(x) is introduced transforming as:

Au(x) = AL (x) = Au(x)

1 : _
+-0u0(x) = |Dup e CIDup| PPy inv.

= The new Lagrangian contains |interactions | between 1 and Ay:

Lint = —€ Q @’YVIIJ Ay . { coupling e

charge Q

(= —e JHAy)

The symmetry principle

gauge invariance dictates interactions

= Dynamics for the gauge field = add gauge invariant kinetic term:

(Maxwell) L=

1
_ZF’/H/F'MV ¢ P],[]/:a}lAV_aVAI/IHF,MV

= The full U(1) gauge invariant Lagrangian for a fermion field ¢(x) reads:

Lsym - @(ID

1
—m)p — 2B P (= Lo+ Line + L1)

» The same applies to a complex scalar field ¢(x):

Logm = (Dug) D — m29*p — A(9"9)* — FuF"

local/jillana
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The symmetry principle || non-Abelian gauge theories

= A general gauge symmetry group G is an N-dimensional compact Lie group

geG, g(g) —e T 4=1,... N

local/jilla

0" =6"(x) € R, T" = Hermitian generators, [T% T°] =if™T¢ (Lie algebra)

Te{T"T’} = 16,;,, structure constants: f"° =0 Abelian

f%¢ £ 0 non-Abelian

= Finite-dimensional irreducible representations are unitary:

d-multiplet : ¥ (x) — ¥/(x) = U(6)¥(x), ¥ =

ba
d x d matrices : U(6) [given by {T"} algebra representation]

The symmetry principle || non-Abelian gauge theories

= Examples: G ‘ N  Abelian
u(1) 1 Yes
SUn) | n®2—1 No (n X n unitary matrices with det = 1)

e U(1): 1 generator (Q), one-dimensional irreps only

e SU(2): 3 generators
f”bc = e%¢ (Levi-Civita symbol)
o Fundamental irrep (d = 2): T = la“ (3 Pauli matrices)
o Adjoint irrep (d = N = 3): (ng])bc = —jfabe

e SU(3): 8 generators
f123 =1, f458 — f67 =¥, f147 f156 — f246 — f247 — f345 — f367

o Fundamental irrep (d = 3): T® = %A“ (8 Gell-Mann matrices)
o Adjoint irrep (d = N = 8): (ngj)bc = —jfabe
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1

2

(for SU(n): f* totally antisymmetric)
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The symmetry principle || non-Abelian gauge theories

» To make £( invariant under local = gauge transformations of G:

Lo=F(d—m¥, ¥(x)—¥(x)=U®6)¥(x), §=60x cR

substitute the covariant derivative:

where a gauge field Wj(x) per generator is introduced, transforming as:

Wy (x) = Wi(x) = UN, (U =2 @,u)U' < [D,¥— UD,¥| ¥DY inv.
~— §

adjoint irrep

= The new Lagrangian contains | interactions | between ¥ and Wi

Ling =8 ¢’VVTIHPWZ = { Cogﬁalirgi %"”

(= g TIW2)
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The symmetry principle || non-Abelian gauge theories

= Dynamics for the gauge fields = add gauge invariant kinetic terms:

. 1 ~ 1
(Yang-Mills) |Lym = _ETI {WWWV"} = —ZWﬁVW”’W

= Wi, =9, W — 9,Wji + g f"WIW,

= Lym contains cubic and quartic | self-interactions | of the gauge fields Wy:

Liin = —%(%Wﬁ — 9, Wyy) (QH W™ — oV W)
L cubic = —%gf“bc (ang - ayWﬁ)Wb’”WC’V

1
Equartic - - ;18 2f abef cde Wﬁ Wll/? WCIV Wd,v
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(particle interpretation
of field correlators)

local/jillana

Quantization of gauge theories || propagators

» The (Feynman) propagator of a scalar field:

4 ; _
De(x—y) = O T 0 = [ 5B ape

(Feynman prescription € — 0T)
is a Green’s function of the Klein-Gordon operator:

2 — it D = !
Ox+m*)Dr(x —y) = —idx —y) & Dr(p) = F— oo

= The propagator of a fermion field:

4

Se(x =) = O (T 0) = (s +m) [

)4 p? —m? +ie

i .
e~ ip(x—y)

is a Green’s function of the Dirac operator:
i

(ifx —m)Sp(x —y) = i(54(x -y & gF(P) = m
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Quantization of gauge theories || propagators

= HOWEVER the propagator of a gauge field cannot be defined unless L is
modified:

(e.g. modified Maxwell) L=— 1 Ey FHY _ 2%’

b CWE

0L oL 1
~ . . o we 2 UV _
Euler-Lagrange: A, 8ﬂa(ay 3= 0o = lg ] (1 ‘:) "o 1 Ay =

— In momentum space the propagator is the inverse of:

) 1 , _ i k,k,
_ng;i + (1 — E) k'k = D;w(k) = m l_gyv + (1 - C) Zz ]

= Note that (—k?g*" + k*k") is singular!
= One may argue that £ above will not lead to Maxwell equations ...

unless we fix a (Lorenz) gauge where:

MAy =0 <« Ay A=A, +3,A with #,A = —0"A,
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Quantization of gauge theories || gauge fixing | (Abelian case)

= The extra term is called Gauge Fixing;:

1
Lcr = —z(ayi“y)z

= modified £ equivalent to Maxwell Lagrangian just in the gauge 0" A, = 0

= the ¢-dependence always cancels out in physical amplitudes

» Several choices for the gauge fixing term (simplify calculations): R gauges

’ ~ - _ igyv
('t Hooft-Feynman gauge) ¢ =1: Dy (k) = 2+ ic
- i kyky
(Landau gauge) ¢ =0: Dy (k)= i —Suv + 5E

Quantization of gauge theories || gauge fixing | (non-Abelian case)

= For a non-Abelian gauge theory, the gauge fixing terms:

1 a
Lgp=— Z E(aywy)z

a

allow to define the propagators:

k,k,
—8uv + (1-— Cfa)z—z

T2 ie

HOWEVER, unlike the Abelian case, this is not the end of the story ...

s/local /jillana
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Quantization of gauge theories || Faddeev-Popov ghosts | (x)

s /1o

= Add Faddeev-Popov ghost fields c,;(x),a =1,...,N:

Lrp = (0'2") (D7) = (912") (uc” — gf™c'Wy) | < D = 0, — igTig Wy

Computational trick: anticommuting scalar fields, just in loops as virtual particles

[(—1) sign for closed loops! (like fermions)]

= Faddeev-Popov ghosts needed to preserve gauge symmetry:

e WK O S TR
(2) (b) (c)

= Faddeev-Popov ghosts needed to preserve unitarity at the loop level:

q9 = q9
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Quantization of gauge theories || complete Lagrangian

s /1o

= Then the complete quantum Lagrangian is

Lsym + Lgr + Lpp

= Note that in the case of a massive vector field

1 1
(Proca) L = —FuF" + - M2A, A"

is not gauge invariant. What about the gauge principle???

