TWO-TAILS APPROXIMATE CONFIDENCE INTERVALS FOR THE RATIO OF PROPORTIONS.

A. Martín Andrés and M. Álvarez Hernández.

Biostatistics. Faculty of Medicine. University of Granada.

INTRODUCTION

Comparing two independent binomial proportions:

- Difference: $d=p_{2}-p_{1}$ (has received much attention)
- Ratio: $R=p_{2} / p_{1}$
- Odds-ratio: $O=p_{2} q_{1} / p_{1} q_{2}$
\rightarrow two-tails approximate inferences about R.
- Exact point of view: computationally very intensive. not feasible for large sample size.
- Approximate point of view: researchers have devoted great attention

Objective:

- Propose new approximate methods.
- Comparison between new and classic methods from the literature.

CONFIDENCE INTERVALS AND HYPOTHESIS TESTS

Agresti \& Min (2001):
Obtaining the two-tailed exact CI through the inversion of the two-tailed test H : $R=\rho$

Statistical inference coherent:

1. Perspective of the test or perspective of the CI.
2. Evaluating a CI method is equivalent to evaluating its associated test method (to the same nominal error α).

Consequently:
The comparative evaluation will be made with reference to the test that defines them.

PROCEDURES BASED ON THE Z STATISTIC

Let $x_{i} \sim B\left(n_{i}, p_{i}\right)$ two independent binomial random variables.

Let $\bar{R}=\bar{p}_{2} / \bar{p}_{1}$ sample estimator of R with $\bar{p}_{i}=x_{i} / n_{i}$.
To contrast $H: R=\rho$ vs. K : $R \neq \rho$ (where $0<\rho<+\infty$), the most common is:

$$
\mathbf{Z} \text { statistic by Katz et al (1978): } z_{Z}^{2}=\frac{\left(\bar{p}_{2}-\rho \bar{p}_{1}\right)^{2}}{\rho^{2} \frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}
$$

It is necessary to estimate the unknown proportions p_{i}.

- Test: comparing the value $z_{\text {exp }}^{2}$ which is obtained with $z_{\alpha / 2}^{2}$
- Confidence interval: solving through ρ the equation $z_{\text {exp }}^{2}=z_{\alpha / 2}^{2}$

ESTIMATORS

- Classic estimator:

$$
\left.p_{i W}=\bar{p}_{i}=x_{i} / n_{i} \quad \text { (estimator } \mathbf{W}\right) \rightarrow \text { ZW (Wald procedure). }
$$

- Estimator of Newcombe:

$$
\begin{gathered}
\left.\begin{array}{rl}
p_{1 N}=u_{1}, p_{2 N}=l_{2} & \text { if } \bar{R}>\rho \\
p_{1 N}=l_{1}, p_{2 N}=u_{2} & \text { if } \bar{R}<\rho
\end{array} \quad \text { (estimator } \mathbf{N}\right) \rightarrow \text { ZN procedure. } \\
\left(l_{i} ; u_{i}\right)=\frac{x_{i}+\frac{z_{\alpha / 2}^{2}}{2} \pm z_{\alpha / 2} \sqrt{\frac{z_{\alpha / 2}^{2}}{4}+\frac{x_{i} y_{i}}{n_{i}}}}{n_{i}+z_{\alpha / 2}^{2}} \text { CI of } p_{i} \text { by Wilson (1927). }
\end{gathered}
$$

Estimators restricted by $H: p_{2}=\rho p_{1}$ only parameter to be estimated is p_{1}.

- Conditioned point of view $\left(x_{1}+x_{2}=a_{1}\right)$:
$p_{1 C}=\operatorname{Min}\left\{1 ; \frac{a_{1}}{n_{1}+n_{2} \rho}\right\}, p_{2 C}=\operatorname{Min}\left\{1 ; \frac{\rho a_{1}}{n_{1}+n_{2} \rho}\right\} \quad$ (estimator \mathbf{C})
\rightarrow ZC procedure by Farrington \& Manning (1990)
- Unconditioned point of view:
$p_{1 E}=\frac{\left(n_{1}+x_{2}\right)+\left(n_{2}+x_{1}\right) \rho-\sqrt{\left\{\left(n_{1}+x_{2}\right)+\left(n_{2}+x_{1}\right) \rho\right\}^{2}-4 n a_{1} \rho}}{2 n \rho}, p_{2 E}=p_{1 E} \rho$ (estimator \mathbf{E})
\rightarrow ZE procedure (score method) by Koopman (1984).
CI can be obtained through a cubic equation (Nam, 1995).
- Unconditioned approximately estimator:

$$
p_{1 A}=\operatorname{Min}\left\{1 ; \frac{x_{2}+x_{1} \rho}{n \rho}\right\}, p_{2 A}=\operatorname{Min}\left\{1 ; \frac{x_{2}+x_{1} \rho}{n}\right\}(\text { estimator } \mathbf{A}) \rightarrow \text { ZA procedure. }
$$

