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Abstract. We introduce slicely countably determined points (SCD points) of a bounded and convex
subset of a Banach space which extends the notions of denting points, strongly regular points and much
more. We completely characterize SCD points in the unit balls of L1-preduals. We study SCD points
in direct sums of Banach spaces and obtain that an infinite sum of Banach spaces may have an SCD
point despite the fact that none of its components have it. We then prove sufficient conditions to get
that an elementary tensor x⊗y is an SCD point in the unit ball of the projective tensor product X⊗̂πY .
Regarding Lipschitz-free spaces on complete metric spaces, we show that norm-one SCD points of their
unit balls are exactly the ones that can be approximated by convex combinations of denting points of
the unit ball. Finally, as applications, we prove a new inheritance result for the Daugavet property to
its subspaces, we show that separable Banach spaces for which every convex series of slices intersects
the unit sphere must contain an isomorphic copy of ℓ1, and we get pointwise conditions on an operator
on a Banach space with the Daugavet property to satisfy the Daugavet equation.

1. Introduction

A well-investigated geometric property of Banach spaces is the Radon–Nikodým property (RNP for
short) because it emphasizes the interplay between the topological, geometrical, and measure theoret-
ical structures of a Banach space. The RNP is known to have plentiful equivalent characterizations
[9, p. 217], e.g., a Banach space has the RNP if and only if every non-empty closed bounded convex
subset is dentable.

A closely related and equally important geometric property of Banach spaces is Asplundness. A
Banach space X is Asplund if and only if every continuous convex real-valued function is Fréchet
differentiable on a dense set. It is important to recall that a Banach space is Asplund if and only if
its dual space has the RNP.

In [4], A. Avilés, V. Kadets, M. Mart́ın, J. Meŕı, and V. Shepelska introduced a (non-trivial) class
of Banach spaces which contains both separable spaces with the RNP and separable Asplund spaces.
Actually, the definition is given for bounded convex subsets as follows. A bounded convex subset A
of a (real or complex) Banach space X is an SCD set if there is a sequence {Sn : n ∈ N} of slices of
A such that A ⊆ conv(B) whenever B ⊆ A intersects all the Sn’s [4, Definition 2.5]. Observe that
every SCD set is clearly separable. It is proved in the same paper that the sequence of slices in the
definition of SCD set can be replaced equivalently by a sequence of relative weakly open sets, allowing
to get further examples. The space X is called slicely countably determined (SCD for short) if every
bounded convex subset A of X is SCD. Examples of SCD spaces are, on the one hand, those separable
spaces with the RNP (actually, separable spaces with the convex point of continuity property, aka
CPCP or even strongly regular spaces) and, on the other hand, separable Asplund spaces (actually,
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separable spaces which do not contain an isomorphic copy ℓ1) [4, Examples 3.2]. The unit ball of every
Banach space with a one-unconditional basis is SCD [24, Theorem 3.1] and so is the unit ball of a
locally uniformly rotund (aka LUR) separable Banach space [4, Example 2.10]. It is an open question
whether every Banach space with an unconditional basis is an SCD space. On the contrary, the spaces
C[0, 1] and L1[0, 1] fail to be SCD as their unit balls fail to be SCD sets [4, Example 2.13]. The same
happens for all (separable) Banach spaces with the Daugavet property. Recall that a Banach space X
has the Daugavet property [26] if every rank-one bounded linear operator T on X satisfies the norm
equality

∥ Id+T∥ = 1 + ∥T∥ (DE)

where Id is the identity operator; in this case, all compact or weakly compact operators also satisfy
the same norm equality [26]. Let us comment that these positive and negative examples show that
being an SCD space is a non-trivial isomorphic property which covers the RNP and Asplundness (and
much more!) in the separable case being, as far as we know, the first property of this kind. SCD sets
and SCD spaces have been deeply used to get interesting results on the Daugavet property, numerical
index one spaces, spear operators. . . (see [4, 22, 24, 25], among other references).

The aim of this paper is to introduce and examine SCD points (see Definition 2.5) in order to study
the SCD phenomena also in non-separable spaces. Equipped with this new pointwise view, we can
even deduce new results about separable Banach spaces as well.

We present now the main contributions and the organization of the paper. Section 2 is devoted
to introducing the concept of an SCD point, its equivalent formulations, first examples, and some
preliminary properties, as the fact that the set of SCD points is always relatively closed and convex,
and the relation between the SCD points of a set and those of its closure. In the second part of this
section, we focus on SCD points of the unit ball. In particular, we prove that if the dual of a Banach
space fails the (−1)-BCP, then its unit ball has no SCD points (see Theorem 2.24). This theorem is an
extension of the result that unit balls of Daugavet spaces fail to have any SCD point (Example 2.22).
As a consequence, we can characterize all the SCD points in an L1-predual (see Theorem 2.25).

In Section 3, we prove some stability results of SCD points by considering direct sums of Banach
spaces. In particular, we will describe SCD points in the unit ball of ℓ1-sums and ℓ∞-sums of Banach
spaces (see Propositions 3.3 and 3.5). Additionally, we prove a result, which guarantees the existence of
SCD points in the unit ball of any infinite ℓp-sum of Banach spaces for 1 < p < ∞ (see Proposition 3.7).
This enables us, for instance, to find a separable Banach space having only one SCD point in its unit
ball.

Section 4 deals with SCD points in the unit ball of the projective tensor product of Banach spaces.
We prove two sufficient conditions for an elementary tensor to be an SCD point in the unit ball (see
Theorems 4.1 and 4.4), and using these results, we answer some questions in the context of SCD sets
as well.

