Strongly norm attaining Lipschitz maps

Miguel Martín

Seminario de Análisis Matemático y Matemática Aplicada

Roadmap of the talk

1 [Preliminaries](#page-3-0)

- 2 [A compilation of negative and positive results](#page-14-0)
- 3 [Two somehow surprising examples](#page-21-0)
- 4 [Some consequences of the denseness of strongly norm attaining Lip](#page-27-0)[schitz functions](#page-27-0)
- 5 [Some open problems](#page-32-0)
- 6 [Lineability and spaceability](#page-35-0)

The talk is mainly based on. . .

[Preliminaries](#page-3-0)

Some notation

- *X*, *Y* real Banach spaces
	- *B^X* closed unit ball
	- *S^X* unit sphere
	- *X* ∗ topological dual

 $\mathcal{L}(X, Y)$ Banach space of all bounded linear operators from X to Y

Main definition and leading problem

Lipschitz function

M, *N* (complete) metric spaces. A map $F: M \longrightarrow N$ is Lipschitz if there exists a constant *k >* 0 such that

$$
d(F(p), F(q)) \leqslant k d(p, q) \quad \forall \, p, q \in M
$$

The least constant so that the above inequality works is called the Lipschitz constant of *F*, denoted by $L(F)$:

$$
L(F) = \sup \left\{ \frac{d(F(p), F(q))}{d(p, q)} : p \neq q \in M \right\}
$$

If $N = Y$ is a normed space, then $L(\cdot)$ is a seminorm in the vector space of all Lipschitz maps from *M* into *Y* .

F attain its Lipschitz number if the supremum defining it is actually a maximum.

Leading problem (Godefroy, 2015)

Study the metric spaces *M* and the Banach spaces *Y* such that the set of Lipschitz maps which attain their Lipschitz number is dense in the set of all Lipschitz maps.

More definitions

Pointed metric space

M is pointed if it carries a distinguished element called base point.

Space of Lipschitz maps

M pointed metric space, *Y* Banach space.

 $\mathrm{Lip}_0(M,Y)$ is the Banach space of all Lipschitz maps from M to Y which are zero at the base point, endowed with the Lipschitz number as norm.

Strongly norm attaining Lipschitz map

 M pointed metric space. $F\in \mathrm{Lip}_0(M,Y)$ strongly attains its norm, writing $F \in \text{SNA}(M, Y)$, if there exist $p \neq q \in M$ such that

$$
L(F) = ||F|| = \frac{||F(p) - F(q)||}{d(p, q)}.
$$

Our objective is then

to study when $\operatorname{SNA}(M, Y)$ is norm dense in the Banach space $\operatorname{Lip}_0(M, Y)$

First examples

Finite sets

If *M* is finite, obviously every Lipschitz map attains its Lipschitz number.

 \triangle This characterizes finiteness of M .

Example (Kadets–Martín–Soloviova, 2016)

 $M = [0, 1], A \subseteq [0, 1]$ closed with empty interior and positive Lebesgue measure. Then, the Lipschitz function $f: [0, 1] \longrightarrow \mathbb{R}$ given by

$$
f(t) = \int_0^t \mathbb{1}_A(s) \, ds,
$$

cannot be approximated by Lipschitz functions which attain their Lipschitz number.

Example (Godefroy, 2015)

 M compact, $\text{lip}_0(M)$ strongly separates M (e.g. M usual Cantor set, $M = [0,1]^{\theta}$) \implies $\operatorname{SNA}(M, Y)$ dense in $\operatorname{Lip}_0(M, Y)$ for every finite-dimensional $Y.$

The Lipschitz–free space: definition

Evaluation functional, Lipschitz-free space

M pointed metric space.

$$
p\in M, \ \delta_p\in \mathrm{Lip}_0(M,\mathbb{R})^* \text{ given by }\delta_p(f)=f(p) \text{ is the evaluation functional at }p;
$$

- $\delta: M \rightsquigarrow \mathrm{Lip}_0(M,\mathbb{R})^*, \ p \longmapsto \delta_p,$ is an isometric embedding;
- $\mathcal{F}(M):=\overline{\text{span}}\{\delta_p\colon p\in M\}\subseteq \text{Lip}_0(M,\mathbb{R})^*$ is the Lipschitz-free space of $M;$
- **■** so δ : $M \rightsquigarrow \mathcal{F}(M)$, $p \mapsto \delta_p$, is an isometric embedding;

Remark

$$
\blacksquare M \text{ is linearly independent in } \mathcal{F}(M);
$$

dens $(F(M)) =$ dens (M) if M is infinite.