— The propagator is:
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Spontaneous Symmetry Breaking
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Spontaneous Symmetry Breaking || discrete symmetry

» Consider a real scalar field ¢(x) with Lagrangian:

)
(Hgb)(a”qb) ;chz—& * invariant under ¢ — 4)

= W= 5@+ (Vo) + V() / F /

1, 1y
V—2y4>+4)tq>

1%, A € R (Real/Hermitian Hamiltonian) and A > 0 (existence of a ground state)
(a) 4 > 0: min of V(¢) at ¢pg = 0

(b) % < 0: min of V(¢) at ¢pq = v = +1/ _T‘uz, in QFT (0| ¢ |0) = v # 0 (VEV)

— A quantum field must have v = 0

al0) =0 = () =o+n(x), (0[[0)=0
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Spontaneous Symmetry Breaking || discrete symmetry

= At the quantum level, the same system is described by #(x) with Lagrangian:

L= Z(3un)(0"y) — Ao*n? — Avn® — %174 + 1/‘\UJ‘ not invariant under # — —7

4
(mn = \/ﬁv)

N =

= Lesson:

L(¢) had the symmetry but the parameters can be such that the ground state of
the Hamiltonian is not symmetric (Spontaneous Symmetry Breaking)

= Note:

One may argue that £(7) exhibits an explicit breaking of the symmetry. However
this is not the case since the coefficients of terms 72, > and 7* are determined by
just two parameters, A and v (remnant of the original symmetry)
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Spontaneous Symmetry Breaking || continuous symmetry

= Consider a complex scalar field ¢(x) with Lagrangian:

L= (aﬂ4’+)(ay4’) —12pTp — A(¢pT¢9)? invariant under U(1): ¢ — e 1%

2 v —p?

Take v € R™. In terms of quantum fields:

p(x) = S=lo+n(x) +ix(@], (0]n10) = (©0]x[0) =0

1 1 A 1.,
L= 5(9u1)(9"1) + 5 (0ux) (9"x) — Ao — Avn(i7” + x*) — Z(;72 +x2)% + 1/\,sz

Note: if ve'® (complex) replace 17 by (7 cosa — x sina) and x by (7sina + x cosa)

= The actual quantum Lagrangian £(7, x) is not invariant under U(1)

U(1) broken = one scalar field remains massless: m, = 0, m; = v2A0v
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Spontaneous Symmetry Breaking || continuous symmetry

» Another example: consider a real scalar SU(2) triplet ®(x)

L= %(ayqﬁ)(aﬂcp) — %;ﬂcpTcp — %(@Tcp)z inv. under SUQ2): @& — e T ®
that for A > 0, u? < 0 acquires a VEV (0| ®T® |0) = v? (u? = —Av?)
¢1(x) 1
Assume ®(x) = @2 (x) and define ¢ = ﬁ(% +i¢y)
v+ @3(x)

1 A 1
L = (39")(9"9) + 5 (3up3) (9" 93) — Av*p3 — A0 (29" @ + 93) @3 — 3 (297 @ + 93)*+ 10"

= Not symmetric under SU(2) but invariant under U(1):

P — e_iqe(p (q = arbitrary) p3— @3 (g=0)

SU(2) broken to U(1) = 3 — 1 = 2 broken generators

= 2 (real) scalar fields (= 1 complex) remain massless: m, = 0, my, = V210
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Spontaneous Symmetry Breaking || continuous symmetry

= Goldstone’s theorem: [Nambu '60; Goldstone '61]

The number of massless particles (Nambu-Goldstone bosons) is equal to the number of
spontaneously broken generators of the symmetry

Hamiltonian symmetric under group G = [T%,H]=0, a=1,...,N
By definition: H|0) =0 = H(T*|0)) =T*H|0) =0

—If |0) is such that T* |0) = O for all generators
= non-degenerate minimum: the vacuum

—1f |0) is such that T* |0) # 0 for some (broken) generators a’
= degenerate minimum: chose one (frue vacuum) and e—iT" 0" |0) # |0)

N,
= excitations (particles) from |0) to e~'T" ¢ |0) cost no energy: massless!
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Spontaneous Symmetry Breaking || gauge symmetry

= Consider a U(1) gauge invariant Lagrangian for a complex scalar field ¢(x):
c—-1f F" 4 (D) (D*p) — 19T — A¢pTp)?, D, =9, +ieQA
= g uf ¢)—weo¢—Me$)”, Du=9y L

inv. under ¢(x) = ¢'(x) = e XWp(x), Au(x)— Ay(x) = Ap(x) + %aye(x)
If A >0, u? <0, the £ in terms of quantum fields 7 and x with null VEVs:

p(x) = 7[0 +n(x) +ix(x)], = —Av? Comments:
1 1 1 . _
£ == 3FaF" 4+ 30um)@"1) + 5(2,2)(0"0) O my = V2re
A 1., e
—A? | = Aoy (i + x%) = T (77 + %)+ A0 (i) My = |eQo] (1
+ eQuAL Ot x |+ eQA, (7ot x — x9M'n) (iii) Term A,d¥x (?)

(iV) Add EGF

+ 5(eQu)? Ay A¥ |+ 5 (eQ)* Ay A (i + 20 + x7)

I\J|>—‘

Nl»—\
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Spontaneous Symmetry Breaking || gauge symmetry

= Removing the cross term and the (new) gauge fixing Lagrangian:

Lgr = ——g(a WAl — EMax)?
MA[BVAVX—FAVBVX]

total deriv.
1 1 ' S

v 2 w_ 1 )2 I

1 1
+ E(ayX)(aVX) — EgMiXZ +...

and the propagators of A, and x are:

~ i kyky
Dy (k) = g+ (1-8) "
o (6) K2 — M% +ie S+ g)kz—gMg
~ i
D(k) =
(k) k2 — M2 +ie

= X has a gauge-dependent mass: actually it is not a physical field!
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Spontaneous Symmetry Breaking || gauge symmetry

= A more transparent parameterization of the quantum field ¢ is

¢(x) = ) f[v+17( )], {0l710) = (0[£]0) =0

$(x) — e—iQC(x)/v(P( ) = Lz[v +71(x)] = gauged away!
1 1 Comments:
£ =GR 03"
1 (i) my = V2A 0
2.2 4
— AvPy? — Aoy’ — —17 + Ao (i) My = eO0|

(er)zA AF + (eQ)2A AF(2un +1?) (ili) No need for Lgr
= This is the unitary gauge ({ — 0): just physical fields

kyk .
—guv + y—;] and D(k) =0
My

~ i

Dy (k) —
(k) k2 — M +ie

Spontaneous Symmetry Breaking || gauge symmetry

local/jillana
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= Brout-Englert-Higgs mechanism: [Anderson '62] ¢
[Higgs '64; Englert, Brout '64; Guralnik, Hagen, Kibble "64] :

The gauge bosons associated with the spontaneously broken generators become massive,

the corresponding would-be Goldstone bosons are unphysical and can be absorbed,
the remaining massive scalars (Higgs bosons) are physical (the smoking gun!)