- Pekun estimator:

$$
\left.p_{1 P}=\operatorname{Min}\left\{1 ; \frac{n_{1}+n_{2} \rho}{2 n \rho}\right\}, p_{2 P}=\operatorname{Min}\left\{1 ; \frac{n_{1}+n_{2} \rho}{2 n}\right\} \text { (estimator } \mathbf{P}\right)
$$

based on the criteria of Sterne (1954): z_{Z}^{2} will be significant when it is for any value of p_{1}.
\rightarrow ZP procedure by Martín \& Herranz (2010).

PROCEDURES BASED ON THE L STATISTIC

Another quite common is:

$$
\mathbf{L} \text { statistic by Woolf (1955): } z_{L}^{2}=\frac{\ln ^{2}(\bar{R} / \rho)}{\frac{q_{1}}{n_{1} p_{1}}+\frac{q_{2}}{n_{2} p_{2}}}
$$

Once again we have to estimate the values of p_{i}.

- Classic estimator was proposed by Woolf \rightarrow LW procedure.
- Proceeding in a similar way with: N, C, E and A
\rightarrow Procedures LN, LC, LE and LA (LC and LE were proposed by Martín \& Herranz (2010)
CI of LC, LE and LA are obtained through iterative methods.

PROCEDURES BASED ON THE A STATISTIC

Herranz \& Martín (2008), in the context of the case of the difference:

$$
\text { A statistic: } z_{A}^{2}=\frac{4 n_{1} n_{2}\left(\overline{d^{\prime}}-\delta^{\prime}\right)^{2}}{n_{1}+n_{2}}\left\{\begin{array}{l}
\overline{d^{\prime}}=\sin ^{-1} \sqrt{\bar{p}_{2}}-\sin ^{-1} \sqrt{\bar{p}_{1}} \\
\delta^{\prime}=\sin ^{-1} \sqrt{p_{2}}-\sin ^{-1} \sqrt{p_{1}}
\end{array}\right.
$$

Proceeding as in the previous sections: C, E and A estimator
\rightarrow Procedures AC, AE and AA.
Inferences are derived from classic mode.

SAMPLE DATA TO BE USED

LW procedure performs badly (Woolf, 1955; Koopman, 1984).
The traditional improvement: original data increased by a quantity h_{i}.
Case 0: $h_{i}=0$.
Case 1: $h_{i}=0.5$ (Woolf, 1955).
Case 2: $h_{i}=1$ (Dann \& Koch, 2005).
ZW procedure also performs very badly (Katz et al., 1978), the same increases can also be applied to it.

Other possibilities in a more general text (Martín et al., 2010)
Case 3: $h_{i}=z_{\alpha / 2}^{2} / 4$

Case 5: $h_{i}=3 / 8$ (Anscombe transformation).

PROCEDURE TO OBTAIN THE RESULTS

1. Selecting one of the errors $\alpha=1 \%, 5 \%$ or 10%.
2. Selecting one of the values $\rho=0.01,0.1,0.2,0.5,0.8,1,1.25,2,5,10$ and 100 .
3. Selecting one of the pairs $\left(n_{1}, n_{2}\right)$ with $n_{1} \leq n_{2}$ and $n_{i}=40,60,100$.
$H: R=\rho$ and $H^{\prime}: 1 / R=1 / \rho$ are equivalent.
4. Constructing the critical region (CR): $R C=\left\{\left(x_{1}, x_{2}\right) \mid z_{\text {exp }}^{2} \geq z_{\alpha / 2}^{2}\right\}$
5. Calculating the real error (test size) $\alpha^{*}=$ máx $_{p} \sum_{C R} \mathrm{P}\left(x_{1}, x_{2} \mid H\right)$ with

$$
P\left(x_{1}, x_{2} \mid H\right)=C\left(n_{1}, x_{1}\right) \times C\left(n_{2}, x_{2}\right) \rho^{x_{2}} p^{a_{1}}(1-p)^{y_{1}}(1-\rho p)^{y_{2}}
$$

and the increase $\Delta \alpha=\alpha-\alpha^{*}$.
6. Calculating the value of "power":

$$
\theta=100 \times\left(\mathrm{n}^{\circ} \text { of points of the CR set }\right) /\left[\left(n_{1}+1\right)\left(n_{2}+1\right)\right] \%
$$

7. Determining if the method "fails": $\Delta \alpha \leq-1 \%,-2 \%$ o -4% for $\alpha=1 \%, 5 \%$ or 10%.
8. Calculating the total number of failures (F) and the average values of $\Delta \alpha$ and of θ for $0.1 \leq \rho \leq 10$ on the one hand, and for $\rho=0.01$ and 100 on the other hand.