Section 5 is dedicated to the characterization of SCD points in the unit ball of Lipschitz-free spaces.
In particular, it is shown that, for complete metric spaces, norm-one SCD points of the unit ball are
precisely the ones that can be approximated by convex combinations of denting points of the unit ball
(see Theorem 5.1). Additionally, for compact metric spaces, a similar result holds when we consider
denting points instead of strongly exposed points (see Theorem 5.3). Using this method, we are able
to partially describe SCD sets in Lipschitz-free spaces too.

In Section 6, we provide applications of the theory developed for SCD points. Firstly, a new
inheritance result for the Daugavet property to its subspaces is proved (see Theorem 6.1). Secondly,
we are able to prove that separable Banach spaces in which every convex series of slices of the unit
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ball intersects the unit sphere must contain an isomorphic copy of ℓ1 (see Theorem 6.3). Finally, we
also provide, using SCD points, a sufficient condition for a bounded linear operator on a Banach space
with the Daugavet property to satisfy (DE) (see Theorem 6.5).

We finish this introduction with some notation. Throughout the text, we will use standard notation,
e.g. as in the textbook [10]. For a given Banach space X over the field K (R or C), we denote
respectively by BX and SX the closed unit ball and the unit sphere of X, and we denote by X∗ the
topological dual of X. Given two Banach spaces X and Y , we denote by L(X,Y ) the space of bounded
linear operators T : X → Y , endowed with the operator norm and we denote by B(X × Y ) the space
of bounded bilinear maps B : X × Y → K, endowed with its usual norm given by

∥B∥ = sup{|B(x, y)| : x ∈ BX , y ∈ BY }.

If A is a non-empty subset of a Banach space X, we will denote respectively by conv(A), conv(A),
and diam(A) the convex hull, the closed convex hull, and the diameter of A. The set of extreme points
of A will be denoted as ext(A). By a slice of A we mean a non-empty intersection of A with an open
half-space, which can be always written in the form

S(A, x∗, α) :=

{
x ∈ A : Rex∗(x) > sup

b∈A
Rex∗(b)− α

}
,

for suitable x∗ ∈ X∗ and α > 0. A convex combination of slices (resp., convex series of slices) of A is
a set of the form

n∑
i=1

λiS(A, x
∗
i , αi)

(
resp.,

∞∑
i=1

λiS(A, x
∗
i , αi)

)
,

where λ1, . . . , λn ⩾ 0 and
∑n

i=1 λi = 1 (resp., λi ⩾ 0 and
∑∞

i=1 λi = 1).

Let A ⊆ X be convex, and bounded. A point x ∈ A is called a strongly exposed point of A, if there
exists x∗ ∈ X∗ satisfying that for all sequences (xn) ⊂ A with Re x∗(xn) → supARe x∗ = Re x∗(x),
it follows that xn → x. A weaker version of a strongly exposed point is a denting point. An element
x ∈ A is called a denting point of A, if for every ε > 0 there exists a slice S of A such that x ∈ S and
diam(S) ⩽ ε. We denote respectively by str-exp(A) and dent(A) the set of all strongly exposed points
and the set of all denting points of A. Finally, recall that an extreme point of A is called a preserved
extreme point, if it is an extreme point of the weak* closure of A in X∗∗. It is well known that the
open slices containing a preserved extreme point x0 ∈ A form a basis of the weak topology of A at x0
[27].

Finally, let us give the notation for absolute sums of Banach spaces. If X and Y are Banach spaces
and N is an absolute norm on R2, we denote by X ⊕N Y the product space X × Y endowed with
the norm ∥(x, y)∥ = N(∥x∥, ∥y∥) and we call it the (N -)absolute sum of X and Y . When N is one of
the ℓp-norms in R2 (for 1 ⩽ p ⩽ ∞) we just write X ⊕p Y . When dealing with a sequence of spaces
{Xn}n∈N, given a Banach space of sequences (E, | · |), we write[⊕∞

n=1
Xn

]
E

to denote the E-sum of the sequence of spaces: those (xn) ∈
∏∞

n=1Xn such that

∥(xn)∥E :=
∣∣(∥xn||)∣∣ < ∞.

In this way,
(
[
⊕∞

n=1Xn]E , ∥ · ∥E
)
is a Banach space. The most interesting cases for us are E = c0 and

E = ℓp with 1 ⩽ p ⩽ ∞. For background on absolute norms and absolute sums, we refer the reader
to [5, 17, 28, 29].
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2. Slicely countably determined points

We introduce here the main concept to deal in this manuscript: SCD points. We divide this
preliminary section in two parts: first we give the definition, properties, and examples for general
bounded convex sets; later, in a second subsection, we particularize the study for SCD points of the
unit ball.

2.1. Definition and first examples. Firstly, we adapt the idea of a determining sequence of subsets
to a point.

Definition 2.1. Let X be a Banach space and A ⊆ X bounded and convex. We say that a countable
collection {Vn : n ∈ N} of (non-empty) subsets of A is determining for a point a ∈ A if a ∈ conv(B)
whenever B ⊆ A intersecting all the sets Vn.

Remark 2.2. We can assume the set B in Definition 2.1 to be convex. Indeed, assume that we have
{Vn : n ∈ N} such that for every convex subset C ⊆ A, satisfying C ∩ Vn ̸= ∅ for every n ∈ N, we have
a ∈ conv(C) = C. Let B ⊆ A be a set satisfying B ∩ Vn ̸= ∅ for every n ∈ N. Then conv(B) ⊆ A
and conv(B) also intersects every Vn, hence a ∈ conv(conv(B)) = conv(B), meaning that the original
condition also holds. The converse implication is evident.

First we give some equivalent conditions for a sequence of subsets to be determining for a point.
These characterizations will be used throughout the paper. Note that this discussion is similar to the
one given in [4] for sequences determining sets, see [4, Definition 2.1 and Proposition 2.2].