Molecules

\n- For
$$
p \neq q \in M
$$
, $m_{p,q} := \frac{\delta_p - \delta_q}{d(p,q)} \in \mathcal{F}(M)$ is a molecule, $||m_{p,q}|| = 1$;
\n- $Mol(M) := \{m_{p,q} : p, q \in M, p \neq q\}$.
\n- $B_{\mathcal{F}(M)} = \overline{\text{conv}}(\text{Mol}(M)).$
\n

The Lipschitz–free space: examples

Let us describe F(*M*) for some *M*s

Example 1: $M = [0, 1]$

 $\Phi\colon L_\infty[0,1]\longrightarrow \mathrm{Lip}_0([0,1],{\mathbb R})$ defined by $[\Phi(f)](x)=\int^x$ 0 $f(t)\,dt$ is an isometric isomorphism which is weak-star continuous.

$$
\bigstar \Phi_*(\delta_x) = \mathbb{1}_{[0,x]} \text{ and } \Phi_*(\mathcal{F}([0,1])) \equiv L_1[0,1].
$$

Example 2: $M = N$

 $\Phi\colon \ell_\infty\longrightarrow \mathrm{Lip}_0(\mathbb{N}\cup\{0\},\mathbb{R})$ defined by $[\Phi(f)](0)=0$, $[\Phi(f)](n)=\sum_{k=0}^n f(k)$ is an isometric isomorphism which is weak-star continuous.

 $\star \Phi_*(\delta_n) = 1_{\{1,\ldots,n\}}$ and $\Phi_*(\mathcal{F}(\mathbb{N}\cup\{0\})) \equiv \ell_1$.

The Lipschitz–free space: examples II

Example 3: a simpler example to get $\mathcal{F}(M) \equiv \ell_1$ *M* = N ∪ {0} with $d(n, 0) = 1$ and $d(n, m) = 2$. $\Phi\colon \ell_\infty\longrightarrow \mathrm{Lip}_0(M,\mathbb{R})$ defined by $[\Phi(f)](k)=k$ is an isometric isomorphism which is weak-star continuous.

$$
\bigstar \Phi_*(\delta_n) = 1\!\!1_{\{n\}} \text{ and } \Phi_*(\mathcal{F}(M) \equiv \ell_1.
$$

Example 4: everything depends on the concrete metric $M = \{0, 1, 2\}$ with $d(1, 0) = d(2, 0) = 1, 1 \le d(1, 2) < 2$.

 \bigstar The unit balls of $\mathrm{Lip}_0(M,\mathbb{R})$ and of $\mathcal{F}(M)$ are hexagons.

The Lipschitz–free space: universal property

Very important property (Arens–Eells, Kadets, Godefroy–Kalton, Weaver. . .) *M* pointed metric space, *Y* Banach space. $\mathsf{Given} \, F \in \text{Lip}_0(M, Y),$ \exists (a unique) $\widehat{F} \in \mathcal{L}(\mathcal{F}(M), Y)$ such that $F = \widehat{F} \circ \delta$ (i.e. $\widehat{F}(m_{p,q}) = \frac{F(p) - F(q)}{d(p,q)}$ for $p \neq q$), **a** and so $\|\widehat{F}\| = \|F\|$. $M \xrightarrow{F} Y$ $\mathcal{F}(M)$ *δ F*b

First consequence

$$
\mathcal{F}(M)^* \cong \mathrm{Lip}_0(M,\mathbb{R}).
$$

Actually...