ANALYZE THE RESULTS

a) Reject methods with an excessive number of failures.
b) Choose those which have a $\overline{\Delta \alpha}$ closest to 0 , showing a preference for conservative methods ($\overline{\Delta \alpha}>0$).
c) Prefer those with the greatest $\bar{\theta}$
d) Prefer the method that is the most simple to apply.

SELECTION OF THE OPTIMA METHOD

Methods selected and proposed for the literature ($\alpha=5 \%$)

$0.1 \leq \rho \leq 10$				$\rho=0.01$ and $\rho=100$			
Method	F	$\overline{\Delta \alpha}$	$\bar{\theta}$	Method	F	$\overline{\Delta \alpha}$	$\bar{\theta}$
ZW4	0	0.06	79.71	ZA1	1	2.34	95.70
LE3	0	0.06	79.69	AE1	0	3.55	95.00
ZA1	0	-0.27	80.50	AE5	0	4.10	94.79
LC3	1	-0.21	80.07	ZW4	0	4.74	93.82
AE5	0	0.43	79.48	LC3	0	4.98	86.84
AE1	0	0.73	79.41	LE3	0	5.00	84.28
ZP0	0	1.47	76.04	ZP0	0	5.00	87.91
LW0	9	-0.82	77.45	LW0	11	-3.49	95.16
ZC0	16	-1.17	80.84	ZC0	12	-6.03	96.57
ZE0	22	-1.42	80.81	ZE0	12	-6.28	97.00
LW1	19	-1.56	79.90	LW1	12	-39.08	97.56
LW2	21	-3.24	80.07	ZW0	12	-84.84	93.86
ZW0	44	-16.91	80.61	LC0	12	-89.44	87.03
LE0	54	-54.72	80.32	LE0	12	-89.44	84.39
LC0	54	-54.73	80.69	LW2	12	-91.67	98.42

Methods selected: ZW4, LE3, ZA1, LC3, AE5, AE1.
Methods proposed for the literature: ZP0, LW0, ZC0, ZE0, LW1, LW2, ZW0, LE0, LC0.

- The methods proposed for the literature have a lot of failures, or in the case of ZP 0 , it is very conservative method and has a little power.
- All of the methods selected are reliable as they have at most one failure.
- Methods AE1 and AE5 (for a moderate ρ) and LE3 and LC3 (for an extreme ρ) can be rejected: the most conservative and/or the lowest power .
- From the rest: for a moderate ρ is preferable ZW 4 , for a extreme ρ the best performance is ZA1 (it's the least conservative and the highest power).

Regarding the previous statement (and the results obtained for 1% and 10%):
\square The best method in general is ZA1
\square A good alternative is ZW4 (simpler method)

EXAMPLE

MAXWELL (1961)

Infection		YES	NO	Total
Inoculated	YES	11	35	46
	NO	48	54	102
Total		59	89	148

Sample estimation: $\bar{R}=(48 / 102) /(11 / 46)=1,97$
Confidence intervals (95\%) for R :

$$
\begin{aligned}
\text { ZA1 } & \rightarrow(1,1659 ; 3,5082) \\
\text { ZW4 } & \rightarrow(1,1887 ; 3,7853) \\
\text { ZE0 } & \rightarrow(1,1768 ; 3,4976) \\
\text { LW1 } & \rightarrow(1,1187 ; 3,3104) \\
\text { ZE0 exact } & \rightarrow(1,1705 ; 3,6164)
\end{aligned}
$$

CONCLUSIONS

In Medicine, it's common a two-tailed confidence interval for the ratio R.
Several methods have been evaluated, obtaining this conclusions:
\square None of the classic methods (including ZE0 score method) are reliable as they are excessively liberal.

- The best of them is LW1 which is only valid for large sample and moderate ρ.