* The would-be Goldstone bosons are ‘eaten up’ by the gauge bosons (‘get fat’)

and disappear (gauge away) in the unitary gauge (¢ — o)

= Degrees of freedom are preserved

Before SSB: 2 (massless gauge boson) + 1 (Goldstone boson)

After SSB: 3 (massive gauge boson) + 0 (absorbed would-be Goldstone)

* For loops calculations, 't Hooft-Feynman gauge (¢ = 1) is more convenient:

= Gauge boson propagators are simpler, but

= Goldstone bosons must be included in internal lines
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Spontaneous Symmetry Breaking

gauge symmetry

s Comments:

* After SSB the FP ghost fields (unphysical) acquire a gauge-dependent mass,

due to interactions with the scalar field(s):

Dab(k)

104p

* Gauge theories with SSB are renormalizable

— &M, +ie

local/jillana

[t Hooft, Veltman "72]

UV divergences appearing at loop level can be removed by renormalization of
parameters and fields of the classical Lagrangian = predictive!
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The Standard Model
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SM: Gauge group and particle reps

[Glashow ’61;

Weinberg '67; Salam ’68]
[D. Gross, F. Wilczek; D. Politzer '73]

local/jilla

» The Standard Model is a gauge theory based on the local symmetry group:

SU(3). ®SU(2)r ® U(1)y = SU(3). @ U(1)g
\—V—/ \ ~~ J/

strong

electroweak

N——

em

with the electroweak symmetry spontaneously broken to the electromagnetic

U(1)o symmetry by the Brout-Englert-Higgs mechanism

= The particle (field) content:

(ingredients: 12 flavors + 12 gauge bosons + H)

Fermions I II I Q Bosons
spin % Quarks | f || uuu | ccc | tit % spin 1 | 8 gluons || strong interaction
f'|| ddd | sss | bbb || —31 W=, Z weak interaction
Leptons | f Ve vy | v 0 0% em interaction
f' e U T —1 || spin 0 | Higgs origin of mass
Qr=0Qp+1

SM: Gauge group and particle representations

486

local /jillar

= The fields lay in the following representations (color, weak isospin, hypercharge): -

= Electroweak (QFD): SU(2);®U(1)y

Multiplets | SU(3). ® SU(2), ® U(1)y I I 11 Q= T°+ Y
Quarks (3,2, %) (uL) (CL> (tL) % B % + %
d, SL by —i=-141

3,1, 32) UR CR tr 2= 0+32

3,1, -13) dr SR br —1= 0-1

Leptons 12 -3 (Vq ) (VV L) (VTL ) 0= 3-3
er ML s “1=-3-3

(1,1, -1) er MR ] ~1= 0-1

(1,1,0) Ver Vig Vg 0= 040

Higgs 1,2, %) (3 families of quarks & leptons) UNIVERSAL

Strong (QCD): SU(3).
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Electroweak interactions

488
The EWSM with one family | (of quarks or leptons) i’
» Consider two massless fermion fields f(x) and f’(x) with electric charges
Qf = Qp + 1 in three irreps of SU(2),@U(1)y:
T P 1 1
£} = i3 +if af fre=50£9)f, fir=50£7)f
= iY19%1 + i, 900 +iyPdys 5 Y1 = ff) , = frR , P3= fr
fi ~— ~—
N e’ (1/]/2) (1/y3)

(2,11)

= To get a Langrangian invariant under gauge transformations:

i

¥1(x) o Uy (x)e PO (1), Uy () = e T, =

(weak isospin gen.)

$2(x) = e PNy ()
P3(x) = e P s (x)
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The EWSM with one family || covariant derivatives

= Introduce gauge fields W;;(x) (=123 and B (x) through covariant derivatives:

ot

Dy¥1 = (9 —igWu +ig'yiB)¥1, Wy =W,
Dy = (9y +ig'y2Bu) o = L] (P.9)
Dytps = (9u +18'y3By) 3
where two couplings ¢ and ¢’ have been introduced and
- ~ i
Wi (x) = U (x) Wy (x) U (x) — g(ayuL(x))u{(x)
1
Bu(x) — Bu(x) + é?BP,,B(X)
= Add Yang-Mills: gauge invariant kinetic terms for the gauge fields
1. . . 1 . , . L
Lym|= — Wi W™ = (BB, Wy, = 0 W; — 9 W, + g€ W)W

(include self-interactions of the SU(2) gauge fields) and B, = 9,,B, — 9, B,

The EWSM with one family || mass terms forbidden

= Note that mass terms are not invariant under SU(2); ®U(1)y, since LH and RH

components do not transform the same:
mff =m(fLfr + frfL)

= Mass terms for the gauge bosons are not allowed either

= Next the different types of interactions are analyzed,
and later the EWSB will be discussed

local/jillana
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The EWSM with one family || charged current interactions

s/local /jillana

o _ 1 w2 Vowt
[ — M M

= charged current interactions of LH fermions with complex vector boson field W,,:

Lcc = %ﬂ?”fiwﬁ +he

_ %7%‘(1 —75)fWi+he, W,= %(Wﬁ £iw2)
er, dL
w W
148 uy
143 up
w W
er, dL
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The EWSM with one family || neutral current interactions

local/jillana

= The diagonal part of
Lr D gO1Y'" WY1 — ¢'Bu(yi Ty Y1 + vy a2 + y3ihs 7' ¢3)

= neutral current interactions with neutral vector boson fields Wﬁ’ and B u

We would like to identify B, with the photon field A, but that requires:
yi=y2=y3 and gyj=eQ; = impossible!