Proposition 2.3. Let X be a Banach spaces, let A ⊆ X be bounded and convex, and a ∈ A. For a
sequence {Vn : n ∈ N} of subsets of A, the following conditions are equivalent:

(i) {Vn : n ∈ N} is determining for a;
(ii) for every slice S of A with a ∈ S, there is m ∈ N such that Vm ⊆ S;
(iii) if xn ∈ Vn for every n ∈ N, then a ∈ conv({xn : n ∈ N}).

Proof. (i) ⇒ (ii). Let S be a slice of A with a ∈ S. Assume on the contrary that Vn ̸⊆ S for every
n ∈ N. Therefore, (A \ S) ∩ Vn ̸= ∅ for all n ∈ N. By (i) a ∈ conv(A \ S) = A \ S, a contradiction.

(ii) ⇒ (iii). Let us prove the contrapositive. Assume that for every n ∈ N there exists xn ∈ Vn such
that a ̸∈ C := conv({xn : n ∈ N}). By Hahn-Banach separation theorem, there exists a functional
x∗ ∈ SX∗ such that

Rex∗(a) > sup
c∈C

Rex∗(c).

Let α := supb∈ARex∗(b)− supc∈C Rex∗(c) > 0. Then, a ∈ S(A, x∗, α), but for arbitrary n ∈ N we get
Vn ̸⊆ S(A, x∗, α), because xn ∈ Vn and

Rex∗(xn) ⩽ sup
c∈C

Rex∗(c) = sup
b∈A

Rex∗(b)− α,

hence xn ̸∈ S(A, x∗, α).
(iii) ⇒ (i). Immediate. □

The following observation is clear.

Remark 2.4. Let X be a Banach spaces, let A ⊆ X be bounded and convex, and a ∈ A. If
{Vn : n ∈ N} is determining for a, then so is every countable collection {Wn : n ∈ N} such that
Wn ⊂ Vn for every n ∈ N.
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We can now give the main definition of the paper.

Definition 2.5. Let X be a Banach space and assume that A ⊆ X is bounded and convex. A point
a ∈ A is called a slicely countably determined point of A (an SCD point of A for short), if there exists
a determining sequence of slices of A for the point a. We denote the set of all SCD points of A by
SCD(A).

The following easy lemmata on the set of SCD points of a given bounded convex set will be very
useful later on and will provide the first examples. The first result shows properties of the set SCD(A)
for a given set A.

Lemma 2.6. Let X be a Banach space and assume that A ⊆ X is bounded and convex. Then, SCD(A)
is convex and closed (relative to A). Moreover, if A is balanced, then so is SCD(A).

Proof. Firstly, it is easy to see that SCD(A) is a (relative) closed set. Indeed, suppose that (an) ⊂
SCD(A) and limn an = a ∈ A. For every n ∈ N, there is a countable family {Sn,m : m ∈ N} which is
determining for an. Now, the countable family{

Sn,m : m ∈ N, n ∈ N}
is determining for a: given a slice S of A containing a, as S is relatively open in A, then an ∈ S for
some n ∈ N and, as an ∈ SCD(A), there is m ∈ N such that Sn,m ⊂ S; hence, a ∈ SCD(A).

For the convexity, fix a, b ∈ SCD(A) and λ ∈ (0, 1). Let us show that λa + (1 − λ)b ∈ SCD(A).
By assumption there exist two determining sequences of slices for a and for b. Consider the union of
these sequences. If we have B ⊆ A such that B intersects all slices in the union, we have a ∈ conv(B)
and b ∈ conv(B). It is clear that in this case λa+ (1− λ)b ∈ conv(B). We have shown that SCD(A)
is convex.

Assume finally that A is balanced. We aim to show that SCD(A) is also balanced. By the convexity
of A, it suffices to show that for every a ∈ SCD(A) and |λ| = 1 one has that λa ∈ SCD(A). Since
a ∈ SCD(A), there is a determining sequence of slices Sn := S(A, x∗n, αn) for a. It is routine to show
that Tn := S(A, λx∗n, αn) is a determining sequence of slices for λa. □

The next lemma allows us to deal in some cases just with closed sets.

Lemma 2.7. Let X be a Banach space and let A ⊂ X be convex and bounded. Then,

SCD
(
A
)
∩A = SCD(A).

Proof. Suppose that a ∈ A∩SCD
(
A
)
. Then, there is a sequence of slices {Sn} of A which is determining

for a in A. Define Tn = Sn ∩ A for every n ∈ N, which are (non-empty) slices of A, and let us prove
that {Tn} is determining for a in A. Indeed, let B ⊂ A such that B ∩ Tn ̸= ∅ for every n ∈ N. Then,
B ⊂ A clearly satisfies that B ∩ Sn ̸= ∅ for every n ∈ N, hence a ∈ conv(B), giving that {Tn} is
determining.

Conversely, suppose that a ∈ SCD(A) and let us show that a ∈ SCD
(
A
)
. Let Sn := S(A, x∗n, αn)

with x∗n ∈ X∗, αn > 0 for every n ∈ N be a determining sequence for a in A. Define for each n ∈ N
the slice

Tn = S
(
A, x∗n, αn)

which are slices of A. Let now B ⊂ A satisfies that B ∩ Tn ̸= ∅ for every n ∈ N. Taking into account
that supARe x∗n = supARe x∗n and that the slices are open, it follows that[

A ∩ (B + 1
mBX)

]
∩Sn ̸= ∅

for every m ∈ N. We get that a ∈ conv
(
B + 1

mBX

)
for every m ∈ N, hence a ∈ conv(B). □
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The next lemma describes a precise connection between SCD sets and SCD points, and confirms
that Definition 2.5 is indeed a natural extension.

Lemma 2.8. Let X be a Banach space and assume that A ⊆ X is bounded and convex. Then, the
following statements hold:

(1) If A is an SCD set, then every a ∈ A is an SCD point.
(2) If there is a countable dense subset of A consisting of SCD points of A, then A is SCD.
(3) In particular, if every a ∈ A is an SCD point and A is separable, then A is an SCD set.

