The full lepton flavor of little Higgs

in collaboration with

F. del Águila, Ll. Ametller, J.M. Pérez-Poyatos, J. Santiago, P. Talavera, R. Vega-Morales

- Little Higgs: *Littlest* Higgs with T parity (LHT)
- New sources of flavor mixing
- Lepton flavor changing processes
- Conclusions

```
JHEP 07 (2019) 154 [1705.08827 [hep-ph]] JHEP 08 (2017) 028 [1901.07058 [hep-ph]]
+ work in progress
```

Little HiggsSolution to hierarchy problem

Hierarchy problem: the Higgs mass should be of order v (electroweak scale) but it receives quadratic loop corrections of the order of the theory cutoff (Planck scale?)

Naturalness \Rightarrow New Physics at the TeV scale

[In SUSY: cancellations of quadratic Higgs mass corrections provided by superpartners]

In LH models the Higgs is a pseudo-Goldstone boson of an approximate global symmetry broken at f (TeV scale)

[Arkani-Hamed, Cohen, Georgi '01]

(i) Product group

the SM $SU(2)_L$ group from the diagonal breaking of two or more gauge groups e.g.: Littlest Higgs [Arkani-Hamed, Cohen, Katz, Nelson '02]

(ii) Simple group

the SM $SU(2)_L$ group from the breaking of a larger group into an SU(2) subgroup e.g.: Simplest Little Higgs (SU(3) simple group) [Kaplan, Schmaltz '03]

Little Higgs Effective theory

- The low energy *dof* described by a nonlinear sigma model, an effective theory valid below a cutoff $\Lambda \sim 4\pi f$ (order of 10 TeV) since then the loop corrections are

Ultraviolet completion (unknown) is required only for physics above Λ

 The global symmetry explicitly broken by gauge and Yukawa interactions, giving the Higgs a mass and non-derivative interactions, preserving the cancellation of *one-loop* quadratic corrections thanks to collective symmetry breaking:

the symmetry is broken only when **two or more** couplings are non-vanishing

LH introduce extra scalars, fermions and gauge bosons: new flavor mixing sources \Rightarrow Enhanced predictions for lepton flavor changing processes $h \rightarrow \overline{\ell}_1 \ell_2, \quad Z \rightarrow \overline{\ell}_1 \ell_2, \quad \ell_1 \rightarrow \ell_2 \gamma, \quad \mu N \rightarrow eN, \quad \ell \rightarrow \ell_1 \ell_2 \overline{\ell}_3$ Littlest Higgs

[Arkani-Hamed, Cohen, Katz, Nelson '02]

1)
$$SU(5) \rightarrow SO(5)$$
 by $\Sigma_0 = \begin{pmatrix} \mathbf{0}_{2\times 2} & 0 & \mathbf{1}_{2\times 2} \\ 0 & 1 & 0 \\ \mathbf{1}_{2\times 2} & 0 & \mathbf{0}_{2\times 2} \end{pmatrix}$, $\Sigma(x) = e^{i\Pi/f}\Sigma_0 e^{i\Pi^T/f} = e^{2i\Pi/f}\Sigma_0$
where $\Pi(x) = \phi^a(x)X^a$ and X^a are the 24 - 10 = 14 broken generators \Rightarrow 14 GB
 $G \equiv SU(5) \supset [SU(2) \times U(1)]_1 \times [SU(2) \times U(1)]_2$ (gauge) $\xrightarrow{\langle \Sigma \rangle = \Sigma_0} SU(2)_L \times U(1)_Y$
[unbroken]: $Q_1^a + Q_2^a$, $Y_1 + Y_2 \Rightarrow$ 4 gauge bosons (γ, Z, W^+, W^-) remain massless
[broken]: $Q_1^a - Q_2^a$, $Y_1 - Y_2 \Rightarrow$ 4 gauge bosons (A_H, Z_H, W_H^+, W_H^-) get masses of order f
4 WBGB $(\eta, \omega^0, \omega^+, \omega^-)$ eaten by (A_H, Z_H, W_H^+, W_H^-)
10 GB: \underline{H} (complex $SU(2)$ doublet), Φ (complex $SU(2)$ triplet, PGB)

(2) EWSB:
$$SU(2)_L \times U(1)_Y \xrightarrow{\langle H \rangle} U(1)_{QED} \Rightarrow H = \sqrt{2} \begin{pmatrix} -i\frac{\pi^+}{\sqrt{2}} \\ \frac{v+h+i\pi^0}{2} \end{pmatrix}$$

3 WBGB (π^0, π^+, π^-) eaten by (Z, W^+, W^-)
1 PGB: h

Littlest Higgs

Goldstones and gauge generators

The matrix of the 14 Goldstone Bosons:

$$\Pi = \begin{pmatrix} -\frac{\omega^{0}}{2} - \frac{\eta}{\sqrt{20}} & -\frac{\omega^{+}}{\sqrt{2}} & -i\frac{\pi^{+}}{\sqrt{2}} & -i\Phi^{++} & -i\frac{\Phi^{+}}{\sqrt{2}} \\ -\frac{\omega^{-}}{\sqrt{2}} & \frac{\omega^{0}}{2} - \frac{\eta}{\sqrt{20}} & \frac{v+h+i\pi^{0}}{2} & -i\frac{\Phi^{+}}{\sqrt{2}} & \frac{-i\Phi^{0}+\Phi^{p}}{\sqrt{2}} \\ i\frac{\pi^{-}}{\sqrt{2}} & \frac{v+h-i\pi^{0}}{2} & \sqrt{\frac{4}{5}\eta} & -i\frac{\pi^{+}}{\sqrt{2}} & \frac{v+h+i\pi^{0}}{2} \\ i\Phi^{--} & i\frac{\Phi^{-}}{\sqrt{2}} & i\frac{\pi^{-}}{\sqrt{2}} & -\frac{\omega^{0}}{2} - \frac{\eta}{\sqrt{20}} & -\frac{\omega^{-}}{\sqrt{2}} \\ i\frac{\Phi^{-}}{\sqrt{2}} & i\frac{\Phi^{0}+\Phi^{p}}{\sqrt{2}} & \frac{v+h-i\pi^{0}}{2} & -\frac{\omega^{+}}{\sqrt{2}} & \frac{\omega^{0}}{2} - \frac{\eta}{\sqrt{20}} \end{pmatrix}$$