M metric space, *Y* Banach space,

$$
\mathrm{Lip}_0(M, Y) \cong \mathcal{L}(\mathcal{F}(M), Y).
$$

Two ways of attaining the norm

We have two ways of attaining the norm *M* pointed metric space, *Y* Banach space, $F ∈ Lip_0(M, Y) ≅ \mathcal{L}(\mathcal{F}(M), Y)$. **F** \in **NA(** $\mathcal{F}(M), Y$ **)** if exists $\xi \in B_{\mathcal{F}(M)}$ such that $||F|| = ||\widehat{F}|| = ||\widehat{F}(\xi)||$; $F \in \text{SNA}(M, Y)$ if exists $m_{p,q} \in \text{Mol}(M)$ such that $||F|| = ||\widehat{F}(m_{p,q})|| = \frac{||F(p) - F(q)||}{d(p,q)}$ $\frac{d(p,q)}{d(p,q)}$. Clearly, $\text{SNA}(M, Y) \subseteq \text{NA}(\mathcal{F}(M), Y)$. Therefore, if $\operatorname{SNA}(M, Y)$ is dense in $\operatorname{Lip}_0(M, Y)$, then $NA(\mathcal{F}(M), Y)$ is dense in $\mathcal{L}(\mathcal{F}(M), Y)$; ■ But the opposite direction is NOT true:

Example

 $\overline{\text{NA}(\mathcal{F}(M), \mathbb{R})} = \mathcal{L}(\mathcal{F}(M), \mathbb{R})$ for every M by the Bishop–Phelps theorem,

■ But
$$
\overline{\text{SNA}([0,1], \mathbb{R})}
$$
 \neq Lip₀ $([0,1], \mathbb{R})$.

A drop on the geometry of the unit ball of $\mathcal{F}(M)$

Denting point

 $\xi \in B_{\mathcal{F}(M)}.$ TFAE:

- ξ is a denting point (of $B_{\mathcal{F}(M)}$),
- \blacksquare $\xi = m_{p,q}$ and for every $\varepsilon > 0 \exists \delta > 0$ s.t. $d(p, t) + d(t, q) - d(p, q) > \delta$ when $d(p, t), d(t, q) \geqslant \varepsilon$.

 \bigstar *M* boundedly compact, it is equivalent to:

∎ $d(p, q) < d(p, t) + d(t, q) \; \forall t \notin \{p, q\}.$

Strongly exposed point

 $\xi \in B_{\mathcal{F}(M)}$, TFAE:

- ξ strongly exposed point (of $B_{\mathcal{F}(M)})$,
- \blacksquare *ξ* = $m_{p,q}$ and $\exists \rho = \rho(p,q) > 0$ such that

$$
\frac{d(p,t)+d(t,q)-d(p,q)}{\min\{d(p,t),d(t,q)\}} \geqslant \rho
$$

when $t \notin \{p, q\}$.

Concave metric space

M is concave if all the *mp,q* are denting points. \star Examples: $y = x^3$, S_X if X unif. convex...

Uniform Gromov rotundity

 M ⊂ Mol (M) is uniformly Gromov rotund if $\exists \rho_0 > 0$ such that

$$
\frac{d(p,t)+d(t,q)-d(p,q)}{\min\{d(p,t),d(t,q)\}}\geqslant \rho_0
$$

when $m_{p,q} \in \mathcal{M}$, $t \notin \{p,q\}$. ⇐⇒ *M* is a set of uniformly strongly exposed points (same relation *ε* − *δ*)

 \star Mol (*M*) uniformly Gromov rotund (aka *M* is uniformly Gromov concave) when:

- $M = ([0, 1], |\cdot|^{\theta}),$
- *M* finite and concave,
- $1 \leq d(p,q) \leq D < 2 \forall p,q \in M, p \neq q.$

[A compilation of negative and positive results](#page-14-0)

Negative results I

First extension of the case of [0*,* 1] (Kadets–Martín–Soloviova, 2016)

If M is metrically convex (or "geodesic"), then $\operatorname{SNA}(M,\mathbb{R})$ is not dense in $\mathrm{Lip}_0(M,\mathbb{R}).$

Definition (length space)

Let *M* be a metric space. *M* is length if $d(p, q)$ is equal to the infimum of the length of the rectifiable curves joining *p* and *q* for every pair of points $p, q \in M$.