LW1: 1) Increasing all the data from both groups (successes and failures) in 0.5 .
2) Using the statistic based on logarithmic transformation:

$$
z_{L W}^{2}=\frac{\ln ^{2}(\bar{R} / \rho)}{\frac{\bar{q}_{1}}{n_{1} \bar{p}_{1}}+\frac{\bar{q}_{2}}{n_{2} \bar{p}_{2}}}=\frac{\ln ^{2}(\bar{R} / \rho)}{\frac{1}{x_{1}}+\frac{1}{x_{2}}-\frac{n}{n_{1} n_{2}}} \text { and } R \in \bar{R} \times \exp \left\{ \pm z_{\alpha / 2} \sqrt{\frac{y_{1}}{n_{1} x_{1}}+\frac{y_{2}}{n_{2} x_{2}}}\right\}
$$

\square In general, the best method is ZA1:

1) Increasing all the data from both groups (successes and failures) in 0.5 .
2) Using the approximation of the ZE0 statistic, the test is given by:

$$
z_{Z A}^{2}=\frac{\left(\bar{p}_{2}-\rho \bar{p}_{1}\right)^{2}}{\rho^{2} \frac{p_{1 A}\left(1-p_{1 A}\right)}{n_{1}}+\frac{p_{2 A}\left(1-p_{2 A}\right)}{n_{2}}} \text { with } p_{1 A}=\operatorname{Min}\left\{1 ; \frac{x_{2}+x_{1} \rho}{n \rho}\right\}, p_{2 A}=\operatorname{Min}\left\{1 ; \frac{x_{2}+x_{1} \rho}{n}\right\}
$$

3) If the objective is the CI, solve:

$$
\left(\rho_{L}, \rho_{U}\right)=\frac{n x_{1} x_{2}+\frac{z_{\alpha / 2}^{2}\left(n_{1} x_{1}+n_{2} x_{2}-2 x_{1} x_{2}\right)}{2} \pm z_{\alpha / 2} \sqrt{n^{2} x_{1} x_{2}\left(a_{1}-n \bar{p}_{1} \bar{p}_{2}\right)+\left\{\frac{z_{\alpha / 2}\left(n_{2} x_{2}-n_{1} x_{1}\right)}{2}\right\}^{2}}}{x_{1}\left\{n n_{2} \bar{p}_{1}-z_{\alpha / 2}^{2}\left(n_{2}-x_{1}\right)\right\}}
$$

the two solutions (ρ_{L}, ρ_{U}) must verify that $x_{2} /\left(n-x_{1}\right) \leq \rho_{L}, \rho_{U} \leq\left(n-x_{2}\right) / x_{1}$, If the boundary that fails is ρ_{L}, obtain the value:

$$
\rho_{L}=\frac{1}{n_{2} \bar{p}_{1}^{2}+z_{\alpha / 2}^{2}}\left\{x_{2} \bar{p}_{1}+\frac{z_{\alpha / 2}^{2}}{2}-z_{\alpha} \sqrt{\frac{z_{\alpha / 2}^{2}}{4}+x_{2}\left(\bar{p}_{1}-\bar{p}_{2}\right)}\right\}
$$

If the boundary that fails is ρ_{U}, obtain the value:

$$
\rho_{U} \in \frac{1}{n_{1} \bar{p}_{1}^{2}}\left\{x_{1} \bar{p}_{2}+\frac{z_{\alpha / 2}^{2}}{2}+z_{\alpha} \sqrt{\frac{z_{\alpha / 2}^{2}}{4}+x_{1}\left(\bar{p}_{2}-\bar{p}_{1}\right)}\right\}
$$

\square Alternative, we can use the even simpler method ZW4:

1) Increasing all the data from both groups (successes and failures) in

$$
h_{i}=\left\{\begin{array}{l}
\frac{z_{\alpha / 2}^{2}\left(1+2 I_{i}\right)}{4} \text { with } I_{1}=\left\{\begin{array}{l}
1 \text { if } \bar{p}_{1}=0 \\
0 \\
\text { if } \bar{p}_{1} \neq 0
\end{array}, I_{2}=\left\{\begin{array}{l}
1 \text { if } \bar{p}_{2}=1 \\
0 \text { if } \bar{p}_{2} \neq 1
\end{array} \text { if } \bar{R}>\rho\right.\right. \\
\frac{z_{\alpha / 2}^{2}\left(1+2 S_{i}\right)}{4} \text { with } S_{1}=\left\{\begin{array}{l}
1 \text { if } \bar{p}_{1}=1 \\
0 \\
\text { if } \bar{p}_{1} \neq 1
\end{array}, S_{2}=\left\{\begin{array}{l}
1 \text { if } \bar{p}_{2}=0 \\
0 \\
\text { if } \bar{p}_{2} \neq 0
\end{array} \text { if } \bar{R}<\rho\right.\right.
\end{array}\right.
$$

