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Notation

X, Y real or complex Banach spaces

K base field R or C,

BX = {x ∈ X : ∥x∥ ⩽ 1} closed unit ball of X,

SX = {x ∈ X : ∥x∥ = 1} unit sphere of X,

L(X, Y ) bounded linear operators from X to Y ,
∥T ∥ = sup{∥T (x)∥ : x ∈ SX} for T ∈ L(X, Y ),

W(X, Y ) weakly compact linear operators from X to Y ,

K(X, Y ) compact linear operators from X to Y ,

FR(X, Y ) bounded linear operators from X to Y with finite rank,

if Y = K, X∗ = L(X, Y ) topological dual of X,

Observe that

FR(X, Y ) ⊂ K(X, Y ) ⊂ W(X, Y ) ⊂ L(X, Y ).



The talks will be mainly based on the paper

M. Mart́ın.
A Banach space whose set of norm attaining functionals is
algebraically trivial
J. Funct. Anal. 288 (2025), 110815



Proximinality
M ⩽ X is proximinal if

dist(x, M) = min
{

∥x − m∥ : m ∈ M
}

Norm attaining functionals
NA(X) =

{
f ∈ X∗ : ∥f∥ = |f(x)| for some x ∈ SX

}
Relationship
M ⩽ X of finite-codimension:

M proximinal =⇒ M⊥ ⊂ NA(X)
The converse is not true in general
If X/M is strictly convex, M⊥ ⊂ NA(X) =⇒ M proximinal

Two old questions (answered nowadays)
(S) (I. Singer, 1974) Is there always a proximinal subspace of codimension 2?
(G) (G. Godefroy, 2001) Does NA(X) always contain a linear subspace of

dimension 2?



Read’s construction and Rmoutil result
R is a renorming of c0:
Enumerate c00(Q) = {u1, u2, . . . } so that every element is repeated infinitely
often.
Take a sequence of integers (an) such that

ak > max supp uk, ak ⩾ ∥uk∥ℓ1 .

Renorm c0 by

p(x) = ∥x∥∞ +
∞∑

k=1

2−a2
k

∣∣⟨x, uk − eak ⟩
∣∣

where ∥ · ∥∞ is the usual norm of c0 and ⟨·, ·⟩ is the usual duality (c0, ℓ1).
R = (c0, p) is the Read space

Theorem (Read, 2018, proved by hammer)
R does not contain proximinal subspaces of finite codimension greater than
or equal to two.

Theorem (Rmoutil, 2017)
NA(R) does not contain two dimensional subspaces.



Other “Read norms”

We say that a complete norm p on X is a Read norm if NA(X, p) contains no
two-dimensional subspace (hence (X, p) contains no proximinal subspaces of
finite codimension greater than one).

Theorem (Kadets–López–Mart́ın–Werner, 2020)
Every closed subspace X of ℓ∞ containing an isomorphic copy of c0 can be
renormed with a Read norm.

Indeed, we may find {v∗
n} ⊂ BX∗ such that the norm

p(x) = ∥x∥∞ + ρ

∞∑
n=1

1
2n

v∗
n(x)

(
x ∈ X

)
is an (1 + ρ)-equivalent Read norm.

(X, p) is strictly convex
If X∗ is separable, (X, p)∗∗ is strictly convex



Norm attaining operators I (All operators)

X, Y Banach spaces,
NA(X, Y ) =

{
T ∈ L(X, Y ) : ∥T ∥ = max{∥T x∥ : x ∈ SX}

}
.

When is NA(X, Y ) dense in L(X, Y )?

Y = K ✓ (Bishop–Phelps)

X = L1[0, l] or X = C(K) or X = c0 ✗ (Lindenstrauss)

X reflexive ✓ (Lindenstrauss), X RNP ✓ (Bourgain)

X up to renorming in the separable case ✓ (Schachermayer)

c0 ⊂ Y ⊂ ℓ∞ canonical copies ✓ (Lindenstrauss)

Y finite-dimensional polyhedral ✓ (Lindenstrauss)

Y = ℓp 1 < p < ∞ ✗ (Gowers)

Y = ℓ1 or Y strictly convex infinite-dimensional ✗ (Acosta)

Y infinite ℓp-sum of finite-dimensional spaces ✗ (Fovelle)

Y up to renorming ✓ (Partington)

Y polyhedral with Y ∗ ≡ ℓ1 or Y ⩽ c0(Γ) ✓ (Jung–Mart́ın–Rueda)



Norm attaining operators II (Compact operators)

X, Y Banach spaces,
NA(X, Y ) =

{
T ∈ L(X, Y ) : ∥T ∥ = max{∥T x∥ : x ∈ SX}

}
.

