Macroeconomics Problem Set 1

1. Consider the Infinite Horizon Model as seen in class, where the production function is given by

$$Y_t = AK_t^{\alpha} L_t^{(1-\alpha)} \tag{1}$$

Show that if factor prices (w_t and R_t) are equal to factor marginal productivities, firm's profits (π_t) are 0.

- 2. Consider the Infinite Horizon Model as seen in class. Show that from the household's constraint and the firm's optimality conditions, it is possible to obtain the economy feasibility constraint $(Y_t = c_t + i_t)$.
- 3. A simple Infinite Horizon Model. Consider an Infinite Horizon Model where households devote their entire unit of time to the labor market $(l_t = L_1 = 1; no labor hours decision)$, and where the instantaneous household's utility function is given by

$$U(c_t) = logc_t \tag{2}$$

Also, the production function is given by

$$Y_t = AK_t^{\alpha} L_t^{(1-\alpha)} \tag{3}$$

- a) Write the household's maximization problem and obtain its optimality conditions.
- b) Write the firm's maximization problem and obtain its optimality conditions
- d) Find the steady state values for the endogenous variables assuming that values of the model's parameters are: A = 1, $\alpha = 0.48$, $\beta = 0.97$, and $\delta = 0.06$.
- 4. Introduction to taxation: consumption taxes Consider an Infinite Horizon Model where households devote their entire unit of time to the labor market ($l_t = L_1 = 1$; no labor hours decision), and where the instantaneous household's utility function is given by

$$U(c_t) = \log c_t \tag{4}$$

Also, the production function is given by

$$Y_t = A K_t^{\alpha} L_t^{(1-\alpha)} \tag{5}$$

In addition, there exist a Government that taxes household's consumption with a consumption tax rate τ_c , and it uses all the fiscal revenues to finance some government public consumption G_t .

- a) Write the household's maximization problem and obtain its optimality conditions.
- b) Write the government's budget constraint and the good market clearing condition.

- c) Find the steady state values for the endogenous variables assuming that values of the model's parameters are: $\tau_c = 0.2$, A = 1, $\alpha = 0.48$, $\beta = 0.97$, and $\delta = 0.06$.
- 5. Introduction to taxation: capital income taxes Consider an Infinite Horizon Model where households devote their entire unit of time to the labor market ($l_t = L_1 = 1$; no labor hours decision), and where the instantaneous household's utility function is given by

$$U(c_t) = logc_t \tag{6}$$

Also, the production function is given by

$$Y_t = AK_t^{\alpha} L_t^{(1-\alpha)} \tag{7}$$

In addition, there exist a Government that taxes household's net capital income with a capital income tax rate τ_k , and it uses all the fiscal revenues to finance some government public consumption G_t .

- a) Write the household's maximization problem and obtain its optimality conditions.
- b) Write the government's budget constraint and the good market clearing condition.
- c) Find the steady state values for the endogenous variables assuming that values of the model's parameters are: $\tau_k = 0.2$, A = 1, $\alpha = 0.48$, $\beta = 0.97$, and $\delta = 0.06$.