★ Equivalently (Avilés, García, Ivankhno, Kadets, Martínez, Prochazka, Rueda, Werner)

- **M** is local (i.e. the Lipschitz constant of every function can be approximated in pairs of arbitrarily closed points);
- The unit ball of $\mathcal{F}(M)$ has no strongly exposed points;
- $\mathrm{Lip}_0(M,\mathbb{R})$ (and so $\mathcal{F}(M)$) has the Daugavet property.

Theorem

 M length metric space $\implies \overline{\mathrm{SNA}(M,\mathbb{R})} \neq \mathrm{Lip}_0(M,\mathbb{R})$

Negative results II

A different kind of example

 M "fat" Cantor set in $[0,1]$, then $\overline{\mathrm{SNA}(M,\mathbb{R})}\neq \mathrm{Lip}_0(M,\mathbb{R})$ and M is totally disconnected.

Theorem

Actually, if $M \subset \mathbb{R}$ is compact and has positive measure, then $\operatorname{SNA}(M,\mathbb{R})$ is NOT dense in $\mathrm{Lip}_0(M,\mathbb{R})$.

Possible sufficient conditions

Observation (previously commented) $\text{SNA}(M, Y)$ dense in $\text{Lip}_0(M, Y) \implies \text{NA}(\mathcal{F}(M), Y)$ dense in $\mathcal{L}(\mathcal{F}(M), Y)$.

Therefore, it is reasonable to discuss the known sufficient conditions for a Banach space X to have $NA(X, Y) = \mathcal{L}(X, Y)$ for every Y:

- containing a norming and uniformly strongly exposed set (Lindenstrauss, 1963),
- RNP (Bourgain, 1977),
- Property *α* (Schachermayer, 1983) ,

Property quasi-*α* (Choi–Song, 2008).

Main result

EACH of these properties on $\mathcal{F}(M)$ implies $\operatorname{SNA}(M, Y) = \operatorname{Lip}_0(M, Y)$ for all Y .

How to prove the positive results?

Common scheme of all the proofs

- Consider the original proof of "(P) on $\mathcal{F}(M)$ implies that $\overline{\mathrm{NA}(\mathcal{F}(M), Y)} = \mathcal{L}(\mathcal{F}(M), Y)$ for all Y's".
- Check, in each case, what is the set of points where the constructed set of norm attaining operators actually attain their norm.
- It happens that, in all the cases, this set is contained in the set of strongly exposed points or, maybe, in its closure.
- Strongly exposed points are molecules (Weaver, 1999). and the set of molecules is norm closed (GL-P-P-RZ, 2018).

Examples of positive results

$\mathcal{F}(M)$ has the RNP when...

 $\mathcal{F}(M)$ RNP iff $\mathcal{F}(M)$ does not contains $L_1[0,1]$ iff M contains no "curve fragment" (Aliaga-Gartland-Petitjean-Prochachazka, 2022). For instance:

- $M = (N, d^\theta)$ with $0 < \theta < 1$ (Weaver, 1999 for the compact case);
- *M* is uniformly discrete (Kalton, 2004);
- \blacksquare *M* is countable (Dalet, 2015 for the boundedly compact case);
- *M* ⊂ R with Lebesgue measure 0 (Godard, 2010).

$\mathcal{F}(M)$ has property α when...

- *M* finite,
- $M \subset \mathbb{R}$ with Lebesgue measure 0,

$$
\blacksquare\ 1\leqslant d(p,q)\leqslant D<2\text{ for all }p,q\in M,\,p\neq q.
$$

For $M = (N, d^{\theta})$ with $0 < \theta < 1$, we actually have a "Bishop–Phelps–Bollobás" result.