Littlest Higgs Gauge generators

Generators of the gauge subgroup $[SU(2) \times U(1)]_1 \times [SU(2) \times U(1)]_2 \subset SU(5)$:

$$Q_{1}^{a} = \frac{1}{2} \begin{pmatrix} \sigma^{a} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \mathbf{0}_{2 \times 2} \end{pmatrix} \qquad Q_{2}^{a} = \frac{1}{2} \begin{pmatrix} \mathbf{0}_{2 \times 2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\sigma^{a*} \end{pmatrix}$$
$$Y_{1} = \frac{1}{10} \operatorname{diag}(3, 3, -2, -2, -2) \qquad Y_{2} = \frac{1}{10} \operatorname{diag}(2, 2, 2, -3, -3)$$

Littlest Higgs with T-parity

[Cheng, Low '03]

New particles at TeV scale coupling to SM particles \Rightarrow tension with EW precision tests

 \sim **T-parity** discrete symmetry under which SM (most of new) particles are even (odd)

Littlest Higgs with T-parity Fermion (lepton) sector

(a) **Introduce** $SU(2)_L$ doublets: l_{1L} , l_{2L} , l_{HR} and \tilde{l}_L^c in

$$\Psi_{1}[\overline{\mathbf{5}}] = \begin{pmatrix} -\mathrm{i}\sigma^{2}l_{1L} \\ 0 \\ 0 \end{pmatrix} \quad \Psi_{2}[\mathbf{5}] = \begin{pmatrix} 0 \\ 0 \\ -\mathrm{i}\sigma^{2}l_{2L} \end{pmatrix} \quad \Psi_{R} = \begin{pmatrix} -\mathrm{i}\sigma^{2}\tilde{l}_{L}^{c} \\ \chi_{R} \\ -\mathrm{i}\sigma^{2}l_{HR} \end{pmatrix}$$

Fields

T-even	Standard	
	$l_L = \frac{1}{\sqrt{2}} (l_{1L} - l_{2L}) = (\nu_L \ell_L)^T$	
T-odd	Mirror	Mirror partners (decouple?)
T-odd	Mirror $l_{HL} = \frac{1}{\sqrt{2}}(l_{1L} + l_{2L}) = (\nu_{HL} \ell_{HL})^T$	Mirror partners (decouple?)

José I. Illana (*ugr*)

The full lepton flavor of little Higgs

$$\mathcal{L}_{Y} = \frac{i\lambda_{\ell}}{2\sqrt{2}} f\epsilon_{ij}\epsilon_{xyz} \left[(\overline{\Psi}_{2}')_{x} \Sigma_{iy} \Sigma_{jz} X + T\text{-transformed} \right] \ell_{R} + \text{h.c.} \quad \Psi_{2}' = \begin{pmatrix} 0 \\ 0 \\ l_{2L} \end{pmatrix}, \ X = (\Sigma_{33})^{-\frac{1}{4}}$$

(b) **Introduce** (light) *standard fermion singlets* ℓ_R with mass terms *preserving* gauge and T

[Chen, Tobe, Yuan '06]

$$\mathcal{L}_{Y_{H}} = -\kappa f \left(\overline{\Psi}_{2} \xi + \overline{\Psi}_{1} \Sigma_{0} \xi^{\dagger} \right) \Psi_{R} + \text{h.c.} \qquad \xi = \mathrm{e}^{\mathrm{i}\Pi/f}$$

Littlest Higgs with T-parity Fermion (lepton) sector

Masses

▷ So far, masses from Yukawa couplings:

(c) To provide mirror partners \tilde{l}_L^c (RH) with (heavy) masses introduce $\tilde{l}_R^c = (\tilde{\nu}_R^c, \tilde{\ell}_R^c)^T$ (LH) in

$$\Psi_L = \begin{pmatrix} -i\sigma^2 \tilde{l}_R^c \\ 0 \\ 0 \end{pmatrix} \sim \Psi_R \qquad \boxed{\mathcal{L}_M = -M\,\overline{\tilde{l}_R}\,\tilde{l}_L + h.c.}$$

(d) The gauge interactions with fermions are fixed!

$$\mathcal{L}_{F} = i\overline{\Psi}_{1}\gamma^{\mu}D_{\mu}^{*}\Psi_{1} + i\overline{\Psi}_{2}\gamma^{\mu}D_{\mu}\Psi_{2} + i\overline{\Psi}_{R}\gamma^{\mu}\left(\partial_{\mu}+\frac{1}{2}\xi^{\dagger}(D_{\mu}\xi)+\frac{1}{2}\xi(\Sigma_{0}D_{\mu}^{*}\Sigma_{0}\xi^{\dagger})\right)\Psi_{R} + (\Psi_{R}\to\Psi_{L})$$

with $D_{\mu} = \partial_{\mu} - \sqrt{2} i g (W_{1\mu}^{a} Q_{1}^{a} + W_{2\mu}^{a} Q_{2}^{a}) + \sqrt{2} i g' (Y_{1} B_{1\mu} + Y_{2} B_{2\mu})$

include $\mathcal{O}(v^2/f^2)$ couplings to Goldstones that render one-loop amplitudes (vid. Z-penguins) UV finite [del Águila, JI, Jenkins '09]

