Strongly norm attaining Lipschitz maps

Miguel Martín

Seminario de Análisis Matemático y Matemática Aplicada

Madrid, Octubre 2024

Roadmap of the talk

1 Preliminaries

- 2 A compilation of negative and positive results
- 3 Two somehow surprising examples
- 4 Some consequences of the denseness of strongly norm attaining Lipschitz functions
- 5 Some open problems
- 6 Lineability and spaceability

The talk is mainly based on...

Preliminaries

Some notation

- X, Y real Banach spaces
 - B_X closed unit ball
 - S_X unit sphere
 - X^* topological dual

 $\mathcal{L}(X,Y)$ Banach space of all bounded linear operators from X to Y

Main definition and leading problem

Lipschitz function

M,~N (complete) metric spaces. A map $F\colon M\longrightarrow N$ is Lipschitz if there exists a constant k>0 such that

$$d(F(p), F(q)) \leqslant k \, d(p, q) \quad \forall \, p, q \in M$$

The least constant so that the above inequality works is called the Lipschitz constant of F, denoted by L(F):

$$L(F) = \sup\left\{\frac{d(F(p), F(q))}{d(p, q)} : p \neq q \in M\right\}$$

- If N = Y is a normed space, then $L(\cdot)$ is a seminorm in the vector space of all Lipschitz maps from M into Y.
- *F* attain its Lipschitz number if the supremum defining it is actually a maximum.

Leading problem (Godefroy, 2015)

Study the metric spaces M and the Banach spaces Y such that the set of Lipschitz maps which attain their Lipschitz number is dense in the set of all Lipschitz maps.

More definitions

Pointed metric space

M is *pointed* if it carries a distinguished element called base point.

Space of Lipschitz maps

M pointed metric space, Y Banach space.

 $\operatorname{Lip}_0(M, Y)$ is the Banach space of all Lipschitz maps from M to Y which are zero at the base point, endowed with the Lipschitz number as norm.

Strongly norm attaining Lipschitz map

M pointed metric space. $F \in \operatorname{Lip}_0(M, Y)$ strongly attains its norm, writing $F \in \operatorname{SNA}(M, Y)$, if there exist $p \neq q \in M$ such that

$$L(F) = ||F|| = \frac{||F(p) - F(q)||}{d(p,q)}$$

Our objective is then

to study when SNA(M, Y) is norm dense in the Banach space $Lip_0(M, Y)$

First examples

Finite sets

If M is finite, obviously every Lipschitz map attains its Lipschitz number.

 \star This characterizes finiteness of M.

Example (Kadets-Martín-Soloviova, 2016)

M = [0,1], $A \subseteq [0,1]$ closed with empty interior and positive Lebesgue measure. Then, the Lipschitz function $f : [0,1] \longrightarrow \mathbb{R}$ given by

$$f(t) = \int_0^t \mathbb{1}_A(s) \, ds,$$

cannot be approximated by Lipschitz functions which attain their Lipschitz number.

Example (Godefroy, 2015)

M compact, $\lim_{0 \to \infty} (M)$ strongly separates M (e.g. M usual Cantor set, $M = [0, 1]^{\theta}$) \implies SNA(M, Y) dense in $\operatorname{Lip}_{0}(M, Y)$ for every finite-dimensional Y.

The Lipschitz-free space: definition

Evaluation functional, Lipschitz-free space

M pointed metric space.

•
$$p \in M$$
, $\delta_p \in \operatorname{Lip}_0(M, \mathbb{R})^*$ given by $\delta_p(f) = f(p)$ is the evaluation functional at p ;

- $\delta: M \rightsquigarrow \operatorname{Lip}_0(M, \mathbb{R})^*$, $p \longmapsto \delta_p$, is an isometric embedding;
- $\mathcal{F}(M) := \overline{\operatorname{span}}\{\delta_p : p \in M\} \subseteq \operatorname{Lip}_0(M, \mathbb{R})^*$ is the Lipschitz-free space of M;
- so $\delta: M \rightsquigarrow \mathcal{F}(M)$, $p \longmapsto \delta_p$, is an isometric embedding;

Remark

- M is linearly independent in $\mathcal{F}(M)$;
- $\operatorname{dens}(\mathcal{F}(M)) = \operatorname{dens}(M)$ if M is infinite.