Sufficient conditions for the density of $SNA(M, Y)$ for every Y : relations

[Two somehow surprising examples](#page-21-0)

Some questions and an open problem

Some questions

- $(\mathbb{Q}1)$ Does $\mathcal{F}(M)$ have the RNP if $\operatorname{SNA}(M, Y) = \operatorname{Lip}_0(M, Y)$ $\forall Y$? (Godefroy, 2015) (recall that $\mathcal{F}(M)$ RNP iff $\mathcal{F}(M)$ does not contain $L_1[0,1]$ isomorphically)
- $\big(\mathsf{Q2}\big)$ Is $\operatorname{SNA}(M,\mathbb{R})$ dense in $\operatorname{Lip}_0(M,\mathbb{R})$ if $B_{\mathcal{F}(M)}=\overline{\mathrm{co}}\big(\textup{str-exp}\,\big(B_{\mathcal{F}(M)}\big)\big)$ or, even, if $\mathrm{Mol}\left(M\right)=\mathrm{str}\text{-}\mathrm{exp}\left(B_{\mathcal{F}\left(M\right)}\right)$?
- $(\textsf{Q3})$ Does $\operatorname{SNA}(M,\mathbb{R})$ fail to be dense in $\operatorname{Lip}_0(M,\mathbb{R})$ if $\mathcal{F}(M)$ contains an $\mathbf i$ sometric copy of $L_1[0, 1]$?

In dimension one, everything works. . .

 $M \subset \mathbb{R}$ compact, then the questions have positive answer.

but not always

We will see that the three questions have negative answer in general by using compact subsets of \mathbb{R}^2 .

The first example: the torus

Theorem

Let $M = T$ endowed with the distance inherited from the Euclidean plane.

```
\operatorname{SNA}(M, \mathbb{R}) is not dense in \mathrm{Lip}_0(M, \mathbb{R});
```
■ *M* is Gromov concave (i.e. every molecule is strongly exposed).

Remarks

- It is a (negative) solution to $(Q2)$;
- $\mathcal{F}(\mathbb{T})$ satisfies that the set of strongly exposed points generates the unit ball by closed convex hull, but strongly exposing functionals are not dense in the dual.
- \blacksquare (Jung–M.–Rueda, 2023) $\mathcal{F}(\mathbb{T})$ fails Lindenstrauss property A (but it satisfies Lindenstrauss' necessary condition from 1963)

Two different curves

Koch curve

Let
$$
M_1 = ([0, 1], |\cdot|^{\theta}), 0 < \theta < 1.
$$

- \blacktriangleright $\mathcal{F}(M_1)$ has RNP, so $SNA(M_1, Y) = Lip_0(M_1, Y) \,\forall Y.$
- Every molecule is strongly exposed,
- **E** even more, M_1 is uniformly Gromov concave.

For
$$
\theta = \log(3)/\log(4)
$$
, M_1 is

bi-Lipschitz equivalent to the Koch curve:

Microscopically, a small piece of M_1 is equivalent to M_1 itself.

The unit circle

Let *M*² be the upper half of the unit circle:

- \blacksquare We know that $\operatorname{SNA}(M_2, \mathbb{R})$ is not dense in $\mathrm{Lip}_0(M_2,\mathbb{R})$.
- $\mathcal{F}(M_2)$ has NOT the RNP.
- However, every molecule is strongly exposed. . .
- but NO subset $A \subset$ Mol (M_2) which is uniformly Gromov rotund can be norming for $\mathrm{Lip}_0(M_2,\mathbb{R})$.

Microscopically, a small piece of M_2 is very closed to be an interval.

The second example: the "rain"

Consider the compact subset of \mathbb{R}^2 given by

$$
M := ([0,1] \times \{0\}) \cup \bigcup_{n=0}^{\infty} \left\{ \left(\frac{k}{2^n}, \frac{1}{2^n} \right) : k \in \{0, \ldots, 2^n\} \right\}
$$

Let \mathfrak{M}_n be the set M endowed with the distance inherited from $(\mathbb{R}^2, \|\cdot\|_p)$ for $p = 1, 2$.

