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Reference and objective

The talk is mainly based on the paper

M. Mart́ın.
A Banach space whose set of norm attaining functionals is
algebraically trivial
J. Funct. Anal. 288 (2025), 110815

The objective of the talk
To construct a Banach space for which its set of norm attaining

functionals does not contain non-trivial (convex) cones



The Roadmap of the talk
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Preliminaries



Notation

X, Y real Banach spaces

BX = {x ∈ X : ∥x∥ ⩽ 1} closed unit ball of X,

SX = {x ∈ X : ∥x∥ = 1} unit sphere of X,

L(X, Y ) bounded linear operators from X to Y ,
∥T ∥ = sup{∥T (x)∥ : x ∈ SX} for T ∈ L(X, Y ),

if Y = R, X∗ = L(X, Y ) topological dual of X.



Proximinality
Proximinality
M ⩽ X (closed) subspace is proximinal if

dist(x, M) = min
{

∥x − m∥ : m ∈ M
}

⋆ That is, PM (x) := {m ∈ M : d(x, M) = ∥x − m∥} ̸= ∅ for every x ∈ X.
⋆ Equivalently, the quotient map πM : X −→ X/M satisfies that

BX/M = πM (BX)

Related to “best approximation”. . .
of lists of numbers by least square approximation (Legendre, Gauss,
cent. XVIII–XIX),
of functions by polynomials of fix degree (Chebyshev, cent. XIX). . .

Some examples
1 If M is finite-dimensional or even reflexive ✓
2 If M is w∗-closed in a dual space X = Y ∗ ✓
3 f ∈ X∗, M = ker f proximinal ⇐⇒ f attains its norm



Norm attainment

Norm attaining functionals
f ∈ X∗ attains its norm or it is norm attaining if

∥f∥ = max
{

|f(x)| : x ∈ BX

}
⋆ Write NA(X) :=

{
f ∈ X∗ : f is norm attaining

}
Some important results

(Hahn–Banach) NA(X) separates the points of X,
(James) X is reflexive if NA(X) = X∗,
(Bishop–Phelps) NA(X) is norm dense in X∗,
(Petunin–Plichko) Z separable, X ⊂ NA(Z) closed subspace
separating the points of Z =⇒ Z ≡ X∗.



Some examples of “lineability” in norm attaining functionals

Examples
1 NA(c0) =

{
x ∈ ℓ1 : # supp(x) < ∞

}
is a vector space

2 NA(ℓ1) =
{

x ∈ ℓ∞ : ∥x∥∞ = maxn{|x(n)|}
}

contains c0

3 Actually, if X = Z∗ then NA(X) ⊇ JZ(Z)

4 NA(L1[0, 1]) =
{

f ∈ L∞[0, 1] : λ({t : |f(t)| = ∥f∥∞}) > 0
}

contains span{χAn : n ∈ N} for any disjoint family of sets with positive
measure {An}

5 NA(C(K)) =
{

µ ∈ M(K) : µ = f |µ| with f continuous, ∥f∥∞ = 1
}

contains span{δtn : n ∈ N} for any sequence {tn} of elements of K

6 If X has a monotone basis =⇒ NA(X) contains an
infinite-dimensional subspace



Relationship and two old problems

Relationship
M ⩽ X of finite-codimension:

M proximinal =⇒ M⊥ ⊂ NA(X)

The converse is not true in general (examples in X = C(K) for any K)
If X/M is strictly convex, M⊥ ⊂ NA(X) =⇒ M proximinal

Two old questions
(S) (I. Singer, 1972) Is there always a proximinal subspace of codimension 2?
(G) (G. Godefroy, 2001) Does NA(X) always contain a linear subspace of

dimension 2?

Observation
A positive answer to (S) would give a positive answer to (G)

Answer
The answer to both questions is negative, as shown by Read and Rmoutil:



Read’s construction and Rmoutil result
R is a renorming of c0:
Enumerate c00(Q) = {u1, u2, . . . } so that every element is repeated infinitely
often.
Take a sequence of integers (an) such that

ak > max supp uk, ak ⩾ ∥uk∥ℓ1 .

Renorm c0 by

p(x) = ∥x∥∞ +
∞∑

k=1

2−a2
k

∣∣⟨x, uk − eak ⟩
∣∣

where ∥ · ∥∞ is the usual norm of c0 and ⟨·, ·⟩ is the usual duality (c0, ℓ1).
R = (c0, p) is the Read space

Theorem (Read, 2018, proved by hammer)
R does not contain proximinal subspaces of finite codimension greater than
or equal to two.

