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INTRODUCTION

Comparing two independent binomial proportions:
• Difference: d=p2 − p1    (has received much attention) 
• Ratio: R=p2 / p1
• Odds-ratio: O=p2 q1 / p1 q2

 two-tails approximate inferences about R.

• Exact point of view:  computationally very intensive.
not feasible for large sample size.

• Approximate point of view: researchers have devoted great attention

Objective:
• Propose new approximate methods. 
• Comparison  between new and classic methods from the literature.
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CONFIDENCE INTERVALS AND HYPOTHESIS TESTS

Agresti & Min (2001): 
Obtaining the two-tailed exact CI through the inversion of the two-tailed test H: R=ρ

Statistical inference coherent:

1. Perspective of the test or perspective of the CI.

2. Evaluating a CI method is equivalent to evaluating its associated test method (to the 
same nominal error α).

* CI  Real coverage and average length.     Coverage + Error =1.

* Test  Real error and power. Greater power, lower length. 

Consequently: 
The comparative evaluation will be made with reference to the test that defines them.
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PROCEDURES BASED ON THE Z STATISTIC

Let xi ~ B(ni, pi) two independent binomial random variables.

Let                     sample estimator of R with                   .

To contrast  H: R=ρ vs. K: R≠ ρ (where 0< ρ <+∞), the most common is:

Z statistic by Katz et al (1978):

It is necessary to estimate the unknown proportions pi.

• Test: comparing the value         which is obtained with 

• Confidence interval: solving through  ρ the equation
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ESTIMATORS

• Classic estimator:

(estimator W)  ZW (Wald procedure).

• Estimator of Newcombe:

(estimator N)  ZN procedure.

CI of pi by Wilson (1927). 

Estimators restricted by H:  p2 = ρp1 only parameter to be estimated is p1.

• Conditioned point of view (x1+x2=a1):

(estimator C)

 ZC procedure by Farrington & Manning (1990)
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• Unconditioned point of view:

(estimator E)

 ZE procedure (score method) by Koopman (1984).

CI can be obtained through a cubic equation (Nam, 1995).

• Unconditioned approximately estimator:

(estimator A)  ZA procedure.

• Pekun estimator:

(estimator P) 

based on the criteria of Sterne (1954):      will be significant when it is for any value of p1.  

 ZP procedure by Martín & Herranz (2010).
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PROCEDURES BASED ON THE L STATISTIC

Another quite common is:

L statistic by Woolf (1955):

Once again we have to estimate the values of pi.

• Classic estimator was proposed by Woolf  LW procedure.

• Proceeding in a similar way with: N, C, E and A

 Procedures LN, LC, LE and LA (LC and LE were proposed by Martín & Herranz (2010)

CI of LC, LE and LA are obtained through iterative methods.
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PROCEDURES BASED ON THE A STATISTIC

Herranz & Martín (2008), in the context of the case of the difference:

A statistic:

Proceeding as in the previous sections:  C, E and A estimator 

 Procedures AC, AE and AA.

Inferences are derived from classic mode. 
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LW procedure performs badly (Woolf, 1955; Koopman, 1984).

The traditional improvement: original data increased by a quantity hi .
Case 0:  hi=0.

Case 1:  hi=0.5  (Woolf, 1955).

Case 2:  hi=1  (Dann & Koch, 2005).

ZW procedure also performs very badly (Katz et al., 1978), the same increases can

also be applied to it.

Other possibilities in a more general text (Martín et al., 2010)

Case 3:

Case 4:

Case 5:  hi=3/8 (Anscombe transformation).
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SAMPLE DATA TO BE USED



1.   Selecting one of the errors α=1%, 5% or 10%.

2. Selecting one of the values ρ=0.01, 0.1, 0.2, 0.5, 0.8, 1, 1.25, 2, 5, 10 and 100.

3. Selecting one of the pairs (n1, n2) with n1 ≤ n2 and ni=40, 60, 100.

H: R=ρ and  H’: 1/R = 1/ρ are equivalent.

4. Constructing the critical region (CR):  

5. Calculating the real error (test size) α*=máxp ∑CR P(x1, x2 | H) with

and the increase ∆α=α–α*.
6. Calculating the value of “power”:

θ=100×(nº of points of the CR set)/[(n1+1)(n2+1)] %
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PROCEDURE TO OBTAIN THE RESULTS



ANALYZE THE RESULTS
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a) Reject methods with an excessive number of failures.

b) Choose those which have a         closest to 0, showing a preference for

conservative methods (       >0).

c) Prefer those with the greatest

d) Prefer the method that is the most simple to apply.