(e) The gauge interactions of standard right-handed *singlets* (ℓ_R)

$$\mathcal{L}'_F = \mathrm{i}\overline{\ell}_R \gamma^\mu (\partial_\mu + \mathrm{i}g' y_\ell B_\mu) \ell_R \qquad y_\ell = -1$$

enlarging SU(5) with two extra U(1)'s to assign proper hypercharges to all fermions

[Goto, Okada, Yamamoto '09]

LHT (Lepton) flavor mixing

- ightarrow T parity \Rightarrow SM (T-even) fermions do not mix with T-odd fermions
- \triangleright 3 generations: λ_{ℓ} , κ and M are matrices in flavor space

$$\frac{\lambda_{\ell}}{\sqrt{2}}v = V_L^{\ell}\operatorname{diag}(m_{\ell i}) V_R^{\ell \dagger}$$

$$\begin{pmatrix} \sqrt{2}\kappa f & 0\\ 0 & M \end{pmatrix} = \begin{pmatrix} V_L^H & 0\\ 0 & \widetilde{V}_L \end{pmatrix} \begin{pmatrix} \operatorname{diag}(m_{\ell_{Hi}}) & 0\\ 0 & \operatorname{diag}(m_{\widetilde{\ell}_i}) \end{pmatrix} \begin{pmatrix} V_R^{H \dagger} & 0\\ 0 & \widetilde{V}_R^{\dagger} \end{pmatrix}$$

▷ This leads to flavor mixings in both charged and neutral currents encoded in

$$V \equiv V_{L}^{H\dagger} V_{L}^{\ell} \qquad W \equiv \widetilde{V}_{L}^{T} V_{R}^{H}$$
misalignment between l_{H} and l
misalignment between \tilde{l}^{c} and l_{H}

$$\overline{l_{HL}} \mathcal{G}_{H} l_{L} \rightarrow \overline{l_{HL}} V \mathcal{G}_{H} l_{L} \qquad \overline{\tilde{l}_{L}^{c}} \mathcal{G} l_{HR} \rightarrow \overline{\tilde{l}_{L}^{c}} W \mathcal{G} l_{HR} \quad (W^{\pm} \text{ only})$$

$$\overline{l_{HL}} \lambda_{\ell} \ell_{R} \rightarrow \overline{l_{HL}} (V \lambda_{\ell}) \ell_{R} \qquad \overline{\tilde{l}_{L}^{c}} \kappa^{\dagger} l_{HL} \rightarrow \overline{\tilde{l}_{L}^{c}} (W \kappa) l_{HL}$$

$$\overline{\tilde{l}_{LR}} \kappa^{\dagger} l_{L} \rightarrow \overline{l_{HR}} (\kappa V) l_{L} \qquad \overline{\tilde{l}_{L}^{c}} \kappa^{\dagger} l_{L} \rightarrow \overline{\tilde{l}_{L}^{c}} (W \kappa V) l_{L}$$

The full lepton flavor of little Higgs

LHT (Lepton) flavor mixing

 \triangleright **W** is a source of LFV, so far ignored assuming that mirror partners decouple.

 $\triangleright \text{ In } h \to \overline{\ell}_1 \ell_2 \tag{1705.08827}$

- The mirror partners \tilde{l}^c do NOT decouple!
- They are needed to make the amplitude UV finite!
- The complex SU(2) triplet of physical Goldstones Φ ($\Phi^0, \Phi^P, \Phi^{\pm}, \Phi^{\pm\pm}$) plays a role
- $\triangleright \text{ In other LF changing processes } (Z \to \overline{\ell}_1 \ell_2, \ell_1 \to \ell_2 \gamma, \ell \to \ell_1 \ell_2 \overline{\ell}_3, \mu N \to eN)$ [1901.07058]
 - The mirror partners \tilde{l}^c decouple!
 - Φ contributions are subleading in v^2/f^2 when \tilde{l}^c decouple

▷ Study the phenomenology of the full lepton flavor of LHT

LHT(Lepton) flavor mixingParametrization

▷ To simplify the discussion consider just **2-family mixing**:

$$\mathbf{V} = \begin{pmatrix} \cos \theta_V & \sin \theta_V \\ -\sin \theta_V & \cos \theta_V \end{pmatrix} \qquad \mathbf{W} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix}$$

▷ LFV effects *vanish* for zero mixings or degenerate fermions

LHT

Lepton flavor changing processes (

(T–odd particles running in the loop)

One-loop contributions

$$Z \rightarrow \overline{\ell}_1 \ell_2, \ell_1 \rightarrow \ell_2 \gamma$$
 (& penguins)

('t Hooft-Feynman gauge)

('t Hooft-Feynman gauge)

V	S	F				
γ, Z, W^{\pm}		ℓ, u, d	$\{$	\leq		
W_H^\pm	ω^{\pm}	$ u_H $				
Z_H	ω^0	ℓ_H				
A_H	η	$\tilde{\nu}^c$				
	Φ^0	$\tilde{\ell}^c$				
	Φ^P	u _H	$\langle \zeta \rangle \leq \langle \zeta \rangle$	$\langle \rangle$	5	
	Φ^{\pm}	d_H	ξζ	$\sum_{i=1}^{n}$		
	$\Phi^{\pm\pm}$	$\tilde{\mathcal{U}} (Q = 2/3)$				
		$\tilde{x} (Q = 5/3)$				