 \bullet

Theorem

 $\operatorname{SNA}(\mathfrak{M}_p, Y)$ is dense in $\operatorname{Lip}_0(\mathfrak{M}_p, Y)$ for all Y and $p = 1, 2$. Moreover:

 \mathbf{I} F(\mathfrak{M}_p) fails the RNP (actually, it contains an isometric copy of $L_1[0,1]!$);

- **2** $\mathcal{F}(\mathfrak{M}_1)$ has property α ;
- $\mathbf{3}$ $\mathcal{F}(\mathfrak{M}_2)$ does not contain any norming and uniformly strongly exposed set.

Remark

```
This gives negative answer to both (Q1) and (Q3).
```
 \bullet

Summarizing the relations

[Some consequences of the denseness of](#page-27-0) [strongly norm attaining Lipschitz functions](#page-27-0)

An useful lemma and a first consequence

Lemma

M metric space,
$$
f \in \text{SNA}(M, Y)
$$
, $\hat{f}(m_{p,q}) = ||f||$. Then:

¹ either ∃*x, y* ∈ *M* such that

$$
m_{x,y} \in \text{ext}\left(B_{\mathcal{F}(M)}\right) \quad \text{and} \quad d(p,q) = d(p,x) + d(x,y) + d(y,q)
$$

$$
\text{(so, in particular, } \widehat{f}(m_{x,y}) = \|f\| \text{)};
$$

2 or there is an isometric embedding $\phi: [0, d(p, q)] \longrightarrow M$ with $\phi(0) = p$ and $\phi(d(p,q)) = q$.

Consequence

M metric space such that $SNA(M, \mathbb{R})$ is dense. Then

$$
B_{\mathcal{F}(M)} = \overline{\text{conv}}\left(\text{ext}\left(B_{\mathcal{F}(M)}\right)\right).
$$

Remark (Lindenstrauss, 1963)

X subspace of ℓ_{∞} such that $\overline{\operatorname{NA}(X, Y)} = \mathcal{L}(X, Y)$ $\forall Y$. Then, $B_X = \overline{\text{conv}}(\text{ext}(B_X)).$

The main consequence

Theorem

M compact, $M ⊉ [0, 1]$, Y Banach space, $\operatorname{SNA}(M, Y)$ dense in $\operatorname{Lip}_0(M, Y)$. Then, $\text{SNA}(M, Y)$ (and so $\text{NA}(\mathcal{F}(M), Y)$) contains an **open** dense subset.

Corollarv

M compact, *Y* Banach space, $\mathcal{F}(M)$ RNP. Then, $\text{SNA}(M, Y)$ (and so $\text{NA}(\mathcal{F}(M), Y)$) contains an **open** dense subset.

Remarks

The presence of dense open subset of norm attaining things is a rare phenomenon:

- (Acosta–Kadets, 2011): if X is not reflexive, then there is X' isomorphic to X such that $\operatorname{NA}(X',\mathbb{R})$ has empty interior.
- \blacksquare (Acosta–Aizpuru–Aron–GarcíaPacheco, 2007): $NA(L_1[0, 1], \mathbb{R})$ has empty interior since $L_{\infty}[0,1] \setminus \text{NA}(L_1[0,1], \mathbb{R})$ is dense in $L_{\infty}[0,1]$.

The main consequence

Theorem

M compact, $M ⊉ [0, 1]$, Y Banach space, $\operatorname{SNA}(M, Y)$ dense in $\operatorname{Lip}_0(M, Y)$. Then, $\text{SNA}(M, Y)$ (and so $\text{NA}(\mathcal{F}(M), Y)$) contains an **open** dense subset.

Corollarv

M compact, *Y* Banach space, $\mathcal{F}(M)$ RNP. Then, $\text{SNA}(M, Y)$ (and so $\text{NA}(\mathcal{F}(M), Y)$) contains an **open** dense subset.

Question

Is it possible to remove the condition of $M \not\supseteq [0,1]$ in the theorem?