= Since they are both neutral, try a combination:
W":’ _ cw —Sw Zy sw =sinfy , cw = cosfy
B, SW Cw Ay Oy = weak mixing angle
> o 3 ! 3 !
Lne = Z q;jryP‘ {— [gsWT +g cwy]} Ay + [chT -9 swyj] ZV} P
j=1

with T3 = ? (0) the third weak isospin component of the doublet (singlet)
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The EWSM with one family || neutral current interactions

» To make A, the photon field:

W ]e=gsw=¢ew| 2)|Q=T3+Y

0
s ) Q:=Qf, Q=0

where the electric charge operator is: Q1 = ( o
0 Qp

T 88’
= (1) Electroweak unification: ¢ of SU(2) and ¢’ of U(1) related to e = —22——

= (2) The hyperchages are fixed in terms of electric charges and weak isospin:

1 1
ylef_Efo"f‘E, v2=0Qf, y3=Qp

Loep = —e QpfyY'f Ay +(f 1)

= RH neutrinos are sterile: y = Qf =0
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The EWSM with one family || neutral current interactions

s The Zy is the neutral weak boson field:
L& =e for'(vp —apys)f Zu +(F = f)
with

T}’L — 2Qfs§v B T]%L

vf - ZSWCW af_ 2SWCW

= The complete neutral current Lagrangian reads:

Lne = £QED + ﬁéc

f:u,d,e f:M,d,VL,e
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The EWSM with one family || gauge boson self-interactions

local/jillana

» Cubic:
iec
Lym D L3 = — SWW {www;gzy ~ WHWHZY — W;;WVZW}
+ie {WWWJAV — Wi WrAY w;wVPW}
with

Fu =3 Ay — Ay Zyw =2y —Zy Wy = W, — 9, W,
W W
Y MAI:E‘: Z MADE‘:
W W
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The EWSM with one family || gauge boson self-interactions

local/jillar

» Quartic:

2 2
Lym D Ly = ——— { (W;WV) . W;WWWVWV}

WIWkZ,Z" — W;ZVWVZV}

‘w {2W*WVZ AV — WIZFW,AY — W;AVWVZV}
.l.

B A S

Note: even number of W and no vertex with just v or Z

Sw
_ 2{w WHEA,AY — W;AVWVAV}
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Electroweak symmetry breaking || setup

= Out of the 4 gauge bosons of SU(2); @U(1)y with generators T', T2, T3, Y we
need all to be broken except the combination Q = T® + Y so that A, remains
massless and the other three gauge bosons get massive after SSB

§

Lo|= (Du®@)'D'E — 20T® — A(@T®)?, D, = (3, —igW, +ig'yoB,)®

takeyq>:% = (T3+Y)<S> :Q<:> =0

{T%, T2, 1° - Y} <O> #0

= Introduce a complex SU(2) Higgs doublet

N
®— (‘:0> (0] ®[0) =

with gauge invariant Lagrangian (y?> = —Av?):

5l
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Electroweak symmetry breaking || gauge boson masses

= Quantum fields in the unitary gauge:

_ ot 1 0
Pl) = e {159 (x)} V2 <v+ H(x))

1 physical Higgs field

i 0 H
(x) > exp {—iiel(x)} O(x) = — 5 AW
20 V2 \v+H (x) 3 would-be Goldstones
6'(x) gauged away

— The 3 dof apparently lost become the longitudinal polarizations of W* and Z that
get massive after SSB:

) 2.2 1
LoD Ly = % W;WV + é;—;]ZVZ” =  Mw = Mzcy = 580
c2, —

2 —— custodial
w % M% symmetry
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Electroweak symmetry breaking || Higgs sector

= In the unitary gauge (just physical fields): Lo = Ly+ Ly + Lyy2 + ;407

Ly =20 HaﬂH—lMZHZ—M—%IH?’ M%IH4 My =/ —2u2 = V2A0
H = 5% 2 "H 20 802
’¢H H \\ ,lH
H ""(: :,o’,:
\‘H H’, \‘H

H? 1 2 H?
Lyt + L2 = M3y W+WV{1+ H+—}+§M%ZVZV{1+ H+—}

=
=
=
N
+
N
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Electroweak symmetry breaking || Higgs sector

» Quantum fields in the R; gauges:

o (x) = 77 () ) = )
%[v + H(x) +ix(x)]

1. ,
Lo=Lyg+Lyp+ ‘CHV2 + 1/\Z74
_ 1
+ (9:97)(9"97) + 5(9ux) (9"1)
+ iMy (W, 0'¢T —Wiokp™) + Mz Z,0"x
+ trilinear interactions [SSS, SSV, SVV]

+ quadrilinear interactions [SSSS, SSVV]

501



Electroweak symmetry breaking || gauge fixing

cal/jillana

s /1o

= To remove the cross terms W, 0"¢™, W; d!'¢~, Z,0" x and define propagators add:

1 1

1
Lcp|= 0,A")? — 9, 7" — s Myx)? — — |0, WH + iy Mwao ™ |?
GF 2(37( uAl) ZCZ( u EzMzx) Cwl m CwMweo™ |

= Massive propagators for gauge and (unphysical) would-be Goldstone fields:

_ i Kk,
Dy, (k) = e {—&w + (1 - 57)7}

i
k2 — M2 +ie

- k,k ~ i
Z _ v .

DVV(k) = |:_g;4v+ (1 _§Z)k2—€ZM%:| ; X

- i k,k

DW (k) = 1 o+ (1— L} . DY(k) =
() kz_Mgv+ig[ St (L= Ewla— e e, R Y J

('t Hooft-Feynman gauge: ¢, = {7z = ¢w = 1)

Electroweak symmetry breaking || Faddeev-Popov ghosts |(x)

= The SM is a non-Abelian theory = add Faddeev-Popov ghosts ¢’(x) (i = 1,2,3)

3

C2 C=Cw Uz —Sw Uy

\ﬁ@u —u-),

Lrp = (9" (9’ — geijkchl/f) + interactions with ®

U kinetic + [UUV] U masses + [SUU]

= Massive propagators for (unphysical) FP ghost fields:

i

f)“z (k) _ 1 ) f)l,li (k) _

D" (k) =
(k) k? — &z M2 +ie k2 — EwMz, + ie

k? +ie’

('t Hooft-Feynman gauge: ¢z = ¢w = 1)
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Electroweak symmetry breaking || Faddeev-Popov ghosts |(x)

s /1o

Lrp = (9,1) (0 1) + (9,117) (Huz) + (9414 ) (Fuy) + (91— ) (o u_)
1ecyy

+ie[("uy )uy — ("u_)u_]A, — (0" )uy — ('u_)u_)Z,

Sw
iecyy

[UUV]{ —ie[(o iy )uy, — (8“ﬁ7)u,]W; + [(Huy)uy — (af’ﬁz)u,}w;f

SW
W [y — (9TT7)u W,

+ie[(0H1 - Juqy — (01l )uy |W, — .
W

— ézM% UzUy — gwM%\/ E+Ll+ - gwM%\/ u_u_

1 1
— ez My 1y Huz — — (¢Tu_ + qbtu)}
W 2syy

‘ 1 2 2 1
[SUU] ¢ —eCwMw U+ 7(H + i)()ll+ — ()[)+ (”'y — “w T Sw llz>

2SW ZSWCW
1 2, — 82 ]
—eCwMypy u_ m(H —ix)u_ — ¢~ <ufy - Muz>
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Electroweak symmetry breaking || fermion masses

s /10

= We need masses for quarks and leptons without breaking gauge symmetry

= Introduce Yukawa interactions:

4 (0E3
»CY = _/\d (ﬂL EL) 4)0 dR — Au (HL EL) (P B UR
¢ —¢
+ 0+
— /\g (1_/L ZL) qbo éR — )\1/ (ﬁL ?L> 4) B VR +hC
¢ —¢
where &° = i, ®* = transforms under SU(2) like & = 0
—¢ ¢
= After EW SSB, fermions acquire masses:

1 - — v
Ly D ——+H)JAjdd+ A, uu+ Ay 00+ A, vv = M= Af—=
Y \/E( ){ d u ¢ } F=%7
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Additional generations || Yukawa matrices

local/jillana

= There are 3 generations of quarks and leptons in Nature. They are identical Copiesg"
with the same properties under SU(2); ® U(1), differing only in their masses -

= Take a general case of n generations and let ull , d{ Vi,

I ¢I be the members of

family i (i =1,...,n). Superindex I (interaction basis) was omitted so far

= General gauge invariant Yukawa Lagrangian:

()
¢0 )

)

/\5 ;/) are arbitrary Yukawa matrices

=l
dir

Ly

I

2
i

4)-1-
¢O

AP Oy +

EiL ]

+ (V{L

where )»gi), /\f].”), /\5]@,

* Neutrinos are special: vg’s do not exist in the SM (then how about oscillations!?).
Light v masses are possible Beyond SM if v; and Nr are Majorana fermions
or in SMEFT (dim-5 Weinberg operator), involving Lepton Number Violation

mass matrices

Additional generations

= After EW SSB, in ng-dimensional matrix form:
H —
Ly — (1+;) [@ M, dl + w M ul +

with mass matrices

0 0

— () — () — (@ _
(My);; = A /2 (M,); = Aij V2 (My);; = Aij N (My);; =
= Diagonalization determines mass eigenstates dj, uj, 14 iV

vl, respectively

in terms of interaction states dJI- , u]! , 6]1 , Vi

= FEach M £ can be written as

T t 2 t Aq2

with H =
— Every H can be diagonalized by a unitary matrix S
— The resulting M s is diagonal and positive definite

UMyLh + vl M vh + h.c.}

M fM} a Hermitian positive definite matrix and U ¢ unitary
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Additional generations || fermion masses and mixings

= In terms of diagonal mass matrices (mass eigenstate basis):

M, = diag(my, ms,my,...), M, = diag(my, me,my,...)
M, = diag(me, my, me,...), M, = diag(m,, My,, My, - - -)

H\ (= -
Ly D — (14—;) {d/\/ldd +uMyu + 1M,1 +v/\/lL,v}
where fermion couplings to Higgs are proportional to masses and
dL = Sd d£ ur = Su ll£ lL = Sg li VL =Sy l/i

dR = SdL{d d{% UR = Suuu uf{ lR = ng/{g 1%{ VR = Slul, UIIQ

Neutral Currents preserve chirality

_ _ Z _ = Lnc does not change flavor
fl 1 =f f, and £l fL = £ £

= GIM mechanism [Glashow, Iliopoulos, Maiani 70]
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Additional generations || quark sector

= However, in Charged Currents (also chirality preserving and only LH):
ujdl =w,S,S8Yd, =w,vd;
with V=S, S:; the (unitary) CKM mixing matrix [Cabibbo ’63; Kobayashi, Maskawa ‘73]

= ECC— Zuz'y” —s) Vi d; W + h.c.

L h family !!
" cc changes family

djL ur CL tr
W Vl] Ikv\. ;; v.;%:.\'; ;Yil
’ . PYERE PN
UiL jL dL SL bL

= If u; or d; had degenerate masses one could choose S, = S; (field redefinition)
and quark families would not mix. But they are not degenerate, so they mix!

= S, and S, are not observable. Just masses and CKM mixings are observable
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Additional generations || quark sector

» How many physical parameters in this sector?

* Quark masses and CKM mixings determined by mass (or Yukawa) matrices

* A general ng X ng unitary matrix, like the CKM, is given by

nZ real parameters = ng(ng —1)/2 moduli + ng(ng +1)/2 phases
Some phases are unphysical since they can be absorbed by field redefinitions:
u; — eigbi u;, d] — eief d] = Vl']' — Vl']‘ ei(gfi(l)i)

Therefore 2ng — 1 unphysical phases and the physical parameters are:

(ng —1)? = ng(ng —1)/2 moduli + (ng —1)(ng —2)/2 phases

Additional generations || quark sector

= Case of ng = 2 generations: 1 parameter, the Cabibbo angle 0:

cosfc sinfc

—sinfc cosfc

local/jilla
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= Case of ng = 3 generations: 3 angles + 1 phase. In the standard parameterization:

Vud Vus Vyp 10 0 €13 0 sjze ¥ c2 s12 0

Vi Ves Vg | = |0 3 s23 0 1 0 —s12 c12 O

Via Vis Vy 0 —sp3 3] \—s13€8 0 13 0 0 1
€12€13 512€13 s13e 101

413 only source
—812C23 — C1252351361513 C12C23 — 51252381361613 $723C13 = of CP violation

613 613 in the SM !
$12523 — €12€23513€ —C12523 — 512023513€ €23C13

with ¢;; = cos6;; >0, s;;=sinf; >0 (i<j=123) and0<d3<2n
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Complete EWSM Lagrangian || fields and interactions

L=Lr+Lym+ Lo+ Ly+ Lgg+ Lpp

Lr D Lcc+ Lne

Lym D Lyyy + Lyyyy

Lo D gauge boson masses

Ly D fermion masses and mixings

e Fields: [F] fermions

[V] vector bosons

e Interactions: [FFV] [FFS]

[VVV] [VVVV]

[S] scalars (Higgs and unphysical Goldstones)
[U] unphysical ghosts

[SSV] [SVV] [SSVV]
[SSS]  [SSSS]

[SUU] [UUVV]

local/jillana
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Complete EWSM Lagrangian || Feynman rules

» Feynman rules for generic couplings normalized to e (all momenta incoming):