Molecules

For
$$p \neq q \in M$$
, $m_{p,q} := \frac{\delta_p - \delta_q}{d(p,q)} \in \mathcal{F}(M)$ is a molecule, $||m_{p,q}|| = 1$

$$\operatorname{Mol}(M) := \{ m_{p,q} \colon p, q \in M, \ p \neq q \}.$$

$$B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}(\operatorname{Mol}(M)).$$

The Lipschitz-free space: examples

Let us describe $\mathcal{F}(M)$ for some Ms

Example 1: M = [0, 1]

 $\Phi: L_{\infty}[0,1] \longrightarrow \operatorname{Lip}_{0}([0,1],\mathbb{R})$ defined by $[\Phi(f)](x) = \int_{0}^{x} f(t) dt$ is an isometric isomorphism which is weak-star continuous.

★
$$\Phi_*(\delta_x) = \mathbb{1}_{[0,x]}$$
 and $\Phi_*(\mathcal{F}([0,1])) \equiv L_1[0,1].$

Example 2: $M = \mathbb{N}$

 $\Phi \colon \ell_{\infty} \longrightarrow \operatorname{Lip}_{0}(\mathbb{N} \cup \{0\}, \mathbb{R})$ defined by $[\Phi(f)](0) = 0$, $[\Phi(f)](n) = \sum_{k=0}^{n} f(k)$ is an isometric isomorphism which is weak-star continuous.

 $\bigstar \Phi_*(\delta_n) = \mathbb{1}_{\{1,\ldots,n\}} \text{ and } \Phi_*(\mathcal{F}(\mathbb{N} \cup \{0\})) \equiv \ell_1.$

The Lipschitz-free space: examples II

Example 3: a simpler example to get $\mathcal{F}(M) \equiv \ell_1$ $M = \mathbb{N} \cup \{0\}$ with d(n, 0) = 1 and d(n, m) = 2. $\Phi \colon \ell_\infty \longrightarrow \operatorname{Lip}_0(M, \mathbb{R})$ defined by $[\Phi(f)](k) = k$ is an isometric isomorphism which is weak-star continuous.

$$\star \Phi_*(\delta_n) = \mathbb{1}_{\{n\}} \text{ and } \Phi_*(\mathcal{F}(M) \equiv \ell_1.$$

Example 4: everything depends on the concrete metric $M = \{0, 1, 2\}$ with d(1, 0) = d(2, 0) = 1, $1 \le d(1, 2) < 2$.

★ The unit balls of $\operatorname{Lip}_0(M, \mathbb{R})$ and of $\mathcal{F}(M)$ are hexagons.

The Lipschitz-free space: universal property

First consequence

$$\mathcal{F}(M)^* \cong \operatorname{Lip}_0(M, \mathbb{R}).$$

Actually...

M metric space, Y Banach space,

$$\operatorname{Lip}_0(M,Y) \cong \mathcal{L}(\mathcal{F}(M),Y).$$

Two ways of attaining the norm

We have two ways of attaining the norm M pointed metric space, Y Banach space, $F \in \operatorname{Lip}_0(M, Y) \cong \mathcal{L}(\mathcal{F}(M), Y)$. • $\widehat{F} \in \operatorname{NA}(\mathcal{F}(M), Y)$ if exists $\xi \in B_{\mathcal{F}(M)}$ such that $\|F\| = \|\widehat{F}\| = \|\widehat{F}(\xi)\|$; • $F \in \operatorname{SNA}(M, Y)$ if exists $m_{p,q} \in \operatorname{Mol}(M)$ such that $\|F\| = \|\widehat{F}\| = \|\widehat{F}(m_{p,q})\| = \frac{\|F(p) - F(q)\|}{d(p,q)}$. Clearly, $\operatorname{SNA}(M, Y) \subseteq \operatorname{NA}(\mathcal{F}(M), Y)$.