Proof. (1) is clear by the corresponding definitions. Let us prove (2). We need to find a determining
sequence of slices for A. By assumption we have a countable set {xn : n ∈ N} ⊂ SCD(A), which is
dense in A. Therefore, for every xn we have a determining sequence of slices {Sm

n : m ∈ N}. Let
us now consider the countable collection of slices {Sm

n : n,m ∈ N}. To show that this collection is
determining for A, we take an arbitrary slice S of A. Since the set {xn : n ∈ N} is dense, there exists
n ∈ N such that xn ∈ S and then, by assumption, there also exists m ∈ N so that Sm

n ⊆ S. □

As a consequence, we get some more families of examples of SCD points by just using [4, Exam-
ples 3.2] and Lemma 2.7.

Example 2.9. The following Banach spaces satisfy that SCD(A) = A for every convex bounded
subset A:

(a) separable Banach spaces with the RNP (or even with the CPCP, or strongly regular);
(b) separable Asplund spaces (or even separable spaces which do not contain copies of ℓ1).

On the other hand, it is immediate from the definition that denting points are SCD points, regardless
of the separability or not of the set. Actually, a slightly more general definition than denting point
also implies to be SCD point. Let X be a Banach space and let A be a bounded convex subset of X.
An element a ∈ A is said to be a quasi-denting point of A [23] if for every ε > 0 there is a slice of A
contained in a+ εBX . In particular, every denting point is quasi denting.

Example 2.10. Let X be a Banach space, let A be a bounded convex subset of X. Then, every
quasi-denting point of A is SCD; in particular, dent(A) ⊆ SCD(A). Indeed, if a ∈ A is quasi-denting,
then there is a sequence {Sn : n ∈ N} of slices of A such that Sn ⊂

(
a + 1

nBX

)
∩ A. If S is a slice of

A containing a, then S is relatively open in A and contains a, hence it has to contain
(
a+ 1

nBX

)
∩A

for some n ∈ N. A fortiori, S contains Sn.

As a consequence of the above example, Lemma 2.6, and Lemma 2.7, we get the following extension
of Example 2.9.

Example 2.11. Let X be a Banach space and let A be bounded convex subset of X such that
A ⊂ conv

(
dent

(
A
))
. Then, SCD(A) = A. In particular, if X has the RNP, then SCD(A) = A for

every bounded convex subset A of X.

One might wonder whether in Condition (ii) of Proposition 2.3, the determined point has to belong
to all the sets determining it or, at least, to be close to one of them. The following example shows
that each member of the determining sequence of slices can be far from the determined point. We
need some notation. A point x ∈ SX of a Banach space X is said to be a Daugavet point [1] if for
every slice S of BX and for every ε > 0, there exists y ∈ S such that ∥x − y∥ ⩾ 2 − ε. Moreover, a
Banach space X has the Daugavet property if and only if every x ∈ SX is a Daugavet point (this is
already contained in [26, Lemma 2.2], see [1, Proposition 1.2]).
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Example 2.12. Let X be a separable Banach space with the RNP and containing a Daugavet point
x0 ∈ SX (a space like this is constructed in [35, Example 3.1]). Then, for every ε > 0, there exists a
sequence of slices {Sn : n ∈ N} ⊆ BX which is determining for x0 such that d(x0, Sn) > 2− ε for every
n ∈ N.

Proof. Fix ε > 0. We have, by Lemma 2.8 or Example 2.11, a determining sequence of slices {Tn : n ∈
N} for x0. Since BX = conv(dent(BX)), for every n ∈ N there exists xn ∈ Tn ∩ dent(BX). This
enables us to find a slice Sn such that xn ∈ Sn ⊆ Tn and diam(Sn) < ε/2 for every n ∈ N. Observe
that in this case the slices {Sn : n ∈ N} also determine the point x0 (use Remark 2.4), and since x0 is
a Daugavet point, we have ∥x0 − xn∥ = 2 for every n ∈ N by [20, Proposition 3.1]. In conclusion

d(x0, Sn) ⩾ ∥x0 − xn∥ − diam(Sn) ⩾ 2− ε

2
> 2− ε. □

Our next aim is to prove that in the definition of a slicely countably determined point, one can
equivalently replace slices with non-empty relatively weakly open sets or with convex combinations of
slices.

Proposition 2.13. Let X be a Banach space and assume that A ⊆ X is bounded and convex. Then,
the following conditions are equivalent:

(i) a ∈ SCD(A);
(ii) there exists a sequence of relatively weakly open sets which is determining for a;
(iii) there exists a sequence of convex combinations of slices which is determining for a.

Proof. Firstly, note that (i) ⇒ (ii) and (i) ⇒ (iii) are obvious.
(ii) ⇒ (iii). Assume that there exists determining sequence of relatively weakly open sets sets

{Wn : n ∈ N} for the point a. By Bourgain’s lemma [14, Lemma II.1], every Wn contains a convex
combination of slices Cn of A. But then the sequence {Cn : n ∈ N} is determining for a (just use
Remark 2.4).

(iii) ⇒ (i). Assume that there exists a sequence of convex combinations of slices {Cn : n ∈ N},
which is determining for point a. For every n ∈ N, we have

Cn =

kn∑
i=1

λn
i S

n
i ,

kn∑
i=1

λn
i = 1, kn ∈ N, (2.1)

where Sn
i , i ∈ {1, . . . , kn} are slices of A. Let us show that the countable family {Sn

i : n ∈ N, i ∈
{1, . . . , kn}} is determining for a. For that, let B ⊆ A be convex such that B∩Sn

i ̸= ∅ for every n ∈ N
and every i ∈ {1, . . . , kn}. Hence there exists bni ∈ B ∩ Sn

i , from which we can construct another set

B̂ := conv{bni : n ∈ N, i ∈ {1, . . . , kn}} ⊆ B ⊆ A.