∆α

θ

7. Determining if the method “fails”: ∆α≤ –1%, –2% o –4% for α=1%, 5% or 10%.

8. Calculating the total number of failures (F) and the average values of ∆α and of  θ 

for 0.1≤ ρ≤10 on the one hand, and for ρ=0.01 and 100 on the other hand.

∆α



SELECTION OF THE OPTIMA METHOD

12

Methods selected and proposed for the literature (α=5%)

0.1 ≤ ρ ≤ 10 ρ=0.01 and ρ=100

Method F Method F

ZW4 0 0.06 79.71 ZA1 1 2.34 95.70

LE3 0 0.06 79.69 AE1 0 3.55 95.00

ZA1 0 -0.27 80.50 AE5 0 4.10 94.79

LC3 1 -0.21 80.07 ZW4 0 4.74 93.82

AE5 0 0.43 79.48 LC3 0 4.98 86.84

AE1 0 0.73 79.41 LE3 0 5.00 84.28

ZP0 0 1.47 76.04 ZP0 0 5.00 87.91

LW0 9 -0.82 77.45 LW0 11 -3.49 95.16

ZC0 16 -1.17 80.84 ZC0 12 -6.03 96.57

ZE0 22 -1.42 80.81 ZE0 12 -6.28 97.00

LW1 19 -1.56 79.90 LW1 12 -39.08 97.56

LW2 21 -3.24 80.07 ZW0 12 -84.84 93.86

ZW0 44 -16.91 80.61 LC0 12 -89.44 87.03

LE0 54 -54.72 80.32 LE0 12 -89.44 84.39

LC0 54 -54.73 80.69 LW2 12 -91.67 98.42

α∆ θα∆θ



Methods selected: ZW4, LE3, ZA1, LC3, AE5, AE1.
Methods proposed for the literature: ZP0, LW0, ZC0, ZE0, LW1, LW2, ZW0, LE0, LC0.

 The methods proposed for the literature have a lot of failures, or in the case of ZP0, it 
is very conservative method and has a little power.

 All of the methods selected are reliable as they have at most one failure.
 Methods AE1 and AE5 (for a moderate ρ) and LE3 and LC3 (for an extreme ρ) can 

be rejected: the most conservative and/or the lowest power .
 From the rest: for a moderate ρ is preferable ZW4, for a extreme ρ the best 

performance is ZA1 (it’s the least conservative and the highest power).

Regarding the previous statement (and the results obtained for 1% and 10%):

The best method in general is ZA1

A good alternative is ZW4 (simpler method)
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Sample estimation:

Confidence intervals (95%) for R:

ZA1     (1,1659; 3,5082)

ZW4      (1,1887; 3,7853)

ZE0       (1,1768; 3,4976)

LW1      (1,1187; 3,3104)

ZE0 exact   (1,1705; 3,6164)

( ) ( )48 102 11 46 1 97R / / / ,= =
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EXAMPLE

MAXWELL (1961)

Infection YES NO Total

Inoculated
YES 11 35 46

NO 48 54 102

Total 59 89 148



CONCLUSIONS

In Medicine, it’s common a two-tailed confidence interval for the ratio R.

Several methods have been evaluated, obtaining this conclusions:

 None of the classic methods (including ZE0 score method) are 

reliable as they are excessively liberal.

 The best of them is LW1 which is only valid for large sample and moderate ρ.

LW1: 1) Increasing all the data from both groups (successes and failures) in 0.5.

2) Using the statistic based on logarithmic transformation:
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 In general, the best method is ZA1:

1) Increasing all the data from both groups (successes and failures) in 0.5.

2) Using the approximation of the ZE0 statistic, the test is given by:

3) If the objective is the CI, solve:

the two solutions (ρL, ρU) must verify that                                                        , 

If the boundary that fails is ρL, obtain the value:

If the boundary that fails is ρU, obtain the value:
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 Alternative, we can use the even simpler method ZW4:

1) Increasing all the data from both groups (successes and failures) in             

2) Using the classic Wald procedure:
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