LHT Amplitude
$$h \to \overline{\tau}\mu$$

$$\mathcal{M}(h \to \mu \bar{\tau}) = \bar{u}(p_2) \left(\frac{m_{\mu}}{v} c_L P_L + \frac{m_{\tau}}{v} c_R P_R \right) v(p_1)$$

$$c_{L(R)} = \frac{g^2}{16\pi^2} \frac{v^2}{f^2} \left\{ \sum_{i=1}^3 V_{\mu i}^{\dagger} V_{i\tau} \mathcal{F}_h(m_{\ell_{Hi}}, m_{W_H}, m_{A_H}, m_{\Phi}) + \sum_{i,j,k=1}^3 V_{\mu i}^{\dagger} \frac{m_{\ell_{Hi}}}{m_{W_H}} W_{ij}^{\dagger} W_{jk} \frac{m_{\ell_{Hk}}}{m_{W_H}} V_{k\tau} \mathcal{G}_h(m_{\tilde{v}_j^c}, m_{\ell_{Hk(i)}}, m_{\Phi}) \right\}$$
(terms of $\mathcal{O}(1)$ cancel!) $\mathcal{G}_h \xrightarrow{m_{\nu_j^c} \to \infty} \ln m_{\nu_i^c}^2 [h \bar{\nu}_H \tilde{v}^c]$

$$(e_{L(R)} \sim \frac{g^2}{16\pi^2} \frac{v^2}{c_2} \left\{ \sum_{i=1}^{3} 2\theta_V \left[\mathcal{F}_h(m_{\ell_{H1}}) - \mathcal{F}_h(m_{\ell_{H2}}) \right], \frac{\overline{m}_{\ell_H}^2}{M^2} \sum_{i=1}^{3} 2\theta_V \ln \frac{m_{\nu_i^c}^2}{m_{\nu_i^c}^2} \right\}$$

$$c_{L(R)} \sim \frac{g^2}{16\pi^2} \frac{v^2}{f^2} \left\{ \underbrace{\sin 2\theta_V} \left[\mathcal{F}_h(m_{\ell_{H1}}) - \mathcal{F}_h(m_{\ell_{H2}}) \right], \underbrace{\frac{\overline{m}_{\ell_H}^2}{M_{W_H}^2} \underbrace{\sin 2\theta_W}_{m_{\tilde{v}_i^c} \to \infty} \ln \frac{m_{\tilde{v}_1^c}^2}{m_{\tilde{v}_2^c}^2} \right\} \\ \Rightarrow \text{ non-decoupling of } \tilde{l}_i^c !!$$

LHT Amplitudes
$$Z \rightarrow \overline{\ell}_1 \ell_2, \ell_1 \rightarrow \ell_2 \gamma$$

$$i\Gamma_{\gamma}^{\mu} = ie \left[F_{L}^{\gamma}(Q^{2})\gamma^{\mu}P_{L} + iF_{M}^{\gamma}(Q^{2})(1+\gamma_{5})\sigma^{\mu\nu}q_{\nu} \right] \qquad F_{L}^{\gamma} \propto \frac{1}{16\pi^{2}}\frac{Q^{2}}{f^{2}}$$
$$i\Gamma_{Z}^{\mu} = ie \left[F_{L}^{Z}(Q^{2})\gamma^{\mu}P_{L} + iF_{M}^{Z}(Q^{2})(1+\gamma_{5})\sigma^{\mu\nu}q_{\nu} \right] \qquad F_{L}^{Z} \propto \frac{g^{2}}{16\pi^{2}}\frac{v^{2}}{f^{2}}$$

 $F_L^{\gamma}(0) = 0: \ell_1 \to \ell_2 \gamma$ is a dipole transition

$$F_{L,M}^{\gamma,Z} \sim \left\{ \sum_{i=1}^{3} V_{\ell_{2}i}^{\dagger} V_{i\ell_{1}} \mathcal{F}_{L,M}^{\gamma,Z}(m_{\ell_{Hi}}, m_{W_{H}}, m_{A_{H}}, m_{\Phi}) + \sum_{i,j,k=1}^{3} V_{\ell_{2}i}^{\dagger} \frac{m_{\ell_{Hi}}}{m_{W_{H}}} W_{ij}^{\dagger} W_{jk} \frac{m_{\ell_{Hk}}}{m_{W_{H}}} V_{k\ell_{1}} \mathcal{G}_{L,M}^{\gamma,Z}(m_{\tilde{\nu}_{j}^{c}}, m_{\Phi}) \right\}$$

$$(\text{terms of } \mathcal{O}(1) \text{ cancel!}) \qquad \mathcal{G}_{L,M}^{\gamma,Z} \xrightarrow{m_{\nu_{j}^{c}} \to \infty} 0 \qquad [V\overline{\nu}_{H}\overline{\nu}^{c}]$$

 \Rightarrow there is decoupling of $\tilde{l}_i^c \parallel$

The full lepton flavor of little Higgs

UV finite

 $F_M^{\gamma} \propto \frac{1}{16\pi^2} \frac{m_{\ell}}{f^2}$

 $F_M^Z \propto \frac{g^2}{16\pi^2} \frac{m_\ell}{f^2}$

LHT Amplitudes
$$\ell \to \ell_1 \ell_2 \overline{\ell}_3, \mu N \to eN$$

$$i\mathcal{M}_{\gamma} = \left(\frac{i}{Q^{2}}\right)e\left[\overline{u}(p_{1})\Gamma_{\gamma}^{\mu}u(p)\right]\left[\overline{u}(p_{2})\gamma_{\mu}v(p_{3})\right] - (\ell_{1} \leftrightarrow \ell_{2})$$