- Therefore, if SNA(M, Y) is dense in $Lip_0(M, Y)$, then $NA(\mathcal{F}(M), Y)$ is dense in $\mathcal{L}(\mathcal{F}(M), Y)$;
- But the opposite direction is NOT true:

Example

• $\overline{\mathrm{NA}(\mathcal{F}(M),\mathbb{R})} = \mathcal{L}(\mathcal{F}(M),\mathbb{R})$ for every M by the Bishop–Phelps theorem,

But
$$\overline{SNA([0,1],\mathbb{R})} \neq \operatorname{Lip}_0([0,1],\mathbb{R}).$$

A drop on the geometry of the unit ball of $\mathcal{F}(M)$

Denting point

 $\xi \in B_{\mathcal{F}(M)}$, TFAE:

- ξ is a denting point (of $B_{\mathcal{F}(M)}$),
- $\xi = m_{p,q}$ and for every $\varepsilon > 0 \exists \delta > 0$ s.t. $d(p,t) + d(t,q) - d(p,q) > \delta$ when $d(p,t), d(t,q) \ge \varepsilon$.

 \star M boundedly compact, it is equivalent to:

 $\bullet \ d(p,q) < d(p,t) + d(t,q) \ \forall t \notin \{p,q\}.$

Strongly exposed point

 $\xi \in B_{\mathcal{F}(M)}$, TFAE:

- ξ strongly exposed point (of $B_{\mathcal{F}(M)}$),
- $\xi=m_{p,q}$ and $\exists~\rho=\rho(p,q)>0$ such that

$$\frac{d(p,t)+d(t,q)-d(p,q)}{\min\{d(p,t),d(t,q)\}} \geqslant \rho$$

when $t \notin \{p,q\}$.

Concave metric space

M is concave if all the $m_{p,q}$ are denting points. \bigstar Examples: $y = x^3$, S_X if X unif. convex...

Uniform Gromov rotundity

 $\mathcal{M} \subset \mathrm{Mol}\,(M)$ is uniformly Gromov rotund if $\exists \rho_0 > 0$ such that

$$\frac{d(p,t) + d(t,q) - d(p,q)}{\min\{d(p,t), d(t,q)\}} \ge \rho_0$$

when $m_{p,q} \in \mathcal{M}, t \notin \{p,q\}.$ $\iff M$ is a set of uniformly strongly exposed points (same relation $\varepsilon - \delta$)

★ Mol(M) uniformly Gromov rotund (aka M is uniformly Gromov concave) when:

- $\ \ \, M=([0,1],|\cdot|^{\theta}),$
- M finite and concave,
- $\ \ \, \mathbf{I}\leqslant d(p,q)\leqslant D<2 \ \forall p,q\in M,\ p\neq q.$

A compilation of negative and positive results

Negative results I

First extension of the case of [0,1] (Kadets–Martín–Soloviova, 2016)

If M is metrically convex (or "geodesic"), then $SNA(M, \mathbb{R})$ is not dense in $Lip_0(M, \mathbb{R})$.

Definition (length space)

Let M be a metric space. M is length if d(p,q) is equal to the infimum of the length of the rectifiable curves joining p and q for every pair of points $p, q \in M$.

★ Equivalently (Avilés, García, Ivankhno, Kadets, Martínez, Prochazka, Rueda, Werner)

- M is local (i.e. the Lipschitz constant of every function can be approximated in pairs of arbitrarily closed points);
- The unit ball of $\mathcal{F}(M)$ has no strongly exposed points;
- Lip₀ (M, \mathbb{R}) (and so $\mathcal{F}(M)$) has the Daugavet property.

Theorem

M length metric space \implies $\overline{\mathrm{SNA}(M,\mathbb{R})} \neq \mathrm{Lip}_0(M,\mathbb{R})$

Negative results II

A different kind of example

M "fat" Cantor set in [0,1], then $\overline{\mathrm{SNA}(M,\mathbb{R})}\neq\mathrm{Lip}_0(M,\mathbb{R})$ and M is totally disconnected.

Theorem

Actually, if $M \subset \mathbb{R}$ is compact and has positive measure, then $SNA(M, \mathbb{R})$ is NOT dense in $Lip_0(M, \mathbb{R})$.

Possible sufficient conditions

Observation (previously commented) SNA(M, Y) dense in $Lip_0(M, Y) \implies NA(\mathcal{F}(M), Y)$ dense in $\mathcal{L}(\mathcal{F}(M), Y)$.