Let see that B̂ ∩ Cn ̸= ∅ for every n ∈ N. Indeed, by fixing n ∈ N arbitrarily, and using the fact that
bni ∈ Sn

i , we get
kn∑
i=1

λn
i b

n
i ∈

kn∑
i=1

λn
i S

n
i = Cn

and, since B̂ is convex, we have
∑kn

i=1 λ
n
i b

n
i ∈ B̂. As {Cn : n ∈ N} is determining for a, a ∈ conv(B̂) ⊆

conv(B). □

Remark 2.14. The claim in Remark 2.2 holds also for determining sequences of relatively weakly
open sets and convex combinations of slices sets, meaning we can assume convexity of the set B in
the definition of a determining sequence.
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Remark 2.15. With absolutely the same proof of (iii) ⇒ (i) in Proposition 2.13, one may show
that a ∈ SCD(A) if there is a determining sequence of convex series of slices. Anyhow, we have not
encounter any advantage in working with determining sequences of convex series of slices than working
with determining sequences of convex combination of slices.

We may now get advantage of Proposition 2.13 to get more families of SCD points. Recall that a
point a of a closed convex bounded set A is called a strongly regular point of A if there exist convex
combinations of slices of A of arbitrarily small diameter whose closures contain a [32, Remark in
p. 29]. We will now prove that strongly regular points are SCD, hence also denting points (but this
was already showed in Example 2.10). Actually, a formally weaker condition is enough.

Proposition 2.16. Let X be a Banach space and A ⊆ X bounded and convex. If a ∈ A satisfies that
for every ε > 0 there exists a convex combination C of slices of A such that C ⊆ a + εBX , then a is
an SCD point of A. In particular, strongly regular points and denting points are SCD points.

Proof. For every n ∈ N, we can find a convex combination Cn of slices of A such that Cn ⊆ B(a, 1
n).

By Proposition 2.13, it suffices to show that the sequence {Cn : n ∈ N} is determining for a. Let
B ⊆ A be convex and B ∩ Cn ̸= ∅ for every n ∈ N, hence there exists bn ∈ B ∩ Cn. We need to show
that a ∈ conv(B) = B. For m ∈ N, we have

∥a− bm∥ ⩽
1

m
,

therefore a ∈ B. □

Recall that a closed convex bounded subset A of a Banach space X is said to be strongly regular if
for every non-empty subset L of A, there are convex combinations of slices of L of arbitrarily small
diameter (equivalently, if every non-empty convex subset C of A contains convex combinations of slices
of C of arbitrary small diameter). A is said to be a CPCP set if for every non-empty convex subset L
of A there exist relative weak open subsets of L of arbitrary small diameter. CPCP sets are strongly
regular (by Bourgain’s lemma), but the reciprocal is not true. We refer to [14] for background. As a
consequence of Proposition 2.16, Lemmas 2.6 and 2.7, and the fact that when A is strongly regular, the
set of strongly regular points of A is norm dense [14, Proposition III.5 and III.6], we get the following.

Example 2.17. Let A be a convex bounded subset of a Banach space such that A is strongly regular
(in particular, a CPCP set). Then, SCD(A) = A.

We now localize the concept of a (countable) π-base which was used in [4, Proposition 2.21] in order
to show that sets that do not contain ℓ1-sequences are SCD sets.

Definition 2.18. Let X be a Banach space, A ⊆ X bounded and convex, and a ∈ A. A local π-base
(for the weak topology of A) at a is a family {Wj : j ∈ J} ⊆ A of relatively weakly open subsets such
that for every relatively weakly open set W ⊆ A with a ∈ W , there exists j ∈ J such that Wj ⊆ W .

From the definition of a local π-base, the following observation is immediate.

Lemma 2.19. Let X be a Banach space and A ⊆ X bounded and convex. If a ∈ A has a countable
local π-base, then a is an SCD point of A. Moreover, for every relatively weakly open set W ⊆ A with
a ∈ W , we have that a ∈ SCD(W ).

For preserved extreme points, the above result is actually a characterization of being SCD point.
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Proposition 2.20. If a ∈ A is an SCD point and a preserved extreme point, then a has a countable
local π-base.

Proof. Since a is an SCD point there is a determining sequence {Wn : n ∈ N} ⊆ A of relatively weakly
open subsets. Let W ⊆ A be a relatively weakly open subset containing a. As a is a preserved
extreme point, we can find a slice S of A such that a ∈ S ⊆ W . Finally, there is m ∈ N such that
Wm ⊆ S ⊆ W , because a is an SCD point. □

We end this subsection by pointing out that we do not know whether there exist SCD points that
do not have countable local π-bases.

2.2. SCD points of the unit ball. We start with an easy consequence of Lemma 2.6 which gives
us a convenient way to check whether the unit ball of a Banach space has any SCD points.

Corollary 2.21. Let X be a Banach space. Then, SCD(BX) = ∅ if and only if 0 ̸∈ SCD(BX).

Our first aim is to investigate in detail when the unit ball of a Banach space fails to contain any SCD
point. The first result in this line can be get by just having a sight to the proof of [4, Example 2.13]:
it is actually shown there that no point of the unit ball of a Banach space with the Daugavet property
is a SCD point. Let us state the result for further reference.

Example 2.22. Let X be a Banach space with the Daugavet property. Then, SCD(BX) = ∅.

We now want to extend the above result to a more general setting. For this, we recall a class of
Banach spaces concerning the (−1)-ball covering property. We encourage the reader to consult [8] and
[16] for further reading.