$$i\mathcal{M}_{Z} = \left(-\frac{i}{M_{Z}^{2}}\right)e\left[\overline{u}(p_{1})\Gamma_{Z}^{\mu}u(p)\right]\left[\overline{u}(p_{2})\gamma_{\mu}\left(Z_{L}P_{L} + Z_{R}P_{R}\right)v(p_{3})\right] - (\ell_{1} \leftrightarrow \ell_{2})$$

$$i\mathcal{M}_{\text{box}} = ie^{2}B_{L}\left[\overline{u}(p_{1})\gamma^{\mu}P_{L}u(p)\right]\left[\overline{u}(p_{2})\gamma_{\mu}P_{L}v(p_{3})\right] - (\ell_{1} \leftrightarrow \ell_{2})$$

$$\triangleright \ \gamma \text{-penguins} \ (Q^2 \to 0): \qquad A_L = \frac{F_L^{\gamma}}{Q^2} \qquad A_R = \frac{2F_M^{\gamma}}{m_\ell} \qquad \propto \frac{1}{16\pi^2} \frac{1}{f^2}$$
$$\triangleright \ Z \text{-penguins} \ (Q^2 \to 0): \qquad F_{LL} = -\frac{F_L^Z}{M_Z^2} Z_L \qquad F_{LR} = -\frac{F_L^Z}{M_Z^2} Z_R \qquad \propto \frac{1}{16\pi^2} \frac{1}{f^2}$$
$$\triangleright \ \text{Boxes:} \qquad B_L \qquad \qquad \propto \frac{1}{16\pi^2} \frac{1}{f^2}$$

$$i\mathcal{M}_{\gamma} = \left(\frac{i}{Q^{2}}\right) e\left[\overline{u}(p_{1})\Gamma_{\gamma}^{\mu}P_{L}u(p)\right] \left[\overline{u}(p_{2})\gamma_{\mu}v(p_{3})\right] - (\ell_{1} \leftrightarrow \ell_{2})$$

$$i\mathcal{M}_{Z} = \left(-\frac{i}{M_{Z}^{2}}\right) e\left[\overline{u}(p_{1})\Gamma_{Z}^{\mu}P_{L}u(p)\right] \left[\overline{u}(p_{2})\gamma_{\mu}\left(Z_{L}P_{L} + Z_{R}P_{R}\right)v(p_{3})\right] - (\ell_{1} \leftrightarrow \ell_{2})$$

$$i\mathcal{M}_{\text{box}} = ie^{2}B_{L}\left[\overline{u}(p_{1})\gamma^{\mu}P_{L}u(p)\right] \left[\overline{u}(p_{2})\gamma_{\mu}P_{L}v(p_{3})\right] - (\ell_{1} \leftrightarrow \ell_{2})$$

$$B_{L} \sim \left\{ \sum_{ij=1}^{3} V_{\ell_{1}i}^{\dagger} V_{i\ell} V_{\ell_{2}j}^{\dagger} V_{j\ell_{3}} \mathcal{F}_{B}(m_{\ell_{Hi}}, m_{\ell_{Hi}}, ...) + \sum_{ijpqrs=1}^{3} V_{\ell_{1}p}^{\dagger} \frac{m_{\ell_{Hp}}}{m_{W_{H}}} W_{pi}^{\dagger} W_{iq} \frac{m_{\ell_{Hq}}}{m_{W_{H}}} V_{q\ell} V_{\ell_{2}r}^{\dagger} \frac{m_{\ell_{Hr}}}{m_{W_{H}}} W_{rj}^{\dagger} W_{js} \frac{m_{\ell_{Hs}}}{m_{W_{H}}} V_{s\ell_{3}} \mathcal{G}_{B}(m_{\tilde{\nu}_{i}^{c}}, m_{\tilde{\nu}_{j}^{c}}, ...) \right\}$$

(UV finite)

Highly non-trivial cancellations!

$$\left\{c_{L(R)}, \quad 2s_W c_W F_L^Z, \quad F_L^\gamma\right\} \sim \frac{1}{16\pi^2} \sum_i V_{\mu i}^{\dagger} V_{i\tau} \frac{m_{\ell_{Hi}}^2}{f^2} \left(\underbrace{\begin{matrix} C_{UV}^{(0)} \\ \varepsilon \end{matrix} + \underbrace{\begin{matrix} C_{UV}^{(1)} \\ \varepsilon \end{matrix}}{f^2} \frac{v^2}{f^2}\right)$$

$$\epsilon = 4 - D$$

$c_{L(R)}$	Ι	II	III	IV	'	V+VI	VII+VIII	IX+X	XI+>	KII	sur	n		
ω, ν_H	_	_	•	•		_	-	1	—1		•			
ω^0,ℓ_H	_	_	•	•		_	_	$\frac{1}{2}$	$-\frac{1}{2}$		•			
η, ℓ_H	_		•	•		_	_	$\frac{1}{10}$	$-\frac{1}{1}$	$\overline{0}$	•			
all	_	_	•	•		_	-	$\frac{8}{5}$	<u>3</u>	<u>3</u>	•			
		2 <i>s</i>	wc _W F	Z	I	II	III	I\	7	V+V	VI	VII+VIII	IX+X	sum
			W_H, ν_H	H	0	0	_	_		_		_	0	0
		W_{F}	$_{I},\omega,\nu_{I}$	H -	-	-	_			0		_	_	0
			ω, ν_{1}	H -	-	_	$\frac{1}{2}$	-1+	$-s_{W}^{2}$	_		_	$\frac{1}{2} - s_W^2$	•
			Z_H, ℓ_I	H	C	•	_	-		_		_	0	•
			ω^0,ℓ_1	H -	-	-	$-\frac{1}{4} + \frac{1}{2}s_W^2$	•		_		_	$\frac{1}{4} - \frac{1}{2}s_W^2$	•
			A_H, ℓ_I	H) C	•	_			_		0	-	•
			η, ℓ	H -	-	-	$-\frac{1}{20} + \frac{1}{10}s_W^2$	0				_	$\frac{1}{20} - \frac{1}{10}s_W^2$	•
			Φ, î	;C	-	-	$-\frac{1}{2}$	s_V^2	V			_	$\frac{1}{2} - s_W^2$	•
		($\Phi^{++}, \tilde{\ell}$	jc	_	-	$1 - 2s_{W}^{2}$	-2+	$4s_W^2$	_		_	$1 - 2s_W^2$	•
			a	11	0	0	$rac{7}{10} - rac{7}{5}s_W^2$	-3+	$6s_W^2$	0		0	$\frac{23}{10} - \frac{23}{5}s_W^2$	•