Theorem (Rmoutil, 2017)
NA(R) does not contain two dimensional subspaces.



Other “Read norms”

Read norm
We say that a complete norm p on X is a Read norm if NA(X, p) contains no
two-dimensional subspace (hence (X, p) contains no proximinal subspaces of
finite codimension greater than one).

Theorem (Kadets–López–Mart́ın–Werner, 2020)
Every closed subspace X of ℓ∞ containing an isomorphic copy of c0 can be
renormed with a Read norm.

Indeed, we may find {v∗
n} ⊂ BX∗ such that the norm

p(x) = ∥x∥∞ + ρ

∞∑
n=1

1
2n

v∗
n(x)

(
x ∈ X

)
is an (1 + ρ)-equivalent Read norm.

(X, p) is strictly convex
If X∗ is separable, (X, p)∗∗ is strictly convex



Read norm and the norms of the further examples

⋆ ALL those norms are of the form

p(x) = ∥x∥ + ρ

∞∑
n=1

1
2n

|v∗
n(x)| = ∥x∥ + ∥R(x)∥1 (x ∈ X)

where
∥ · ∥ is the original norm of X,
R : X −→ ℓ1 is compact and one-to-one,
it is very important that the range of R is ℓ1.

⋆ All these norms are NOT smooth, hence NA(X, p) contains non-trivial
cones.

⋆ We may construct a posteriori smooth Read norms, but they also satisfy
that their sets of norm attaining functionals contain non-trivial cones!!



The construction of KLMW 2020: A tentative calculation

p(x) = ∥x∥ +
∑

2−n|v∗
n(x)|. Then B(X∗,p∗) = BX∗ +

∑
2−n[−v∗

n, v∗
n]

(Minkowski sum)

Let x∗ ∈ NA(X, p), ∥x∗∥ = 1, be norm attaining at x ; then

x∗ = x∗
0 +
∑

2−ntnv∗
n

for some x∗
0 ∈ NA(X), ∥x∗

0∥ = 1, and tn = sign v∗
n(x) whenever v∗

n(x) is
nonzero.
Write the same decomposition for
y∗ ∈ NA(X, p), ∥y∗∥ = 1, norm attaining at y :

y∗ = y∗
0 +

∑
2−nt′

nv∗
n.

Let’s try to prove that x∗ + y∗ /∈ NA(X, p): Otherwise we would have a similar
decomposition for z∗ = (x∗ + y∗)/∥x∗ + y∗∥:

z∗ = z∗
0 +

∑
2−nsnv∗

n.

Sort the items, setting λ = ∥x∗ + y∗∥:

0 = x∗ + y∗ − λz∗ = [x∗
0 + y∗

0 − λz∗
0 ] +

[∑
(tn + t′

n − λsn)v∗
n

]



The construction of KLMW 2020: Wish list

0 = [x∗
0 + y∗

0 − λz∗
0 ] +

[∑
(tn + t′

n − λsn)v∗
n

]
We now wish to select the v∗

n to be sort of “orthogonal” to span(NA(X))
(which contains the first bracket) so that both brackets vanish.

In addition we wish the v∗
n to have some Schauder basis character so that we

can deduce from
∑

(tn + t′
n − λsn)v∗

n = 0 that all tn + t′
n − λsn = 0.

Finally we wish the support points x and y to be distinct , and we wish
the span of the v∗

n to be dense enough to separate x and y for many n, i.e.,
v∗

n(x) < 0 < v∗
n(y) and thus tn + t′

n = 0 fairly often, while at the same time
sn ̸= 0 for at least one of those n.

This contradiction would show that x∗ + y∗ /∈ NA(X, p).

If x = y, then x ̸= −y, getting x∗ − y∗ /∈ NA(X, p).



The new construction



The main result

Theorem
There is a Banach space X such that NA(X) contains no non-trivial cones.
⋆ Actually:

Given f, g ∈ NA(X) linearly independent and 0 < t < 1,

t f + (1 − t) g /∈ NA(X).

Equivalently, if E ⩽ X∗ has dimension two, then E ∩ NA(X) is
contained in the union of two lines.



The first tool: smooth version of c0 with small NA set

Theorem (Debs–Godefroy–Saint-Raymond, 1995)
X separable, S : ℓ2 −→ X with dense range. We define an equivalent norm
| · | on X such that

B(X,|·|) = BX + S(Bℓ2 ).