When is NA(X, Y ) ∩ K(X, Y ) dense in K(X, Y )?

⋆ Very often:
All the positive cases in the previous slide: X RNP, c0 ⊂ Y ⊂ ℓ∞
canonical copies, up to renorming for X separable or for Y arbitrary ✓
(adapting proofs)
X = C(K) or X = L1(µ) or Y ∗ ≡ L1(µ) or Y = L1(µ) ✓
(Johnson–Wolfe)
If X∗ has the metric π-property with w∗-projections ✓ (Johnson–Wolfe)
Y polyhedral with the AP ✓ (Johnson–Wolfe)
Y uniform algebra ✓ (Cascales–Guirao–Kadets)
X ⩽ c0 with monotone basis or X∗ ≡ ℓ1 ✓ (Mart́ın)

⋆ But not always:
Exists X ⩽ c0, Y ⩽ ℓp ✗ (Mart́ın)
X can be taken with basis (but X∗ fails the AP) ✗ (Mart́ın)



Norm attaining operators III (Finite-rank operators)

X, Y Banach spaces,
NA(X, Y ) =

{
T ∈ L(X, Y ) : ∥T ∥ = max{∥T x∥ : x ∈ SX}

}
.

When is F(X, Y ) contained in NA(X, Y ) ∩ F(X, Y ) ?

⋆ Very often:
All the positive cases in the two previous slides: X RNP, c0 ⊂ Y ⊂ ℓ∞
canonical copies, up to renorming for X separable or for Y arbitrary,
X = C(K), X = L1(µ), Y ∗ ≡ L1(µ), Y = L1(µ), Y polyhedral. . . ✓
(adapting proofs)
If NA(X) contains a dense linear subspace ✓
(Kadets–López–Mart́ın–Werner)

This covers all the previous results with some strong form of the AP in the
dual.
But also gives: X proximinal subspace of c0 or X = K(ℓ2, ℓ2) or X c0-sum
of reflexive spaces (maybe without the AP)

⋆ We are not aware of any negative example!

⋆ Is there X such that NA(X, ℓ2
2) consists of rank-one operators ?

⋆ How can we get rank-two operators in NA(X, ℓ2
2) ?



Read norm and the norms of the further examples

⋆ ALL those norms are of the form

p(x) = ∥x∥ +
∞∑

n=1

ρn|v∗
n(x)| = ∥x∥ + ∥R(x)∥1 (x ∈ X)

where
∥ · ∥ is the original norm of X,
R : X −→ ℓ1 is compact and one-to-one,
it is very important that the range of R is ℓ1.

⋆ We may construct a posteriori smooth Read norms, but they also satisfy
that their sets of norm attaining functionals contain non-trivial cones!!



Comments on the construction of KLMW 2020



The construction of KLMW 2020: A tentative calculation

p(x) = ∥x∥ +
∑

2−n|v∗
n(x)|. Then B(X∗,p∗) = BX∗ +

∑
2−n[−v∗

n, v∗
n]

(Minkowski sum)

Let x∗ ∈ NA(X, p), ∥x∗∥ = 1, be norm attaining at x ; then

x∗ = x∗
0 +
∑

2−ntnv∗
n

for some x∗
0 ∈ NA(X), ∥x∗

0∥ = 1, and tn = sign v∗
n(x) whenever v∗

n(x) is
nonzero.
Write the same decomposition for
y∗ ∈ NA(X, p), ∥y∗∥ = 1, norm attaining at y :

y∗ = y∗
0 +

∑
2−nt′

nv∗
n.

Let’s try to prove that x∗ + y∗ /∈ NA(X, p): Otherwise we would have a similar
decomposition for z∗ = (x∗ + y∗)/∥x∗ + y∗∥:

z∗ = z∗
0 +

∑
2−nsnv∗

n.