Definition 2.23 ([8, Definition 2.3]). A Banach space X is said to fail (−1)-ball covering property
(fail (−1)-BCP for short) if for every separable subspace Y of X, there exists x ∈ SX such that the
equality

∥y + λx∥ = ∥y∥+ |λ| (2.2)

holds for every y ∈ Y and λ ∈ R.

Examples of Banach spaces failing the (−1)-BCP include ℓ1(I), where I is an uncountable set, the
space ℓ∞/c0, and X∗ whenever X has the Daugavet property [8].

The following result generalizes Example 2.22.

Theorem 2.24. If X is a Banach space such that X∗ fails (−1)-BCP, then SCD(BX) = ∅.

Proof. By Corollary 2.21, it suffices to show that 0 /∈ SCD(BX). Pick an arbitrary sequence of slices
{Sn : n ∈ N}, defined as Sn = S(BX , x∗n, αn), where x

∗
n ∈ SX∗ and αn > 0. We aim to show that there

are xn ∈ Sn such that 0 ̸∈ conv({xn : n ∈ N}). Since X∗ fails (−1)-BCP, we can find x∗ ∈ SX∗ such
that

∥x∗n + x∗∥ = ∥x∗n∥+ 1 = 2

for every n ∈ N. By this condition, we can find for each n ∈ N an element xn ∈ SX such that

Re[x∗n + x∗](xn) > 2−min
{
αn,

1

2

}
.

From this we infer that xn ∈ Sn for every n ∈ N, because

Rex∗n(xn) + 1 ⩾ Rex∗n(xn) + Rex∗(xn) > 2−min
{
αn,

1

2

}
⩾ 2− αn.
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Similarly, we see that Rex∗(xn) > 1/2 for every n ∈ N, hence 0 ̸∈ conv({xn : n ∈ N}). This shows
that 0 /∈ SCD(BX). □

Theorem 2.24 helps us to construct new (even separable) Banach spaces whose unit balls have no
SCD points. Indeed, spaces whose duals fail (−1)-BCP include C(K) spaces whenever K is a compact
Hausdorff space such that |K| ⩾ ω1 [7, Theorem 6.3] and L1(µ) spaces whenever µ is an atomless
and localizable measure [7, Corollary 6.7]. Let X be one of such spaces and consider its direct sum
X ⊕N X with the norm N as suggested in [7, Remark 6.8]. Then, the dual of X ⊕N X fails (−1)-BCP
and so the unit ball of X⊕N X has no SCD points by Theorem 2.24; on the other hand, X⊕N X fails
the Daugavet property.

We end this section by studying SCD points in the unit ball of L1-preduals. Recall that a Banach
spaceX is an L1-predual ifX

∗ = L1(S,Σ, µ) for some measure space (S,Σ, µ). We need some notation.
Given a Banach space X, we consider the equivalence relation f ∼ g if and only if f and g are linearly
dependent elements of ext(BX∗). We denote the quotient set by ext(BX∗)/ ∼.

Theorem 2.25. Let X be an L1-predual. Then, the following statements hold:

(a) If ext(BX∗)/ ∼ is at most countable, then SCD(BX) = BX ;
(b) If ext(BX∗)/ ∼ is uncountable, then SCD(BX) = ∅.

To give the proof, we need to recall the well known decomposition of every L1(µ)-space in the form

L1(µ) = L1(ν)⊕1 ℓ1(I), (2.3)

where ν is an atomless measure and I is some index set (see [19, Theorem 2.1], for instance).

Proof. (a). If ext(BX∗)/ ∼ is countable, then it is known that X∗ is separable [11, Theorem 2], [12,
Theorem 3.1]. Thus, X is Asplund and separable, hence X is an SCD space by [4, Example 3.2], in
particular, SCD(BX) = BX .

(b). Assume that ext(BX∗)/ ∼ is uncountable. Observe that the only extreme points of BL1(µ) are
those in the second factor of the decomposition (2.3) (use [18, Lemma I.1.5] and the fact that the unit
ball of L1(ν) has no extreme points). Besides, ext(Bℓ1(I)) = {λei : i ∈ I, |λ| = 1}, where ei(j) = δij .
We deduce that I is uncountable. It is known that in this case, ℓ1(I) fails (−1)-BCP [16, Corollary 25]
and so does the absolute sum L1(ν) ⊕1 ℓ1(I) by [16, Proposition 8]. Theorem 2.24 then shows that
SCD(BX) = ∅. □

A consequence of the above result is the following interesting example.

Example 2.26. Let I be an uncountable set. Then, SCD(Bc0(I)) = ∅.

It is interesting here that c0(I) is Asplund (hence, in particular, it does not contain copies of ℓ1),
hence Example 2.9.(b) does not extend to the non-separable case. Compare with the case of item
(a) of the same Example, which extends to the non-separable case, see Example 2.17. We do not
know which could be the version of the SCD property in the non-separable case which covers Asplund
spaces.

3. SCD points in absolute sums

Our aim here is to present various stability results for SCD points by absolute sums and also to
construct some interesting examples using this techniques.
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3.1. SCD points in the sum X ⊕∞ Y . Recall that for Banach spaces X and Y one has that
BX⊕∞Y = BX × BY . Thus the following two preliminary results are straightforward adaptations of
[25, Lemmata 2.3 and 2.4] where sums and unions of SCD sets were studied.

Lemma 3.1 (cf. [25, Lemma 2.3]). Let X and Y be Banach spaces. For any (x∗, y∗) ∈ (X ⊕∞ Y )∗

and α, β, γ > 0, the following conditions hold:

(a) S(BX , x∗, α)× S(BY , y
∗, β) ⊆ S(BX⊕∞Y , (x

∗, y∗), α+ β).
(b) If a ∈ BX , b ∈ BY satisfy (a, b) ∈ S(BX⊕∞Y , (x

∗, y∗), γ), then a ∈ S(BX , x∗, γ) and b ∈
S(BY , y

∗, γ).