(il) [FFV ]
[FES]
[SV,V,]
[S(p1)S(p2)Vyl
[Vy (kl)VV(k2)Vp(k3)]
[th (kl)VV(kZ)VP(k3)VU(k4)]
[SSV,V,]
[SSS]
[SSSS]
Note: grr = gv 84
CLR = 8§sEgp

iey(gv — ga7s) = iev(gLPL + grPR)

ie(gs — gprs) =ie(cLPL + crPR)

ieKgyy

ieG(p1 — p2)u

ie] [guv(ka —k1)o + Suo(ks — k2 )y + gpuo (k1 — k3)v ]
ie*C [28uv8pr — SupQve — SuaSup)

ie?Cogyuy also [UUVV]
ieCs also [SUU]
i€2 C4

Attention to symmetry factors!
eg. 2 X HZZ

http://www.ugr.es/local /jillana/SM/FeynmanRulesSM.pdf

local /jillar
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EW phenomenology || Input parameters

= Parameters: (*vSM)
17+9" = 1 1 1 1 9+3 4 6"
formal: ¢ ¢ v A As
practical: a My Mz My my Vekm  Upnins

where e = gsyy = ¢’c and

i Mu=teo My=MY i m= 2
s w38 27 o H= =2
8 8, v
= Many (more) experiments
= After Higgs discovery, for the first time all parameters measured!
514
EW phenomenology || Input parameters
= Experimental values [Particle Data Group '20]
¢ Fine structure constant: i
a~! =137.035999 150 (33) Harvard cyclotron (g.) 11712.06060]
a~! = 137.035999 046 (27) atom interferometry (Cesium) [1812.04130]
a~ ! =137.035999 206 (11) atom interferometry (Rubidium) [Nature 588, 61(2020)]

The SM predicts My < Mz in agreement with measurements:
Mz = (91.1876 £0.0021) GeV LEP1/SLD
My = (80.379 £ 0.012) GeV  LEP2/Tevatron/LHC

Top quark mass:
my = (172.76 £ 0.30) GeV Tevatron/LHC

Higgs boson mass:
Mpy = (125.254+0.17) GeV LHC
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EW phenomenology || Observables and experiments [weak NC discovery (1973)-

1

» Low energy observables (Q? < M2)
e v-nucleon (NuTeV) and ve (CERN) scattering
asymmetries CC/NC and v/7 = [s3,
* Parity and Atomic Parity violation (SLAC, CERN, Jefferson Lab, Mainz)

LR asymmetries eg LN — eX and Z effects on atomic transitions = |s?,

* muon decay: y — eV,v (PSI)

lifetime ) s
1 Gy, 2, 2
T_pt = FV = 19273 f(me/my)
Gr
e f(x) =1—8x+8x>—x*—12x%Inx
W = 0.99981295

Fermi theory (—g?<M%,)

local/jillar

EW phenomenology || Observables and experiments

= Low energy observables

= Fermi constant provides the Higgs VEV (electroweak scale):
~1/2
v=(V2G) " ~246Gev
and constrains the product M2 s%,, which implies

M2 > M, = & ~ (37.4 GeV)?

T
= >
\/EGFS%V V2Gr

= Consistency checks: e.g. from muon lifetime:

Gr = 1.1663787(6) x 107> GeV 2

If one compares with (tree level result)

Gr ™o di ~ 1.125 x 1075

V2 285 ME o 2(1— MZ,/ME)ME,

a discrepancy that disappears when quantum corrections are included
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EW phenomenology

Observables and experiments

» ee” — ff (PEP, PETRA, TRISTAN, ..., LEP1, SLD)

+
€ dU flxz 2 2 )
. d_Q_NC4_s’Bf{ [1+cos 0+ (1 — B%)sin 9} Gi(s)
— Y
e —|—2(/3§( —1) Ga(s) +2Bfcost G3(S)}
Gi(s) = Q2Q} +2QeQyvevsRexz(s) + (v +a7) (v} +a7)|xz(s)]* '3

Ga(s) = (o + @)l xz(s)

Ga(s) = 2QeQaeasRexz(s) +4ocvsacas xz ()P =

e*e”— hadrons

xz(s) = m, ch =1 (3) for f = lepton (quark) %
271’062 EPE'P" T S sic
ols) =Nl By |G- FPGi(s) =301 - IGals)| " m e -
,Bf — /1 _ 4m]2(/s centre-of-mass-energy (GeV)
EW phenomenology || efe™ — ff (f # e) in the SM
Unitary gauge: M=M,+ Mz
e /
8l ig
IMy =i(ps) (—ieQf)v" v(ps) SW o(p1) (—ieQe)" u(p2)
e /
e f
Z : v 2
. _ . —i(gu — k'k"/M7)
= H —
iMy i(py) iy (vf —asys) v(ps) s~ ME + iMyT
; Xﬁ(Pl) iey" (ve — aeys) u(PZ)
e

Note: The term with k#kV is irrelevant in the m, = 0 limit

local/jillana
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EW phenomenology || efe™ — ff (f # e) in the SM

The differential cross section in the CoM (non polarized case and m, = 0) is:

;i—g = NZZ—iﬁf { {1 +cos?0 + (1 — ,8?) sin® 9] Gi(s) + 2(,[3? —1)Ga(s) + 2B cos 9G3(s)}<,

local/jillana

Gi(s) = QQF +2QeQsvevfRexz(s) + (v7 +a7) (vf +ap)|xz(s)I%,
Go(s) = (v +ag)ag|xz(s)P",
Gs(s) = 2QeQracasRexz(s) +4v,vsacar|xz(s) 2,

s
s — M2 +iM;Ty,
It is easy to identify the terms coming form <y, Z exchange or the interference.
The total cross section and the forward-backward asymmetry in the CoM are

where xz(s) =

and NZ =1 (3) for f = lepton (quark).

2
o = NI B, [(3— 3)Ga(s) —3(1 - 3)Gals)]
_ 6ﬁfG3(s) 3G3(S) . 3 20.a, Zf)fclf
A = B RGe) TFE-DGE) | A6ie) A a7
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EW phenomenology || Observables and experiments

local/jillar

= Z pole observables (LEP1/SLD)

Mgz, Tz, Ohad, ArB, ALR, Ry, Re, Rp - = | Mg, s3,

from e*e™ — ff at the Z pole (y — Z interference vanishes). Neglecting 1

40E""l'"'l'"'l""l""Y""I""]""l"":
35 ve_ = I'(ete )I'(h
2o AN oA 1 O = 1271 = X/Iz)rz( )
] zZ' 'z
2 I'(bb) I'(cc) I'(had)
© R, = R. = R, =
" T(had) "¢ T(had) ¢ T(te)
- - DéMZ
[(Z— ff) =T(ff) = Nl =2 (03 + a)
87 88 89 90 91 92 93 94 95 96

V5 =Eep (GeV)
Forward-Backward and (if polarized e™) Left-Right asymmetries due to Z:

AFB:UF—UB_B Ae+ Pe _UL_UR:AEPE with A; =

vaaf
or+op 4 fl-l-PeAe LR_O'L-I-O'R

2 2
vf+af
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EW phenomenology || Observables and experiments