Sort the items, setting λ = ∥x∗ + y∗∥:

0 = x∗ + y∗ − λz∗ = [x∗
0 + y∗

0 − λz∗
0 ] +

[∑
(tn + t′

n − λsn)v∗
n

]



The construction of KLMW 2020: Wish list

0 = [x∗
0 + y∗

0 − λz∗
0 ] +

[∑
(tn + t′

n − λsn)v∗
n

]
We now wish to select the v∗

n to be sort of “orthogonal” to span(NA(X))
(which contains the first bracket) so that both brackets vanish.

In addition we wish the v∗
n to have some Schauder basis character so that we

can deduce from
∑

(tn + t′
n − λsn)v∗

n = 0 that all tn + t′
n − λsn = 0.

Finally we wish the support points x and y to be distinct , and we wish
the span of the v∗

n to be dense enough to separate x and y for many n, i.e.,
v∗

n(x) < 0 < v∗
n(y) and thus tn + t′

n = 0 fairly often, while at the same time
sn ̸= 0 for at least one of those n.

This contradiction would show that x∗ + y∗ /∈ NA(X, p).

If x = y, then x ̸= −y, getting x∗ − y∗ /∈ NA(X, p).



The new construction





The needed tools



Operator ranges

Operator ranges
X Banach space, Y linear subspace of X. Y is an operator range if there exists
Z infinite-dimensional Banach space, T : Z −→ X one-to-one continuous with
T (Z) = Y .
⋆ Equivalently, there is a complete norm ∥ · ∥1 on Y dominating ∥ · ∥.

Example (Important example in ℓ1)
Exists Y ⊂ ℓ1 operator range such that

#
(
N \ supp(y)

)
< ∞

(
y ∈ Y \ {0}

)
Theorem (Main property for us)
Y separable operator range. Exists T : ℓ1(N × N) −→ Y one-to-one,
∥T ∥ = 1, with {

T (en,m)
∥T (en,m)∥ : n ∈ N

}
= SY (m ∈ N).



An smooth norm on c0 with small NA set

Theorem (Debs–Godefroy–Saint-Raymond, 1995)
X separable, S : ℓ2 −→ X with dense range. We define an equivalent norm
| · | on X such that

B(X,|·|) = BX + S(Bℓ2 ).

Then
(X, | · |) is smooth,
NA
(
(X, | · |)

)
= NA(X).

Theorem (Godefroy–Yahdi–Kaufman, 2001)
There is an equivalent norm | · | on c0 such that

|u|∗ =
(
∥u∥2

1 + ∥u∥2
2
) 1

2 (u ∈ ℓ1).

Then
(c0, | · |)∗ is LUR, hence (c0, | · |) is Fréchet smooth,
NA
(
(c0, | · |)

)
=
{

u ∈ ℓ1 : # supp(u) < ∞
}

.



The first tool

The first tool
There is an smooth equivalent norm ||| · ||| on c0 and a one-to-one norm-one
operator T : ℓ1(N × N) −→ (c0, ||| · |||)∗ such that(

span NA(c0, ||| · |||)
)

∩ T
(
ℓ1(N × N)

)
= {0},{

T (en,m)
|||T (en,m)||| : n ∈ N

}
is dense in S(c0,|||·|||)∗ for every m ∈ N.



Calculating the set of norm-attaining functionals when adding two norms

Lemma A
X, Y Banach spaces, R : X −→ Y , define

q(x) = ∥x∥X + ∥Rx∥Y (x ∈ X).

Then:
1 B(X,q)∗ = B(X,∥·∥)∗ + R∗(BY ∗).
2 If x ∈ X and x∗ ∈ X∗ satisfy

q(x∗) = 1, x∗(x) = q(x),

then x∗ = x∗
0 + R∗(y∗) where

x∗
0 ∈ S(X,∥·∥)∗ , y∗ ∈ SY ∗ , x∗

0(x) = ∥x∥X and y∗(Rx) = ∥Rx∥Y



Smooth versions of ℓ1 whose NA sets behave similar to ℓ1

Lemma B
Φ sequence in R+, ∥Φ∥ < 1, SΦ : ℓ2 −→ ℓ1, SΦ(a) = Φ · a. Consider an
equivalent norm | · |Φ in ℓ1 such that

B(ℓ1,|·|Φ) = Bℓ1 + SΦ(Bℓ2 ).