Proof. (a). Pick (x, y) ∈ S(BX , x∗, α)× S(BY , y
∗, β). Then

Rex∗(x) > ∥x∗∥ − α, Re y∗(y) > ∥y∗∥ − β

=⇒ Re(x∗, y∗)(x, y) > ∥x∗∥+ ∥y∗∥ − (α+ β)

⇐⇒ Re(x∗, y∗)(x, y) > ∥(x∗, y∗)∥1 − (α+ β),

hence (x, y) ∈ S(BX⊕∞Y , (x
∗, y∗), α+ β).

(b). Let a ∈ BX , b ∈ BY be such that (a, b) ∈ S(BZ , (x
∗, y∗), γ). This means that

Rex∗(a) + ∥y∗∥ ⩾ Rex∗(a) + Re y∗(b) > ∥(x∗, y∗)∥1 − γ = ∥x∗∥+ ∥y∗∥ − γ,

from which we can conclude that Rex∗(a) > ∥x∗∥ − γ, therefore a ∈ S(BX , x∗, γ). The proof for
b ∈ S(BY , y

∗, γ) is analogous. □

The next result is an adaptation of [25, Lemma 2.4] to the new pointwise setting. We include the
proof for the sake of completeness.

Lemma 3.2. Let X and Y be Banach spaces. Assume that (a, b) ∈ SCD(BX⊕∞Y ). Then, there exists
a sequence ((x∗n, y

∗
n), αn) ∈ (X ⊕∞ Y )∗ × (0,∞) such that for every (x∗, y∗) ∈ (X ⊕∞ Y )∗ and α > 0

satisfying (a, b) ∈ S(BX⊕∞Y , (x
∗, y∗), α), there exists m ∈ N such that

S(BX , x∗m, αm) ⊆ S(BX , x∗, α) and S(BY , y
∗
m, αm) ⊆ S(BY , y

∗, α). (3.1)

Proof. Let Sn = S(BX⊕∞Y , (x
∗
n, y

∗
n), 2αn) be the determining sequence of slices for (a, b) ∈ BX⊕∞Y .

We show that the desired sequence is ((x∗n, y
∗
n), αn), where n ∈ N. Pick (x∗, y∗) ∈ (X ⊕∞ Y )∗, α > 0

so that (a, b) ∈ S(BX⊕∞Y , (x
∗, y∗), α). Since the sequence {Sn : n ∈ N} is determining for (a, b), we

can find m ∈ N such that

S(BX⊕∞Y , (x
∗
m, y∗m), 2αm) ⊆ S(BX⊕∞Y , (x

∗, y∗), α).

An application of Lemma 3.1.(a) gives us

S(BX , x∗m, αm)× S(BY , y
∗
m, αm) ⊆ S(BX⊕∞Y , (x

∗, y∗), α).

Observe that inclusions (3.1) are satisfied. Indeed, making use of Lemma 3.1.(b):

(x, y) ∈ S(BX , x∗m, αm)× S(BY , y
∗
m, αm) =⇒ (x, y) ∈ S(BX⊕∞Y , (x

∗, y∗), α)

=⇒ x ∈ S(BX , x∗, α), y ∈ S(BY , y
∗, α),

which implies that (x, y) ∈ S(BX , x∗, α)× S(BY , y
∗, α). □

With the use of the presented lemmata, we can completely characterize the SCD points of the unit
ball of an ℓ∞ sum of two spaces.

Proposition 3.3. Let X and Y be Banach spaces. An element (a, b) ∈ SCD(BX⊕∞Y ) if and only if
a ∈ SCD(BX) and b ∈ SCD(BY ).
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Proof. Necessity. Assume that (a, b) ∈ SCD(BX⊕∞Y ) and let

((x∗n, y
∗
n), αn) ∈ (X ⊕∞ Y )∗ × (0,∞)

be the sequence from Lemma 3.2. Let us show that slices Sn = S(BX , x∗n, αn) are determining for a.
Fix a slice S(BX , x∗, α) ∋ a. Observe that (x∗, 0) ∈ (X ⊕∞ Y )∗ and (a, b) ∈ S(BX⊕∞Y , (x

∗, 0), α),
hence, by Lemma 3.2, there exists m ∈ N such that

Sm = S(BX , x∗m, αm) ⊆ S(BX , x∗, α),

so a ∈ SCD(BX). Analogously we deduce that b ∈ SCD(BY ).
Sufficiency. Assume that sequences {Sa

n : n ∈ N} and {Sb
n : n ∈ N} determine points a and b

respectively. We aim to prove, by using Proposition 2.13 Condition (ii), that the sequence of non-
empty relatively weakly open subsets {Sa

n × Sb
k : n, k ∈ N} determines point (a, b). Fix a slice S =

S(BX⊕∞Y , (x
∗, y∗), α) containing (a, b), where ∥(x∗, y∗)∥1 = 1 and α > 0. See that in this case

α > 1− Rex∗(a)− Re y∗(b),

which enables us to find γ > 0 satisfying the inequality

α > 1− Rex∗(a)− Re y∗(b) + γ.

Notice that

Rex∗(a) > ∥x∗∥ −
(
∥x∗∥ − Rex∗(a) +

γ

2

)
, Re y∗(b) > ∥y∗∥ −

(
∥y∗∥ − Re y∗(b) +

γ

2

)
.

From this we infer that

a ∈ S1 := S
(
BX , x∗, ∥x∗∥ − Rex∗(a) +

γ

2

)
and

b ∈ S2 := S
(
BY , y

∗, ∥y∗∥ − Re y∗(b)− γ

2

)
,

hence it is possible to find i, j ∈ N such that Sa
i ⊆ S1 and Sb

j ⊆ S2 (as a ∈ SCD(BX) and b ∈ SCD(BY )).