/local/jillana

= W-pair production (LEP2) » W production (Tevatron/LHC)
ete” > WW — 4 f (+7) pp/pp — W — Luy (+7) s
W
e+ A\ e+ —<—<lv\A/\/\< P
Ve
— v, Z - —>—¢A/\A/\A< W
e € —
w W P, P
= | Mw A
= | Mw
4
~ 307 LEP T .
\‘% | = Top-quark production (Tevatron/LHC)
° 20 ] pp/pp = tt—6 f
A ¥ v ES
+ &
101 12
= = -mt
O nie,
ol ‘ ;
160 180 200
Vs (GeV)
522
EW phenomenology || Observables and experiments -
= Higgs (LHC)
Single and Double H production and decay to different channels = | My ]
[g8F] [VBF] [VH] [t¢H] [¢H] [HH]
/ w7 q ’ q J x50} __H
g q a q 9 S ws ¢
2 W, Z b g9 .- H
0 %11 R A H g y
9 q 7 q H 9 e uéu >g17{/
b (N — Som
I T T I [T [T I \‘; R S R L R R R RS
—10%E M(H)= 125 GeV =§ T 3¢
2 +NOEW ' T Fee _ %
< g OO [ggF] 2 ww — 18
+ i 5 A 99 B —| §
T 10 [VBF]_: % 10 E
T 5 E Tt
E

3
2

ot
|

-3 —
1 7 E

ruu

104 oo b b b b b b b by
120 121 122 123 124 125 126 127 128 129 130

s [TeV] M, [GeV]
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EW phenomenology

Observables and experiments

© www.ugr.es/local /jillana

= Higgs (LHC) [PDG "20]
-BR
Signal strength p = m Run 1 Run 2
ATLAS | 1.17+0.27 1.024+0.14
026 0.17
Per channel: CMS | 1.18%53% 1.18%914
¥y, ZZ, WTW~, Tt~ > 50
bb| > 50 [Jul '18!] wtu—| ~ 30 [Jul 2011]
A e CMs 137 b1 (13 TeV)
ATLAS Hosbb  ts=7TeV,8TeV, and 13 TeV g ETTTTTT I
4.7 6", 20.3 b, and 24.5-79.8 fb”! [ _T\ = 5
—Total Stat. & [ 4
© 1o
VBF+ggF Runt| jp—i—e——i -0.78 j:s (jgg s j_'gg ) i‘§1o’1_— E
VBF+ggF Run2 —e—1 247 3 (1%, 7%0%)
120
ttH Runt rle—m 150 NF (1078 10%) w0k i
ttH Run2 e 0.85 063 (1020 056 )
VH Run1 = 0.51 080 (03, 90%) .
VH Run2 ot 1.15 02 (48 02 107 —Combined —VBF-cat. |
Comb (t{,"?:%”?) | Observed — ggH-cat. ttH-cat.
o T B L0 /\p12 5 015 VH-cat.
—4 —I2 (I) é 4 "© 8 10 1‘2 14 0 b
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H—bb my, (GeV)
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EW phenomenology || Observables and experiments
» Higgs mass (LHC) [PDG "20]
H — vy H— Z7* — 4/
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EW phenomenology || Observables and experiments

= Higgs mass (LHC)

7 TeV, 8 TeV and 13 TeV

ATLAS H —yy Run1
CMS H —yyRun1
ATLAS H — 4l Run 1
CMS H — 4l Run 1
ATLAS-CMS vy Run 1
ATLAS-CMS 4l Run 1
ATLAS-CMS Comb. Run 1
ATLAS H —yy Run2
ATLAS H — 41Run2
ATLAS Comb. Run 2
CMS H —4lRun2
CMS H — yyRun2

CMS Comb. Run 2

ATLAS and CMS —4— Total [ ] Stat. =3 Syst.

Tot. Stat. Syst.

126.02 = 0.51 (+ 0.43 = 0.27) GeV

124.70 = 0.34 (+ 0.31 = 0.15) GeV

124.51 + 0.52 (= 0.52 = 0.04) GeV

125.59 =+ 0.45 (+ 0.42 = 0.17) GeV

125.07 + 0.29 (+ 0.25 = 0.14) GeV

125.15 = 0.40 (+ 0.37 = 0.15) GeV

125.09 = 0.24 (+ 0.21 + 0.15) GeV
124.93 = 0.40 (+ 0.21 = 0.34) GeV

124.79 = 0.37 (+ 0.36 = 0.05) GeV

124.86 = 0.27 (+ 0.18 = 0.20) GeV

125.26 + 0.21 (+ 0.20 = 0.08) GeV

125.78 + 0.26 (+ 0.18 = 0.19) GeV

125.46 = 0.17 (+ 0.13 = 0.11) GeV

118 120 122 124

126

128 130 132

m, GeV

[PDG "20]

EW phenomenology || Observables and experiments

» Higgs couplings (LHC)

35.9-137 fo'' (13 TeV)

E>|> I\‘ T T \I\III‘ T I\II\Il T T \I\\I\‘ T
1 .. .4
Z | CMS Preliminary wZ .7
[ »»° b
5 L m,=125.38 GeV . 1
E“-|>10'1§‘ p-value = 44% 3
&ALL [ ‘," ]
- b .- ]
102E T ¥ -
; . Q‘ Leptons and neutrinos Quarks é
7 [ ol |
ok A N
i . # Force carriers Higgs boson E
ool 7 e|wiz] ]
Fol v vl il il
= 15—
e E % s ]
SR o S grboscoecocnncenss R
© T T R T B
@ 057557 1 10 102

particle mass (GeV)

[2009.04363]

H self-couplings
not yet observed

obs

<:KFOIKV:S_M

proben over more that 3 orders of mangitude!
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Strong interactions

Properties

= [Quantum Chromodynamics

local/jilla

Strong interactions

(QCD) is the theory of strong interactions

528

local /jillar

» Quarks and gluons are the fundamental dof but they never show up as free states:
they are bound in hadrons (confinement):

Baryons (g14243 or §,4,45) Mesons (417,)
name content Q [e] m [GeV] || name content Q [e] m [GeV]
P proton uud +1 7'[0 neutral pion uﬁ, da 0 0 ,135
- __— 0,938 -
ntiproton uud -1 ’ Tt ud +1
P entiproto charged pion 0,140
N neutron ddu T du —1
N antineutron Eﬁ 0 0'939 K + us + 1
charged kaon 0,494
A lambda uds K~ su —1
K antilambda ﬁa§ 0 1,116 KO ds 0
. neutral kaon _
.~ 120... K’ sd e
..~ 140 ...

and exotics (glueballs, tetraquarks, pentaquarks, ...)
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Strong interactions

Properties

= Strong interactions are

responsible for:

e Stability of nuclei (nucleon-nucleon interaction is a residual strong force)

* ~ 99 % of nucleon mass is binding energy, i.e. most of the mass in everything!

strong attraction is greater than electric repulsion

electron
O ~ 0.5 MeV

proton
(neutron)

u~2MeV
@ quark 3 = 5 Mey

~ 1000 MeV

QCD || Lagrangian

SU(3) gauge symmetry

— 1
Locp = ¢ fi (iDij — m(5ij) Yri— 41-";}1,13” Y (flavor diagonal)
~ ~~ 7 N —
quarks gluons

» (Anti-)quarks ¢y come in N, = 3 colors (anticolors) and there are 1y = 6 flavors:

f=ud,s,c b, t (flavor index)
i=1,...,

Py

Fi, = 0, AL — 9, Al + go f™° AL AS

fundamental irrep 3 (3)
N, =3 (color index)

= Gluons Aj come in N? — 1 = 8 combinations of color and anticolor:

a=1,...