• also finite part is zero

LHT

UV divergences

$c_{L(R)}$	I	II	III	IV	V+VI	VII+VIII	IX+X	XI+XII	sum	
W_H, ν_H	0	0	_	_	_	•	_	-	0	
W_H, ω, ν_H	-	-	_	_	0	_	_	_	0	$F _{W_H}$
ω, ν_H	-	-	$\frac{1}{4}$	$-\frac{1}{8}$	_	_	$-\frac{1}{6}$	$\frac{5}{24}$	$\frac{1}{6}$	
Z_H, ℓ_H	•	0	_	_	_	•	_	_	0	
Z_H, ω^0, ℓ_H	-	-	_	_	0	_	_	-	0	$F _{Z_H} \checkmark$
ω^0 , ℓ_H	-	-	•	$-\frac{1}{16}$	_	_	$-rac{13}{48} + x_H rac{c_W}{s_W}$	$rac{7}{16} - x_H rac{c_W}{s_W}$	$\frac{5}{48}$	
A_H, ℓ_H	•	0	_	_	_	•	_	_	0	
A_H,η,ℓ_H	-	-	-	_	0	_	_	-	0	$F _{A_H} \checkmark$
η, ℓ_H	-	-	•	$-\frac{1}{16}$	_	_	$-rac{23}{240} - x_H rac{s_W}{5c_W}$	$-rac{17}{240} + x_H rac{s_W}{5c_W}$	$-\frac{11}{48}$	
Z_H, A_H, ℓ_H	-	0	_	_	_	_	_	_	0	El (
ω^0,η,ℓ_H	-	_	_	$\frac{1}{8}$	_	_	_	_	$\frac{1}{8}$	$I \mid Z_H A_H $ V
W_H, Φ, ν_H	-	-	-	_	0	_	_	_	0	
Φ, ν_H	-	-	•	•	_	_	$-\frac{1}{8}$	$\frac{1}{24}$	$-\frac{1}{12}$	
ω, Φ, ν_H	-	_	_	$\frac{1}{6}$	_	_	_	_	$\frac{1}{6}$	$F _{\Phi l_H}$
ω^0, Φ^P, ℓ_H	-	_	_	$\frac{1}{24}$	_	_	_	_	$\frac{1}{24}$	
η, Φ^P, ℓ_H	-	_	_	$-\frac{1}{24}$	_	_	_	-	$-\frac{1}{24}$	
$\Phi, \tilde{\nu}^c, \nu_H$	_	_	$-\frac{1}{4}$	$\frac{1}{24}$	_	_	•	$-\frac{1}{24}$	$-\frac{1}{4}$	G
all	0	0	0	$\frac{1}{12}$	0	•	$-\frac{49}{120}$	$\frac{39}{120}$	0	\mathcal{M}

 \Rightarrow

$2s_W c_W F_L^Z$	I	II	III	IV	V+VI	VII+VIII	IX+X	sum
W_H, ν_H	0	0	_	_	_	0	-	0
W_H, ω, ν_H	-	_	_	_	0	_	-	0
ω, ν_H	-	_	$-\frac{1}{8}$	$\frac{1}{8}$	_	_	0	0
Z_H, ℓ_H	0	•	_	_	_	0	_	0
ω^0 , ℓ_H	-	_	$\frac{1}{16} - \frac{1}{8}s_W^2 - y_H \frac{c_W}{s_W}$	•	_	_	$-\frac{1}{16}+\frac{1}{8}s_W^2+y_H\frac{c_W}{s_W}$	0
A_H, ℓ_H	0	•	_	_	_	0	_	0
η, ℓ_H	-	_	$\frac{1}{16} - \frac{1}{8}s_W^2 + y_H \frac{s_W}{5c_W}$	•	_	_	$-rac{1}{16}+rac{1}{8}s_W^2-y_Hrac{s_W}{5c_W}$	0
$\Phi, \tilde{\nu}^c$	-	_	$\frac{1}{8}$	$-\frac{1}{8}$	_	_	•	0
$\Phi^{++}, ilde{\ell}^c$	_	_	0	0	_	_	•	0
all	0	0	0	0	0	0	0	0

F_L^{γ}	Ι	II	III	IV	V+VI	VII+VIII	IX+X	sum
W_H, ν_H	•	0	_	_	_	0	_	0
W_H, ω, ν_H	_	_	_	_	0	_	_	0
ω, ν_H	_	_	•	$\frac{1}{2}$	_	_	$-\frac{1}{2}$	0
Z_H, ℓ_H	0	•	_	_	_	0	_	0
ω^0,ℓ_H	_	_	$\frac{1}{4}$	•	_	_	$-\frac{1}{4}$	0
A_H, ℓ_H	0	•	_	_	_	0	_	0
η, ℓ_H	_	_	$\frac{1}{100} \frac{s_W^2}{c_W^2}$	•	_	_	$-rac{1}{100}rac{s_{W}^{2}}{c_{W}^{2}}$	0
$\Phi, \tilde{\nu}^c$	-	_	•	$\frac{1}{2}$	_	_	$-\frac{1}{2}$	0
$\Phi^{++}, ilde{\ell}^{c}$	_	_	-1	2	_	_	-1	0
all	0	0	$-rac{3}{4}+rac{1}{100}rac{s_W^2}{c_W^2}$	3	0	0	$-rac{9}{4} - rac{1}{100} rac{s_W^2}{c_W^2}$	0