Then
(X, | · |) is smooth,
NA
(
(X, | · |)

)
= NA(X).

The smooth version of c0 with small NA set
There is a smooth norm ||| · ||| on c0 such that

NA
(
(c0, ||| · |||)

)
=
{

x ∈ ℓ1 : # supp(x) < ∞
}

.



The second tool: using operator ranges

Operator ranges
X Banach space, Y linear subspace of X. Y is an operator range if there exists
Z infinite-dimensional Banach space, T : Z −→ X one-to-one continuous with
T (Z) = Y .
⋆ Equivalently, there is a complete norm ∥ · ∥1 on Y dominating ∥ · ∥.

Example (Important example in ℓ1 (KLMW, 2020))
Exists Y ⊂ ℓ1 dense operator range such that

#
(
N \ supp(y)

)
< ∞

(
y ∈ Y \ {0}

)
Theorem (Main property for us (adapting KLMW, 2020))
Y separable operator range. Exists T : ℓ1(N × N) −→ Y one-to-one,
∥T ∥ = 1, with {

T (en,m)
∥T (en,m)∥ : n ∈ N

}
= SY (m ∈ N).



Mixing the first and second tools

Lemma A.
The dense sequence with “basis character” which is orthogonal to NA
There is a smooth equivalent norm ||| · ||| on c0 and a one-to-one norm-one
operator T : ℓ1(N × N) −→ (c0, ||| · |||)∗ such that(

span NA(c0, ||| · |||)
)

∩ T
(
ℓ1(N × N)

)
= {0},

Writing v∗
n,m := T (en,m), we have that

{
v∗

n,m

|||v∗
n,m||| : n ∈ N

}
is dense in

S(c0,|||·|||)∗ for every m ∈ N.
If (αn,m) is absolutely sumable, then

∞∑
m=1

∞∑
n=1

αn,m v∗
n,m = T

(
∞∑

m=1

∞∑
n=1

αn,m en,m

)
.

In particular,
∞∑

m=1

∞∑
n=1

αn,m v∗
n,m = 0 =⇒ αm,m = 0 ∀n, m ∈ N.



Smooth versions of ℓ1 whose NA sets behave similar to ℓ1

Lemma B.
The smooth versions of ℓ1

Fix m ∈ N. Write Sm : ℓ2 −→ ℓ1

[Sm(a)](n) = 1
2m

1
2n

|||v∗
n,m|||a(n) (n ∈ N).

Consider the equivalent norm | · |m in ℓ1 such that

B(ℓ1,|·|m) = Bℓ1 + Sm(Bℓ2 ).

Then:
1 |f |∗m = ∥f∥∞ + ∥S∗

m(f)∥2 for every f ∈ (ℓ1, | · |m)∗;
2 (ℓ1, | · |m)∗ is strictly convex, so (ℓ1, | · |m) is smooth;
3 if x ∈ (ℓ1, | · |m), f ∈ (ℓ1, | · |m)∗, and n ∈ N satisfy that

|f |∗m = 1, ⟨f, x⟩ = |x|m, |x(n)| >
1

2m

1
2n

|||v∗
n,m||||x|m,

then

f(n) = sign(x(n))∥f∥∞ and ∥f∥∞ ∈
[
1 − 1

2m
, 1
]

.



Calculating the set of norm-attaining functionals when adding two norms

Lemma C.
Calculating the set NA when adding two norms
X, Y Banach spaces, R : X −→ Y , define

q(x) = ∥x∥X + ∥Rx∥Y (x ∈ X).

Then:
1 B(X,q)∗ = B(X,∥·∥)∗ + R∗(BY ∗).
2 If x ∈ X and x∗ ∈ X∗ satisfy

q(x∗) = 1, x∗(x) = q(x),

then x∗ = x∗
0 + R∗(y∗) where

x∗
0 ∈ S(X,∥·∥)∗ , y∗ ∈ SY ∗ ,

x∗
0(x) = ∥x∥X and [R∗y∗](x) = y∗(Rx) = ∥Rx∥Y



The operator “R”

⋆ Define Rm : (c0, ||| · |||) −→ (ℓ1, | · |m) by

[Rm(x)](n) = m

2m

1
2n

v∗
n,m(x)

(
n ∈ N, x ∈ X

)
.

Then:
1 Rm is one-to-one since {v∗

n,m : n ∈ N} separates the points of (X, ||| · |||).
2 |Rm(x)|m ⩽ ∥Rm(x)∥1 ⩽ m

2m |||x||| for every x ∈ X.