,N?>-1=8 (color index) adjoint irrep 8

cal /jillana

es/lo

530

cal/jillana

es/lo
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local/jillana

QCD || Lagrangian || SU(3) gauge symmetry

Locp = Eﬂ- (i2;; — méyj) lpf] 1F” Forv (flavor diagonal)

"~ \—\,d
quarks gluons

Fl, = 0 AL — 0, A5 + go f*° AL AS

= Quark kinetic terms and quark-gluon interactions come from covariant derivative:

. 1 .
(Dy)ij = 6ij0, — 1gst?j./4§l , t?j = E)»?j (8 Gell-Mann matrices 3 x 3)
= Gluon kinetic terms and self-interactions fixed by SU(3) structure constants f*¢:
1
Liin = —Z(ayAﬁ — 9y Aj, ) (9FAYY — 9" AMH)
1
L cubic = _Egsfabc (ayAz — BUAZ)Ab’M.AC’V

1
Equartic = _Zggfabedee AZ'AS‘AC,F'Ad,V

532

QCD || Lagrangian || Feynman rules

local/jillana

= Quark and gluon external legs and propagators are as usual

= Vertices:

fi
lgs ]’)/ 5ff/

\Q%ng = g™ [guv (k1 — k2)r + gua (ko — k3)u + gap (ks — k)]
foefede (gun8vp — Sup8ua)
= —ig7 | o f e (gu08un — Suvgap)

+f adef bee (8 u8rp — 8 ;Mgw)

(interactions with Faddeev-Popov ghosts omitted here)
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QCD || About color charges

s/local/jillana

R
= Quarks carry color charge: p=v(x)® |G
B

= Antiquarks carry anticolor charge: ¢ = ¥(x) ® (F G E)

= Gluons carry color and anticolor. A gluon emission repaints the quark:

cS a,u
; B 01 0) (1
e.g. : githyi~%(0 1 0)[1 0 0] 0
7 | 000/ \o
i j

o = O
O O =
o O o
SN———

>

N

|
N
o - O
oo |
o O O
SN————

>

w

Il
/N
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o O o
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~ oo

oo o

oo |
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Il
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oo o
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o o
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QCD || About color charges

Gluons

WW‘\/\A)’W

= 8 gluons: m m

W\)ﬂW'\I\A"\N

33=1%8

(1 in 9 combinations is color-neutral)

RR - GG

If the color-singlet massless gluon state RR + GG + BB existed, it would give rise
to a strong force of infinite range!

= Likewise, only color-singlet states can exist as free particles:

g7’ 3®3=1%38 : mesons %(Sij qi17§>
1 i,j,k € {R,G,B}
qq/q// 3®3®3=108 © 8 10 :baryons %eijk qiq}q’k’>

but g4’ color singlets do not exist, since 33 =3® 6
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QCD || About color charges

= Color algebra (useful identities): th = %)\”, Nc =3

1
b m@ma o Tr(tY) = Trd™, Tx = 5
ﬁ o — oy, Cp— el

b% a “fﬂCdbed — CA&ab, CA — NC — 3

probability of a gluon to emit g7 <quark to emit a gluon <gluon to emit gluons

(gluons interact more strongly than quarks)
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QED vs QCD || running coupling

= All coupling constants run:
2

N = f— = a(Q?), where Q is the momentum scale of the process
0
Q2a—52 = B(a), B(x)=—a?(Bo+ pro+ poa®+...)
2
a(Q?) = *(Q) > (Leading Order)
1+ ,Booé(Q%) In @
0

= Physically, this is related to the (anti-)screening of the fundamental charges by
quantum fluctuations, depending on the sign of Bo:

e? 1
2 11C4 — 4TgN 33 —2N
R _ 11CA —4TRNy f -
e InQCD: a4 = i Bo(as) = T =35 (> 0 for N¢ < 16)
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QED || running coupling

= In QED, the fluctuating vacuum behaves like a dielectric medium,
screening the bare electric charge ¢p at increasing distances R ~ 1/Q:

144
(04
1 1
137 13—7 —————————————————————— .
0 Q R

e.g. a(M2) ~1/128
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QCD || running coupling

= Contributions to the QCD beta function B(as) (from QCD vacuum polarization):

(1) screening

’OGQ’GO‘ + @%’OF +&9§;‘u (2), (3) anti-screening (non-abelian!)

Xs i infrared .
! slavery o, !
! 1
i !
1 1
! 1
! 1
' 1
I 1
| asymptotic !
E freedom !
i !
0 . >
Aqep Q 1 fm R

Agcp ~ 200 MeV
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QCD || running coupling

= There is a scale Agcp where oy — oo (dimensional transmutation) given at LO by

1 1
Aocp = QP exp {_W} & a(Q?) = o (Q* > Adcp)
° In
P R

Agcp ~ 200 MeV, thatis R ~ 1/Q =~ 1 fm (the size of a proton!)

= Asymptotic freedom:
At short distances (Q > Aqcp) quarks and gluons are almost free,
they interact weakly: perturbative regime

s Infrared slavery:
At long distances (Q ~ Aqcp) the coupling diverges (Landau pole),
quarks and gluons interact very strongly (confinement into hadrons):
non-perturbative regime

= Strong interactions are short-range, despite of gluon being massless

540
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QCD || running coupling

0.35 T — .
I T decay (N°LO) F=- ]
low Q2 cont. (N3LO) e
0.3 L DIS jets (NLO) = ]
Tt Heavy Quarkonia (NLO)
e'e jets/shapes (NNLO+res) ]
F pp/pp (jets NLO) H=- 4
025 EW precision fit (N3LOY-e~ 7]
pp (top, NNLO) 4
& |
2 o2 -
= L
0.15
0.1
F==ay(Mz%) =0.1179 = 0.0010
0.05- — el el
1 10 100 1000

Q [GeV]
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