Then
|f |∗Φ = ∥f∥∞ + ∥S∗

Φ(f)∥2.
(ℓ1, | · |Φ)∗ is strictly convex, so (ℓ1, | · |Φ) is smooth.
x ∈ ℓ1, f ∈ ℓ∞, |f |∗Φ = 1, ⟨f, x⟩ = |x|Φ, and |x(n)| > Φ(n)|x|Φ

=⇒
{

f(n) = sign(x(n))∥f∥∞

∥f∥∞ ⩾ 1 − ∥Φ∥1.



Smooth versions of ℓ1 whose NA sets behave similar to ℓ1 II

Observation C
{Zm : m ∈ N} smooth spaces, Z =

[⊕
m∈N Zm

]
ℓ1

, Z∗ =
[⊕

m∈N Z∗
m

]
ℓ∞

.

z = (zm) ∈ Z, f = (fm) ∈ Z∗ with ∥f∥∞ = 1, ⟨f, z⟩ = ∥z∥1,
=⇒ fm(zm) = ∥zm∥ for every m ∈ N, hence ∥fm∥ = 1 when zm ̸= 0.

As a consequence, the norm of Z is smooth at every element z = (zm) ∈ X
such that ALL coordinates zm are not null.



The new construction



Before defining the norm

⋆ Use the first tool to take an smooth equivalent norm ||| · ||| on c0 and a
one-to-one norm-one operator T : ℓ1(N × N) −→ (c0, ||| · |||)∗ such that(

span NA(c0, ||| · |||)
)

∩ T
(
ℓ1(N × N)

)
= {0},

Writing v∗
n,m := T (en,m), we have that

{
v∗

n,m

|||v∗
n,m||| : n ∈ N

}
is dense in

S(c0,|||·|||)∗ for every m ∈ N.

⋆ Fix m ∈ N. Let | · |m be the equivalent norm on ℓ1 given by Lemma B for
the sequence Φm(n) = 1

2m

1
2n

|||v∗
n,m||| for every n ∈ N. Then:

1 (ℓ1, | · |m)∗ is strictly convex, so (ℓ1, | · |m) is smooth;
2 for f ∈ (ℓ1, | · |m)∗, ∥f∥∞ ⩽ |f |∗m;
3 if x ∈ (ℓ1, | · |m), f ∈ (ℓ1, | · |m)∗, and n ∈ N satisfy that

|f |∗m = 1, ⟨f, x⟩ = |x|m, |x(n)| >
1

2m

1
2n

|||v∗
n,m||||x|m,

then

f(n) = sign(x(n))∥f∥∞ and ∥f∥∞ ∈
[
1 − 1

2m
, 1
]

.



Before defining the norm II

⋆ Define Rm : (c0, ||| · |||) −→ (ℓ1, | · |m) by

[Rm(x)](n) = m

2m

1
2n

v∗
n,m(x)

(
n ∈ N, x ∈ X

)
.

Then:
1 Rm is one-to-one since {v∗

n,m : n ∈ N} separates the points of (X, ||| · |||).
2 |Rm(x)|m ⩽ ∥Rm(x)∥1 ⩽ m

2m |||x||| for every x ∈ X.

⋆ Define R : (c0, ||| · |||) −→ W :=
[⊕

m∈N
(ℓ1, | · |m)

]
ℓ1

by

R(x) =
(
Rm(x)

)
m∈N

(x ∈ X).

1 For x ∈ X, ∥R(x)∥W =
∞∑

m=1

|Rm(x)|m ⩽

(
∞∑

m=1

m

2m

)
|||x|||.

2 If x ̸= 0, ALL coordinates of R(x) are non zero.
3 Hence, the function x 7−→ ∥R(x)∥W is smooth at c0 \ {0}.



Before defining the norm III

⋆ Rm : (c0, ||| · |||) −→ (ℓ1, | · |m)

[Rm(x)](n) = m

2m

1
2n

v∗
n,m(x)

(
n ∈ N, x ∈ X

)
.