⋆ Define R : (c0, ||| · |||) −→ W :=
[⊕

m∈N
(ℓ1, | · |m)

]
ℓ1

by

R(x) =
(
Rm(x)

)
m∈N

(x ∈ X).

1 For x ∈ X, ∥R(x)∥W =
∞∑

m=1

|Rm(x)|m ⩽

(
∞∑

m=1

m

2m

)
|||x|||.

2 If x ̸= 0, ALL coordinates of R(x) are non zero.
3 Hence, the function x 7−→ ∥R(x)∥W is smooth at c0 \ {0}.



The operator “R” II

⋆ Rm : (c0, ||| · |||) −→ (ℓ1, | · |m)

[Rm(x)](n) = m

2m

1
2n

v∗
n,m(x)

(
n ∈ N, x ∈ X

)
.

⋆ R : (c0, ||| · |||) −→ W :=
[⊕

m∈N
(ℓ1, | · |m)

]
ℓ1

R(x) =
(
Rm(x)

)
m∈N

(x ∈ X).

⋆ Let us calculate R∗:

Given (w∗
m)m∈N ∈ W ∗ =

[⊕
m∈N

(ℓ1, | · |m)∗
]

ℓ∞

R∗((w∗
m)
)

= T

(
∞∑

m=1

∞∑
n=1

w∗
m(n) m

2m

1
2n

en,m

)
∈ T (ℓ1(N × N)) .

Besides,
R∗((w∗

m)
)

= 0 =⇒ w∗
m(n) = 0 ∀n, m ∈ N.



Defining the norm

⋆ For x ∈ c0, define
p(x) := |||x||| + ∥R(x)∥W

and write X := (c0, p). X is smooth.

⋆ Consider x ∈ X, x∗ ∈ X∗, p(x) = p(x∗) = x∗(x) = 1, then

x∗ = x∗
0 + R∗(w∗)

with x∗
0 ∈ NA(c0, ||| · |||) with |||x∗

0||| = 1, w∗ = (w∗
m) ∈ SW ∗ satisfying

x∗
0(x) = |||x|||

⟨R∗((w∗
m)), x⟩ = ⟨(w∗

m), Rx⟩ =
∞∑

m=1

w∗
m(Rmx) = ∥Rx∥W =

∞∑
m=1

|Rmx|m.

Since Rm(x) ̸= 0, |w∗
m|∗m = 1 and w∗

m(Rmx) = |Rmx|m for all m ∈ N.



The main part of the proof

⋆ Pick x∗, z∗ ∈ NA(X,R) with p(x∗) = p(z∗) = 1 which are linearly
independent and that attain their norms at x, z ∈ SX, respectively.
⋆ Hence, x, z are linearly independent as the norm of X is smooth.

⋆ Suppose, for the sake of getting a contradiction, that
u∗ := tx∗ + (1 − t)z∗ ∈ NA(X,R) for some 0 < t < 1
and that it attains its norm at u ∈ SX.

⋆ There are x∗
0, z∗

0 , u∗
0 in S(X,|||·|||)∗ ∩ NA(X, ||| · |||),

sequences Ξ = (ξ∗
m)m∈N, Θ = (ζ∗

m)m∈N, Υ = (u∗
m)m∈N in SW ∗ satisfying

x∗ = x∗
0 + R∗(Ξ), z∗ = z∗

0 + R∗(Θ), tx∗ + (1 − t)z∗

p(tx∗ + (1 − t)z∗) = u∗
0 + R∗(Υ),

and

ξ∗
m(Rmx) = |Rmx|m, ζ∗

m(Rmz) = |Rmz|m, u∗
m(Rmu) = |Rmu|m.



The main part of the proof II

⋆ There are x∗
0, z∗

0 , u∗
0 in S(X,|||·|||)∗ ∩ NA(X, ||| · |||),

sequences Ξ = (ξ∗
m)m∈N, Θ = (ζ∗

m)m∈N, Υ = (u∗
m)m∈N in SW ∗ satisfying

x∗ = x∗
0 + R∗(Ξ), z∗ = z∗

0 + R∗(Θ), tx∗ + (1 − t)z∗

p(tx∗ + (1 − t)z∗) = u∗
0 + R∗(Υ),

and

ξ∗
m(Rmx) = |Rmx|m, ζ∗

m(Rmz) = |Rmz|m, u∗
m(Rmu) = |Rmu|m.