Therefore, it is reasonable to discuss the known sufficient conditions for a Banach space X to have $\overline{NA(X,Y)} = \mathcal{L}(X,Y)$ for every Y:

- containing a norming and uniformly strongly exposed set (Lindenstrauss, 1963),
- RNP (Bourgain, 1977),
- Property α (Schachermayer, 1983) ,
- Property quasi- α (Choi–Song, 2008).

Main result

EACH of these properties on $\mathcal{F}(M)$ implies $\overline{SNA(M,Y)} = Lip_0(M,Y)$ for all Y.

How to prove the positive results?

Common scheme of all the proofs

- Consider the original proof of "(P) on $\mathcal{F}(M)$ implies that $\overline{NA(\mathcal{F}(M), Y)} = \mathcal{L}(\mathcal{F}(M), Y)$ for all Y's".
- Check, in each case, what is the set of points where the constructed set of norm attaining operators actually attain their norm.
- It happens that, in all the cases, this set is contained in the set of strongly exposed points or, maybe, in its closure.
- Strongly exposed points are molecules (Weaver, 1999), and the set of molecules is norm closed (GL-P-P-RZ, 2018).

Examples of positive results

$\mathcal{F}(M)$ has the RNP when \ldots

 $\mathcal{F}(M)$ RNP iff $\mathcal{F}(M)$ does not contains $L_1[0,1]$ iff M contains no "curve fragment" (Aliaga-Gartland-Petitjean-Prochachazka, 2022). For instance:

- $M = (N, d^{\theta})$ with $0 < \theta < 1$ (Weaver, 1999 for the compact case);
- *M* is uniformly discrete (Kalton, 2004);
- *M* is countable (Dalet, 2015 for the boundedly compact case);
- $M \subset \mathbb{R}$ with Lebesgue measure 0 (Godard, 2010).

$\mathcal{F}(M)$ has property α when...

- M finite,
- $M \subset \mathbb{R}$ with Lebesgue measure 0,

$$\blacksquare \ 1 \leqslant d(p,q) \leqslant D < 2 \text{ for all } p,q \in M, \ p \neq q.$$

For $M = (N, d^{\theta})$ with $0 < \theta < 1$, we actually have a "Bishop–Phelps–Bollobás" result.

Sufficient conditions for the density of SNA(M, Y) for every Y: relations

Two somehow surprising examples

Some questions and an open problem

Some questions

- (Q1) Does $\mathcal{F}(M)$ have the RNP if $\overline{SNA(M,Y)} = \operatorname{Lip}_0(M,Y) \forall Y$? (Godefroy, 2015) (recall that $\mathcal{F}(M)$ RNP iff $\mathcal{F}(M)$ does not contain $L_1[0,1]$ isomorphically)
- (Q2) Is $SNA(M, \mathbb{R})$ dense in $Lip_0(M, \mathbb{R})$ if $B_{\mathcal{F}(M)} = \overline{co}(str-exp(B_{\mathcal{F}(M)}))$ or, even, if $Mol(M) = str-exp(B_{\mathcal{F}(M)})$?
- (Q3) Does $SNA(M, \mathbb{R})$ fail to be dense in $Lip_0(M, \mathbb{R})$ if $\mathcal{F}(M)$ contains an isometric copy of $L_1[0, 1]$?

In dimension one, everything works...

 $M \subset \mathbb{R}$ compact, then the questions have positive answer.

but not always

We will see that the three questions have negative answer in general by using compact subsets of $\mathbb{R}^2.$

The first example: the torus

Theorem

Let $M=\mathbb{T}$ endowed with the distance inherited from the Euclidean plane.

- SNA (M, \mathbb{R}) is not dense in $\operatorname{Lip}_0(M, \mathbb{R})$;
- *M* is Gromov concave (i.e. every molecule is strongly exposed).

Remarks

- It is a (negative) solution to (Q2);
- $\mathcal{F}(\mathbb{T})$ satisfies that the set of strongly exposed points generates the unit ball by closed convex hull, but strongly exposing functionals are not dense in the dual.
- (Jung–M.–Rueda, 2023) *F*(T) fails Lindenstrauss property A (but it satisfies Lindenstrauss' necessary condition from 1963)

Two different curves

Koch curve

Let
$$M_1 = ([0,1], |\cdot|^{\theta}), 0 < \theta < 1.$$

- $\frac{\mathcal{F}(M_1) \text{ has RNP, so}}{\overline{\mathrm{SNA}(M_1, Y)} = \mathrm{Lip}_0(M_1, Y) \ \forall Y. }$
- Every molecule is strongly exposed,
- even more, *M*¹ is uniformly Gromov concave.