Example

 $SNA(\mathfrak{M}_n, Y)$ contains an open dense subset for $p = 1, 2$ and for every Y.

Another consequence

Proposition (consequence of the proof of the main theorem)

 M compact, $\operatorname{SNA}(M,\mathbb{R})$ dense in $\operatorname{Lip}_0(M,\mathbb{R})$. Then,

 $B_{\mathcal{F}(M)} = \overline{\text{conv}}\big(\text{str-exp}\big(B_{\mathcal{F}(M)}\big)\big).$

Remark (Lindenstrauss, 1963)

X separable Banach space such that $\overline{\text{NA}(X,Y)} = \mathcal{L}(X,Y) \ \forall Y$. Then, $B_X = \overline{\text{conv}}(\text{str-exp}(B_X)).$

Question

Is it possible to remove the compactness condition on *M* ?

[Some open problems](#page-32-0)

Some open problems

Two old results

- $\mathsf{P}(\mathsf{B}\textsf{ourgain},\ \mathsf{1977};\ \mathsf{H}\textsf{uff},\ \mathsf{1980})\colon\ X\ \mathsf{has}\ \mathsf{the}\ \mathsf{R}\mathsf{NP}\ \mathsf{iff}\ \overline{\operatorname{NA}(X',Y)}=\mathcal{L}(X',Y)\ \mathsf{for}\ \mathsf{M}\mathsf{unif}\ \mathsf{M}\mathsf{unif}\ \mathsf{M}\mathsf{unif}\ \mathsf{unif}\ \$ every Y and every renorming X' of X .
- $(Schacher mayor, 1983): X separable (WCG) \implies exists X' renorming of X such$ that $\overline{\operatorname{NA}(X',Y)} = \mathcal{L}(X',Y)$ for every Y .

Open problem 1

 M (compact) metric space such that $\overline{\mathrm{SNA}(M',Y)} = \mathrm{Lip}_0(M',Y)$ for every Y and every *M*′ bi-Lipschitz equivalent to *M*.

 \bigstar Does $\mathcal{F}(M)$ have the RNP?

Open problem 2

M (compact) metric space.

 \bigstar Does there exists M' bi-Lipschitz equivalent to M such that $\overline{\mathrm{SNA}(M',Y)} = \mathrm{Lip}_0(M',Y)$ for every Y ?

Some open problems II

A related result

 M metric such that for every $N\subset M$ and every N' bi-Lipschitz equivalent to N one has that $\overline{\text{SNA}(N',\mathbb{R})} = \text{Lip}_0(N',\mathbb{R})$. Then, $\mathcal{F}(M)$ has the RNP.

Indeed, otherwise *M* contains a "curve fragment" *C* and *C* is bi-Lipschitz equivalent to a subset of [0*,* 1] with positive measure.

Open problem 3

 (M, d) metric space such that $\overline{\text{SNA}((M, d), \mathbb{R})} = \text{Lip}_0((M, d), \mathbb{R})$ and let d' equivalent metric on M . Is $\operatorname{SNA}((M, d'), \mathbb{R})$ dense?

 \star We do not know even for $M = [0, 1]$.

Open problem 4 (Aliaga at a conference in Murcia, 2024)

Suppose $\text{SNA}(M,\mathbb{R}) = \text{NA}(\mathcal{F}(M),\mathbb{R})$.

 \bigstar Does $\mathcal{F}(M)$ have the RNP?

[Lineability and spaceability](#page-35-0)

Some lineability and spaceability related results

isometric copies of c_0 .

Subspaces in the set of non strongly norm-attaining functions

M infinite pointed metric space

- $\big(\mathsf{Choi\text{-}Jung\text{-}Lee\text{-}Roldán,\ 2024\big)\; \big(\mathrm{Lip}_0(M,\mathbb R)\setminus \mathrm{SNA}(M,\mathbb R)\big) \cup \{0\}$ contains an isometric copy of *ℓ*∞.
- Many similar results concerning other kind of norm attainment for Lipschitz maps. . .

The main bibliography of the talk