2) Using the classic Wald procedure:

$$
z_{z W}^{2}=\frac{\left(\bar{p}_{2}-\rho \bar{p}_{1}\right)^{2}}{\rho^{2} \frac{\bar{p}_{1} \bar{q}_{1}}{n_{1}}+\frac{\bar{p}_{2} \bar{q}_{2}}{n_{2}}} \text { and } R \in \frac{\bar{R}}{1-z_{\alpha / 2}^{2} \frac{y_{1}}{n_{1} x_{1}}}\left\{1 \pm z_{\alpha / 2} \sqrt{\frac{y_{1}}{n_{1} x_{1}}+\frac{y_{2}}{n_{2} x_{2}}-z_{\alpha / 2}^{2} \frac{y_{1}}{n_{1} x_{1}} \frac{y_{2}}{n_{2} x_{2}}}\right\}
$$

REFERENCES

Agresti, A. (2003). Dealing with discreteness: making 'exact' confidence intervals for proportions, differences of proportions, and odds ratios more exact. Statistical Methods in Medical Research 12, 3-21.
Agresti, A. and Min, Y. (2001). On small-sample confidence intervals for parameters in discrete distributions. Biometrics 57, 963-971.
Barnard, G.A. (1947). Significance tests for 2×2 tables. Biometrika 34, 123-138.
Chan, I.S.F. (1998). Exact tests of equivalence and efficacy with a non-zero lower bound for comparative studies. Statistics in Medicine 17, $1403-1413$.
Dann, R.S. and Koch, G.G. (2005). Review and evaluation of methods for computing confidence intervals for the ratio of two proportions and considerations for non-inferiority clinical trials. Journal of Biopharmaceutical Statistics 15, 85-107.
Farrington C.P. and Manning, G. (1990). Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk. Statistics in Medicine 9, 1447-1454.
Gart, J.J. and Nam, J. (1990). Approximate interval estimation of the difference in binomial parameters: Correction for skewness and extension to multiple tables. Biometrics 46, 637-643.
Herranz Tejedor, I. and Martín Andrés, A. (2008). A numerical comparison of several unconditional exact tests in problems of equivalence based on the difference of proportions. Journal of Statistical Computation and Simulation 78 (11), 969-981.
Katz, D.; Baptista, J.; Azen, S.P. and Pike, M.C. (1978). Obtaining confidence intervals for the risk ratio in cohort studies. Biometrics 34, 469-474.
Koopman, P.A.R. (1984). Confidence intervals for the ratio of two binomial proportions. Biometrics 40, 513-517.
Martín Andrés, A. and Herranz Tejedor, I. (2010). Asymptotic inferences about a linear combination of two proportions. JP Journal of Biostatistics 4(3), 253-277.
Martín Andrés, A., Álvarez Hernández, M. and Herranz Tejedor, I. (2010). Inferences about a linear combination of proportions. Statistical Methods in Medical Research. Prepublished March 11, 2010,.
Miettinen, O. and Nurminen, M. (1985). Comparative analysis of two rates. Statistics in Medicine 4, 213-226.
Nam, Jun-Mo (1995). Confidence limits for the ratio of two binomial proportions based on likelihood scores: Non-iterative method. Biometrical Journal 37(3), 375-379.
Newcombe, R.G. (1998). Interval estimation for the difference between independent proportions: comparison of eleven methods. Statistics in Medicine 17, 873-890.
Peskun, P.H. (1993). A new confidence interval method based on the normal approximation for the difference of two binomial probabilities. Journal of the American Statistical Association 88 (422), 656-661.
Price, R. M. and Bonett, D. G. (2008). Confidence intervals for a ratio of two independent binomial proportions. Statistics in Medicine 27, 5497-5508. Sterne, T.E. (1954). Some remarks on confidence of fiducial limits. Biometrika 41 (1/2), 275-278.
Wilson, E.B. (1927). Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association 22, 209 - 212.
Woolf, B. (1955). On estimating the relation between blood group and disease. Annals of Human Genetics 19 (4), 251-352.
Zou, G. and Donner, A. (2008). Construction of confidence limits about effect measures: A general approach. Statistics in Medicine 27, 1693-1702.