★ For
$$\theta = \log(3)/\log(4)$$
, M_1 is

bi-Lipschitz equivalent to the Koch curve:

Microscopically, a small piece of ${\cal M}_1$ is equivalent to ${\cal M}_1$ itself.

The unit circle

Let M_2 be the upper half of the unit circle:

- We know that $SNA(M_2, \mathbb{R})$ is not dense in $Lip_0(M_2, \mathbb{R})$.
- $\mathcal{F}(M_2)$ has NOT the RNP.
- However, every molecule is strongly exposed...
- but NO subset $A \subset Mol(M_2)$ which is uniformly Gromov rotund can be norming for $Lip_0(M_2, \mathbb{R})$.

Microscopically, a small piece of ${\cal M}_2$ is very closed to be an interval.

The second example: the "rain"

Consider the compact subset of \mathbb{R}^2 given by

$$M := ([0,1] \times \{0\}) \cup \bigcup_{n=0}^{\infty} \left\{ \left(\frac{k}{2^n}, \frac{1}{2^n}\right) : k \in \{0, \dots, 2^n\} \right\}$$

Let \mathfrak{M}_p be the set M endowed with the distance inherited from $(\mathbb{R}^2,\|\cdot\|_p)$ for p=1,2.

•

Theorem

 $SNA(\mathfrak{M}_p, Y)$ is dense in $Lip_0(\mathfrak{M}_p, Y)$ for all Y and p = 1, 2. Moreover:

 $\mathbb{I} \mathcal{F}(\mathfrak{M}_p)$ fails the RNP (actually, it contains an isometric copy of $L_1[0,1]!$);

- **2** $\mathcal{F}(\mathfrak{M}_1)$ has property α ;
- **B** $\mathcal{F}(\mathfrak{M}_2)$ does not contain any norming and uniformly strongly exposed set.

Remark

```
This gives negative answer to both (Q1) and (Q3).
```

Summarizing the relations

Some consequences of the denseness of strongly norm attaining Lipschitz functions

An useful lemma and a first consequence

Lemma

$$M$$
 metric space, $f \in \mathrm{SNA}(M,Y)$, $\widehat{f}(m_{p,q}) = \|f\|$. Then:

1 either $\exists x, y \in M$ such that

$$m_{x,y} \in \operatorname{ext} \left(B_{\mathcal{F}(M)} \right)$$
 and $d(p,q) = d(p,x) + d(x,y) + d(y,q)$

(so, in particular,
$$\widehat{f}(m_{x,y}) = \|f\|$$
);

2 or there is an isometric embedding $\phi \colon [0, d(p,q)] \longrightarrow M$ with $\phi(0) = p$ and $\phi(d(p,q)) = q$.

Consequence

M metric space such that $SNA(M, \mathbb{R})$ is dense. Then

$$B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}\left(\operatorname{ext}\left(B_{\mathcal{F}(M)}\right)\right).$$

Remark (Lindenstrauss, 1963)

X subspace of ℓ_{∞} such that $\overline{NA(X,Y)} = \mathcal{L}(X,Y) \ \forall Y$. Then, $B_X = \overline{\operatorname{conv}} (\operatorname{ext} (B_X))$.

The main consequence

Theorem

M compact, $M \not\supseteq [0, 1]$, Y Banach space, SNA(M, Y) dense in $Lip_0(M, Y)$. Then, SNA(M, Y) (and so $NA(\mathcal{F}(M), Y)$) contains an open dense subset.

Corollary

M compact, Y Banach space, $\mathcal{F}(M)$ RNP. Then, $\mathrm{SNA}(M,Y)$ (and so $\mathrm{NA}(\mathcal{F}(M),Y)$) contains an open dense subset.