LHT flavor phenomenology

LFV decays

• Reference inputs (*natural* values)

$$f = 1.5 \text{ TeV}$$

 $\overline{m}_{\ell_H} = \overline{m}_{\widetilde{v}^c} = 1.0 \text{ TeV}$
 $(m_{d_{Hi}} = m_{\widetilde{u}_i} = 2.0 \text{ TeV})$
 $\delta_{\ell_H} = \delta_{\widetilde{v}^c} = 1$
 $heta_V = heta_W = rac{\pi}{4}$

$$\Rightarrow \qquad m_{W_H} = m_{Z_H} \approx gf = 960 \text{ GeV}$$
$$m_{A_H} \approx \frac{g'f}{\sqrt{5}} = 230 \text{ GeV}$$
$$m_{\Phi} = \frac{\sqrt{2}f}{v} m_h = 1080 \text{ GeV}$$

LFV decays

• Current limits

Branching Ratio	90% C.L.	Branching Ratio	90% C.L.
$\mu ightarrow e \gamma$	4.2×10^{-13}	$\mu ightarrow e \ e \ \overline{e}$	$1.0 imes 10^{-12}$
Conversion Rate			
$\mu \to e \; (\mathrm{Au})$	$7.0 imes 10^{-13}$		
$\mu ightarrow e$ (Ti)	$4.3 imes 10^{-12}$		
Branching Ratio		Branching Ratio	
$ au o e \ \gamma$	$3.3 imes 10^{-8}$	$ au o \mu \ \mu \ \overline{e}$	$1.7 imes 10^{-8}$
$ au o \mu \ \gamma$	$4.4 imes 10^{-8}$	$ au o e \ e \ \overline{\mu}$	$1.5 imes 10^{-8}$
		$ au o \mu \ e \ \overline{e}$	$1.8 imes10^{-8}$
		$ au o e \ \mu \ \overline{\mu}$	$2.7 imes 10^{-8}$
		$ au o e \ e \ \overline{e}$	$2.7 imes 10^{-8}$
		$ au o \mu \ \mu \ \overline{\mu}$	2.1×10^{-8}
Branching Ratio	95% C.L.	Branching Ratio	95% C.L.
$Z \rightarrow \mu \ e$	$7.3 imes 10^{-7}$	$h ightarrow \mu e$	$3.5 imes10^{-4}$
$Z \rightarrow \tau \ e$	9.8×10^{-6}	h ightarrow au e	6.2×10^{-3}
$Z \rightarrow \tau \ \mu$	1.2×10^{-5}	h ightarrow au	$2.5 imes 10^{-3}$

LFV decays

• LHT predictions for **reference inputs**

Branching Ratio		Branching Ratio		
$\mu ightarrow e \gamma$	$4.3 imes 10^{-9}$	$\mu \to e \ e \ \overline{e}$	$2.5 imes 10^{-11}$	
Conversion Rate				(constrained
$\mu \to e \; (\mathrm{Au})$	$3.8 imes 10^{-9}$			v constrained
$\mu ightarrow e$ (Ti)	$3.3 imes 10^{-9}$			
Branching Ratio		Branching Ratio		
$ au o e \ \gamma$	$7.3 imes 10^{-10}$	$ au o \mu \ \mu \ \overline{e}$	0	
$ au o \mu \ \gamma$	$7.3 imes 10^{-10}$	$ au o e \ e \ \overline{\mu}$	0	- unconstrained by current expt
		$ au o \mu \ e \ \overline{e}$	8.2×10^{-12}	unconstrained by current expt
		$ au o e \ \mu \ \overline{\mu}$	2.2×10^{-12}	
		$ au o e \ e \ \overline{e}$	$7.4 imes 10^{-12}$	
		$\tau \to \mu \ \mu \ \overline{\mu}$	1.4×10^{-12}	
Branching Ratio		Branching Ratio		
$Z \rightarrow \mu \ e$	$2.7 imes 10^{-12}$	$h ightarrow \mu e$	1.2×10^{-15}	
Z ightarrow au e	$2.7 imes 10^{-12}$	h ightarrow au e	3.2×10^{-13}	\odot hopeless
$Z o au \ \mu$	2.7×10^{-12}	h ightarrow au	3.2×10^{-13}	

LHT flavor phenomenology

LFV decays Mixings

• Parameter scans

▷ No LFV for $\theta_V = \theta_W = 0$, maximal for $\theta_{V,W} = \frac{\pi}{4}$ ▷ *Z* and *h* decay rates are very small ▷ $\mu \rightarrow e\gamma$ and $\mu - e$ (Au) are most sensitive

The full lepton flavor of little Higgs

LFV decays Mass splittings

• Parameter scans

 $\lim_{\delta_{\ell_H}\to 0} \mathcal{M}(\theta_W = 0) \sim \sin 2\theta_V [\mathcal{G}(m_{\nu_1^c}) - \mathcal{G}(m_{\nu_2^c})] \quad \lim_{\delta_{\tilde{\nu}^c}\to 0} \mathcal{M}(\theta_V = 0) \sim \sin 2\theta_W [\mathcal{G}(m_{\nu_1^c}) - \mathcal{G}(m_{\nu_2^c})] \to 0$