⋆ We have that

t x∗
0+(1−t)z∗

0 −p(tx∗+(1−t)z∗)u∗
0 = −R∗(t Ξ+(1−t)Θ−p(tx∗+(1−t)z∗)Υ

)
Therefore,

R∗(t Ξ + (1 − t)Θ − p(tx∗ + (1 − t)z∗)Υ
)

= 0,

hence

t ξ∗
m(n) + (1 − t)ζ∗

m(n) − p(tx∗ + (1 − t)z∗)u∗
m(n) = 0 (n, m ∈ N).



Getting the contradiction
t ξ∗

m(n) + (1 − t)ζ∗
m(n) = p(tx∗ + (1 − t)z∗)u∗

m(n) (n, m ∈ N).

⋆ p(tx∗ + (1 − t)z∗) < 1 (otherwise, x∗(u) = z∗(u) = 1)

⋆ Find δ > 0 and ϕ ∈ (c0, ||| · |||)∗ with |||ϕ||| = 1, ϕ(x) > δ, ϕ(y) > δ.

⋆ Consider m ∈ N such that 1
m

< δ and p(tx∗ + (1 − t)z∗) < 1 − 1
2m

⋆ As
{

v∗
n,m

|||v∗
n,m||| : n ∈ N

}
is dense in S(c0,|||·|||)∗ , we may find n ∈ N such that

v∗
n,m(x) > δ|||v∗

n,m||| and v∗
n,m(z) > δ|||v∗

n,m|||.

Hence,
{

[Rm(x)](n) = m
2m

1
2n v∗

n,m(x) ⩾ · · · ⩾ 1
2m

1
2n |||v∗

n,m||||Rmx|m
[Rm(z)](n) = m

2m
1

2n v∗
n,m(z) ⩾ · · · ⩾ 1

2m
1

2n |||v∗
n,m||||Rmz|m

So we get that
ξ∗

m(n) = ∥ξ∗
m∥∞ ∈

[
1 − 1

2m , 1
]

ζ∗
m(n) = ∥ζ∗

m∥∞ ∈
[
1 − 1

2m , 1
]

A clear contradiction!!



Remarks and questions



Some geometric properties of X

Minimal proximinal behaviour of two-codimensional subspaces of X
M ⩽ X of codimension two. Then

πM (BX) ∩ SX/M contains, at most, two distinct elements and their
opposites.
There are x1, x2 ∈ X such that{

x ∈ X : PM (x) ̸= ∅
}

⊆
(
Rx1 + M

)
∪
(
Rx2 + M

)
Some properties of the norm

X∗∗ is strictly convex,
hence X∗ is smooth and X is strictly convex (and smooth)



Extensions of the renorming
Other spaces
The process can be repeated in every separable Banach spaces containing an
isomorphic copy of c0 (e.g. in C[0, 1]).

Limitation (KLMW, 2020)
If Z has the RNP, then NA(Z) contains the Q linear span of an R-linearly
independent infinite set.

A question
Does X satisfies the analogous property for three (or more!) linearly
independent norm attaining functionals?
⋆ That is, given f, g, h ∈ NA(X) linearly independent,

t1 f + t2 g + t3 h /∈ NA(X) when t1, t2, t3 > 0?

Two results of Veselý, 2009
For every Z, NA(Z) ∩ SZ∗ is c-dense in SZ∗ .
If Z admits an equivalent F-differentiable norm (e.g. Z ≃ c0), then
NA(Z) ∩ SZ∗ is pathwise connected and locally pathwise connected.



Relation with norm attaining finite-rank operators
X, Y Banach spaces,
NA(X, Y ) :=

{
T ∈ L(X, Y ) : ∥T ∥ = max{∥T x∥ : x ∈ SX}

}
.

Open problem since the 1970’s (actually, since the 1960’s)
Is NA(X, ℓ2

2) dense in L(X, ℓ2
2) for all Xs?

⋆ Actually, is there a Banach space X such that NA(X, ℓ2
2) does not

contain rank-two operators?

How to get rank-two norm attaining operators from X into ℓ2
2?

(obvious) If X contains a two-codimensional proximinal subspace
(folklore) If NA(X) contains a two-dimensional subspace

(KLMW, 2020) If NA(X) contains a non-trivial cone

Hence, by now, X is the only possible counterexample to the second question

Open problem
Is there any rank-two operator in NA(X, ℓ2

2)?



Bibliography
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