Remarks

The presence of dense open subset of norm attaining things is a rare phenomenon:

- (Acosta-Kadets, 2011): if X is not reflexive, then there is X' isomorphic to X such that $NA(X', \mathbb{R})$ has empty interior.
- (Acosta-Aizpuru-Aron-GarcíaPacheco, 2007): NA(L₁[0,1], ℝ) has empty interior since L_∞[0,1] \ NA(L₁[0,1], ℝ) is dense in L_∞[0,1].

The main consequence

Theorem

M compact, $M \not\supseteq [0, 1]$, Y Banach space, SNA(M, Y) dense in $Lip_0(M, Y)$. Then, SNA(M, Y) (and so $NA(\mathcal{F}(M), Y)$) contains an open dense subset.

Corollary

M compact, Y Banach space, $\mathcal{F}(M)$ RNP. Then, $\mathrm{SNA}(M,Y)$ (and so $\mathrm{NA}(\mathcal{F}(M),Y)$) contains an open dense subset.

Question

Is it possible to remove the condition of $M \not\supseteq [0,1]$ in the theorem ?

Example

 $SNA(\mathfrak{M}_p, Y)$ contains an open dense subset for p = 1, 2 and for every Y.

Another consequence

Proposition (consequence of the proof of the main theorem)

M compact, ${\rm SNA}(M,\mathbb{R})$ dense in ${\rm Lip}_0(M,\mathbb{R}).$ Then,

 $B_{\mathcal{F}(M)} = \overline{\operatorname{conv}} (\operatorname{str-exp} (B_{\mathcal{F}(M)})).$

Remark (Lindenstrauss, 1963)

X separable Banach space such that $\overline{NA(X,Y)} = \mathcal{L}(X,Y) \ \forall Y$. Then, $B_X = \overline{\operatorname{conv}}(\operatorname{str-exp}(B_X))$.

Question

Is it possible to remove the compactness condition on M ?

Some open problems

Some open problems

Two old results

- (Bourgain, 1977; Huff, 1980): X has the RNP iff $\overline{NA(X',Y)} = \mathcal{L}(X',Y)$ for every Y and every renorming X' of X.
- (Schachermayer, 1983): X separable (WCG) \implies exists X' renorming of X such that $\overline{NA(X',Y)} = \mathcal{L}(X',Y)$ for every Y.

Open problem 1

M (compact) metric space such that $\overline{SNA(M',Y)} = \operatorname{Lip}_0(M',Y)$ for every Y and every M' bi-Lipschitz equivalent to M.

\star Does $\mathcal{F}(M)$ have the RNP?

Open problem 2

M (compact) metric space.

★ Does there exists M' bi-Lipschitz equivalent to M such that $\overline{SNA(M',Y)} = Lip_0(M',Y)$ for every Y?

Some open problems II

A related result

M metric such that for every $N \subset M$ and every N' bi-Lipschitz equivalent to N one has that $\overline{\mathrm{SNA}(N',\mathbb{R})} = \mathrm{Lip}_0(N',\mathbb{R})$. Then, $\mathcal{F}(M)$ has the RNP.

Indeed, otherwise M contains a "curve fragment" C and C is bi-Lipschitz equivalent to a subset of [0,1] with positive measure.

Open problem 3

(M, d) metric space such that $\overline{SNA((M, d), \mathbb{R})} = \operatorname{Lip}_0((M, d), \mathbb{R})$ and let d' equivalent metric on M. Is $SNA((M, d'), \mathbb{R})$ dense?

★ We do not know even for M = [0, 1].

Open problem 4 (Aliaga at a conference in Murcia, 2024)

Suppose $SNA(M, \mathbb{R}) = NA(\mathcal{F}(M), \mathbb{R}).$

 \star Does $\mathcal{F}(M)$ have the RNP?

Lineability and spaceability

Some lineability and spaceability related results

isometric copies of c_0 .

Subspaces in the set of non strongly norm-attaining functions

 ${\cal M}$ infinite pointed metric space

- (Choi–Jung–Lee–Roldán, 2024) $(Lip_0(M,\mathbb{R}) \setminus SNA(M,\mathbb{R})) \cup \{0\}$ contains an isometric copy of ℓ_{∞} .
- Many similar results concerning other kind of norm attainment for Lipschitz maps...

The main bibliography of the talk