LFV decays Masses

• Parameter scans

For large $\overline{m}_{\ell_H} = \sqrt{2}\overline{\kappa}f$: non perturbative coupling! For large $\overline{m}_{\tilde{\nu}^c}$: decoupling except *h* decays

LHT flavor phenomenology

(Current limit [LHC]: $\mathcal{B}(h \to \tau \mu) < 2.5 \times 10^{-3}$)

$$\theta_V = 0$$

$$m_{\tilde{\nu}_{1}^{c}}^{2} = \overline{m}_{\tilde{\nu}^{c}}^{2} \frac{\sqrt{4 + \delta_{\tilde{\nu}^{c}}^{2} - \delta_{\tilde{\nu}^{c}}}}{2} \xrightarrow{\delta_{\tilde{\nu}^{c}} \gg 1} \overline{m}_{\tilde{\nu}^{c}}^{2} \times \frac{1}{\delta_{\tilde{\nu}^{c}}}}{m_{\tilde{\nu}^{c}}^{2} + \delta_{\tilde{\nu}^{c}}} \xrightarrow{\delta_{\tilde{\nu}^{c}} \gg 1} \overline{m}_{\tilde{\nu}^{c}}^{2} \times \delta_{\tilde{\nu}^{c}}}{2}$$

• Current and Future sensitivities

Observables
$$\propto \frac{\sin^2 2\theta}{f^4}$$

 $\triangleright \mu - e$ transitions:

*precision = limit/prediction

				[sii	$n 2\theta = 1$]	[<i>f</i>	= 1.5 TeV]
Process	Experiment	Current precision*	Sensitivity improvement	f [TeV] >		Mi	xing angle < ×10 ⁻²
$\mu ightarrow e \gamma$	[MEG]	10^{-4}	10 - 500	15	27 - 71	1	0.3 - 0.04
$\mu ightarrow e \ e \ \overline{e}$	[Mu3e]	0.04	$200 - 10^4$	3.4	13 - 34	20	1 - 0.3
$\mu \to e \; (\mathrm{Al})$	[Mu2e]	10^{-3}	$10^4 - 10^5$	8.4	84 - 150	3	0.03 - 0.01
$\mu \to e \; (\mathrm{Al})$	[COMET]	10^{-3}	$10^2 - 10^4$	8.4	27 - 84	3	0.3 - 0.03

 $\triangleright \tau - e$ and $\tau - \mu$ transitions:

Process	Experiment	Prediction	Current	Future		
${\cal B}(au o \ell \gamma)$	[BaBar]	7.3×10^{-10}	$\sim 10^{-8}$	$10^{-9} - 10^{-10}$	[BelleII, LHCb]	$] \Leftarrow \bigcirc$
$\mathcal{B}(\tau \to \ell \ell' \overline{\ell'})$	[Belle]	$\sim 10^{-12}$	$\sim 10^{-8}$	$10^{-9} - 10^{-10}$	[BelleII, LHCb]	

LHT flavor phenomenology

LFV decays

• When γ **dipole** contribution ($|A_R|^2$) **dominates** then (kinematics):

$$\frac{\mathcal{B}(\tau \to \mu \mu \bar{\mu})}{\mathcal{B}(\tau \to \mu \gamma)} = \frac{\alpha}{3\pi} \left(2 \ln \frac{m_{\tau}}{m_{\mu}} - \frac{13}{4} \right) \approx 2 \times 10^{-3}$$
$$\frac{\mathcal{B}(\tau \to \mu e \bar{e})}{\mathcal{B}(\tau \to \mu \gamma)} = \frac{\alpha}{3\pi} \left(2 \ln \frac{m_{\tau}}{m_{e}} - \frac{7}{2} \right) \approx 10^{-2}$$

▷ This *tends to happen* when both l_H and \tilde{l}^c are included: (as in SUSY)

$$rac{\mathcal{B}(au o \mu e ar{e})}{\mathcal{B}(au o \mu \mu ar{\mu})} pprox 5$$

When *l̃^c* is ignored (decouples) the other terms dominate:
 (in contrast to SUSY)

$$rac{\mathcal{B}(au o \mu e ar{e})}{\mathcal{B}(au o \mu \mu ar{\mu})} pprox 1$$

LHT flavor phenomenology

▷ At future FCC-ee or ILC ($\int \mathcal{L} dt \sim 10 \text{ ab}^{-1} = 10^{13} \text{ nb}^{-1}$) one expects $\sim 10^{10} \tau^+ \tau^-$ pairs

Conclusions

- The one-loop predictions for flavor violating processes in the LHT are UV-finite when *all* Goldstone interactions compatible with gauge and T symmetry and *all* T-odd leptons are included
- LFV is due to **misalignment** of standard fermions with:
 - \triangleright mirror leptons (ν_H , ℓ_H): well known source of LFV
 - ▷ **mirror partners** ($\tilde{\nu}^c$, $\tilde{\ell}^c$): **new** so far ignored, <u>needed</u> to make Higgs amplitudes finite

• Mirror partners

- \triangleright do not decouple in $h \rightarrow \overline{\ell}_1 \ell_2$, involving couplings to pseudo-Goldstone scalar triplet Φ
- \triangleright decouple in $Z \to \overline{\ell}_1 \ell_2$, $\ell_1 \to \ell_2 \gamma$, $\ell \to \ell_1 \ell_2 \overline{\ell}_3$, $\mu N \to eN$, hence may be ignored
- BUT, *if* mirror partner masses are of same order as the other T-odd particles,
 all their contributions have similar size in Higgs and gauge-mediated LFV processes
- Flavor provides complementary constraints to LH models particularly for $\mu - e$ transitions: small misalignment (sin 2 θ , $\delta \leq 0.01$) or heavy scale