⋆ R : (c0, ||| · |||) −→ W :=
[⊕

m∈N
(ℓ1, | · |m)

]
ℓ1

R(x) =
(
Rm(x)

)
m∈N

(x ∈ X).

⋆ Let us calculate R∗:

Given (w∗
m)m∈N ∈ W ∗ =

[⊕
m∈N

(ℓ1, | · |m)∗
]

ℓ∞

R∗((w∗
m)
)

= T

(
∞∑

m=1

∞∑
n=1

w∗
m(n) m

2m

1
2n

en,m

)
∈ Y .

Besides,
R∗((w∗

m)
)

= 0 =⇒ w∗
m(n) = 0 ∀n, m ∈ N.



Defining the norm

⋆ For x ∈ c0, define
p(x) := |||x||| + ∥R(x)∥W

and write X := (c0, p). X is smooth.

⋆ Consider x ∈ X, x∗ ∈ X∗, p(x) = p(x∗) = x∗(x) = 1, then

x∗ = x∗
0 + R∗(w∗)

with x∗
0 ∈ NA(c0, ||| · |||) with |||x∗

0||| = 1, w∗ = (w∗
m) ∈ SW ∗ satisfying

x∗
0(x) = |||x|||

⟨R∗((w∗
m)), x⟩ = ⟨(w∗

m), Rx⟩ =
∞∑

m=1

w∗
m(Rmx) = ∥Rx∥W =

∞∑
m=1

|Rmx|m.

Since Rm(x) ̸= 0, |w∗
m|∗m = 1 and w∗

m(Rmx) = |Rmx|m for all m ∈ N.



The main part of the proof

⋆ Pick x∗, z∗ ∈ NA(X,R) with p(x∗) = p(z∗) = 1 which are linearly
independent and that attain their norms at x, z ∈ SX, respectively.
⋆ Hence, x, z are linearly independent as the norm of X is smooth.

⋆ Suppose, for the sake of getting a contradiction, that
u∗ := tx∗ + (1 − t)z∗ ∈ NA(X,R) for some 0 < t < 1
and that it attains its norm at u ∈ SX.

⋆ There are x∗
0, z∗

0 , u∗
0 in S(X,|||·|||)∗ ∩ NA(X, ||| · |||),

sequences Ξ = (ξ∗
m)m∈N, Θ = (ζ∗

m)m∈N, Υ = (u∗
m)m∈N in SW ∗ satisfying

x∗ = x∗
0 + R∗(Ξ), z∗ = z∗

0 + R∗(Θ), tx∗ + (1 − t)z∗

p(tx∗ + (1 − t)z∗) = u∗
0 + R∗(Υ),

and

ξ∗
m(Rmx) = |Rmx|m, ζ∗

m(Rmz) = |Rmz|m, u∗
m(Rmu) = |Rmu|m.



The main part of the proof II

⋆ There are x∗
0, z∗

0 , u∗
0 in S(X,|||·|||)∗ ∩ NA(X, ||| · |||),

sequences Ξ = (ξ∗
m)m∈N, Θ = (ζ∗

m)m∈N, Υ = (u∗
m)m∈N in SW ∗ satisfying

x∗ = x∗
0 + R∗(Ξ), z∗ = z∗

0 + R∗(Θ), tx∗ + (1 − t)z∗

p(tx∗ + (1 − t)z∗) = u∗
0 + R∗(Υ),

and

ξ∗
m(Rmx) = |Rmx|m, ζ∗

m(Rmz) = |Rmz|m, u∗
m(Rmu) = |Rmu|m.

⋆ We have that

t x∗
0+(1−t)z∗

0 −p(tx∗+(1−t)z∗)u∗
0 = −R

(
t Ξ+(1−t)Θ−p(tx∗+(1−t)z∗)Υ

)
Therefore,

R
(
t Ξ + (1 − t)Θ − p(tx∗ + (1 − t)z∗)Υ

)
= 0,

hence

t ξ∗
m(n) + (1 − t)ζ∗

m(n) − p(tx∗ + (1 − t)z∗)u∗
m(n) = 0 (n, m ∈ N).
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