Now, making use of Lemma 3.1.(a), we get S1 × S2 ⊆ S, because(
∥x∗∥ − Rex∗(a) +

γ

2

)
+
(
∥y∗∥ − Re y∗(b) +

γ

2

)
= ∥(x∗, y∗)∥1 − Rex∗(a)− Re y∗(b) + γ

= 1− Re(x∗, y∗)(a, b) + γ < α.

In conclusion, we have Sa
i ×Sb

j ⊆ S1×S2 ⊆ S, which means that the countable collection of non-empty

relatively weakly open subsets {Sa
n × Sb

k : n, k ∈ N} determines point (a, b). □

3.2. SCD points in the sum X ⊕p Y , where 1 ⩽ p < ∞. Our first result here studied some SCD
points of the unit ball of an ℓp-sum of two spaces for 1 ⩽ p < ∞.

Proposition 3.4. Let X and Y be Banach spaces and 1 ⩽ p < ∞.

(a) If a ∈ SCD(BX), then (a, 0) ∈ SCD(BX⊕pY ).
(b) If a ∈ SX and (a, 0) ∈ SCD(BX⊕pY ), then λa ∈ SCD(BX) for every λ ∈ [−1, 1].

Proof. (a). Suppose that a ∈ SCD(BX), with the determining sequence of slices {Sn : n ∈ N}, where
Sn = S(BX , x∗n, αn), x

∗
n ∈ SX∗ for every n ∈ N. Without loss of generality we can assume that αn < 1

for every n ∈ N.
Define for every n, k ∈ N a slice Sk

n = S(BX⊕pY , (x
∗
n, 0), αn/k). We show that the countable

collection of slices {Sk
n : n, k ∈ N} is determining for the point (a, 0). Fix elements zkn = (xkn, y

k
n) ∈ Sk

n
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for every n, k ∈ N. It is easy to see that xkn ∈ Sn and since the sequence {Sn : n ∈ N} determines the
point a, we have a ∈ conv({xkn : n ∈ N}) for every k ∈ N. Furthermore, we see that

1 ⩾
∥∥∥(xkn, ykn)∥∥∥p

p
=
∥∥∥xkn∥∥∥p + ∥∥∥ykn∥∥∥p > (1− αn

k

)p
+
∥∥∥ykn∥∥∥p > 1− pαn

k
+
∥∥∥ykn∥∥∥p ,

from which ∥∥∥ykn∥∥∥p < pαn

k
<

p

k
.

Pick an arbitrary ε > 0 and find K ∈ N such that p/K < ε/2. By the argument presented before,

we can find z ∈ conv({xKn : n ∈ N}) such that ∥z − a∥ < (ε/2)1/p. Let z =
∑∞

n=1 λnx
K
n , where∑∞

n=1 λn = 1, λn ∈ [0, 1] and the number of non-zero elements λn is finite. Now∥∥∥∥∥(a, 0)−
∞∑
n=1

λn(x
K
n , yKn )

∥∥∥∥∥
p

p

=

∥∥∥∥∥(a−
∞∑
n=1

λnx
K
n ,−

∞∑
n=1

λny
K
n

)∥∥∥∥∥
p

p

=

∥∥∥∥∥a−
∞∑
n=1

λnx
K
n

∥∥∥∥∥
p

+

∥∥∥∥∥
∞∑
n=1

λny
K
n

∥∥∥∥∥
p

<
ε

2
+

∞∑
n=1

λn

∥∥yKn ∥∥p < ε

2
+

∞∑
n=1

λn · p

K

=
ε

2
+

p

K

∞∑
n=1

λn

⩽
ε

2
+

p

K
<

ε

2
+

ε

2
= ε,

hence (a, 0) ∈ conv({zKn : n ∈ N}) ⊆ conv({zkn : n, k ∈ N}).
(b). Observe that it suffices to prove that a ∈ SCD(BX) by Lemma 2.6. Consider a sequence of

slices {Sn : n ∈ N} of the form

Sn = S(BX⊕pY , (x
∗
n, y

∗
n), αn),

where αn > 0 and ∥(x∗n, y∗n)∥q = 1 for all n ∈ N, which is determining for the point (a, 0). First let us
define index sets

I := {n ∈ N : ∥x∗n∥ ≠ 0}, J := N \ I = {n ∈ N : ∥x∗n∥ = 0}.
For n ∈ I, select any (xn, yn) ∈ Sn = S(BX⊕pY , (x

∗
n, y

∗
n), αn) with xn ̸= 0 (this is clearly possible as

Sn is open). Observe that, in this case,

Re x∗n(xn) + Re y∗n(yn) > 1− αn,

from which we infer

Re x∗n

( xn
∥xn∥

)
>

1− αn − Re y∗n(yn)

∥xn∥
.

Notice that the set Tn (with n ∈ I) defined as

Tn :=

{
z ∈ BX : Re x∗n(z) >

1− αn − Re y∗n(yn)

∥xn∥

}
is a non-empty slice of BX , since xn/ ∥xn∥ ∈ Tn. We claim that the sequence of slices {Tn : n ∈ I} is
determining for a. Pick un ∈ Tn for every n ∈ I and ε > 0. Observe that

Re x∗n(un) >
1− αn − Re y∗n(yn)

∥xn∥
⇐⇒ Re

(
x∗n(∥xn∥un) + y∗n(yn)

)
> 1− αn,
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the latter stating that (∥xn∥un, yn) ∈ Sn. Observe that this element is in the unit ball of X ⊕p Y .
Indeed,

∥(∥xn∥un, yn)∥p = ∥xn∥p ∥un∥p + ∥yn∥p ⩽ ∥xn∥p + ∥yn∥p ⩽ 1,

since (xn, yn) is also an element of Sn.
For n ∈ J we have ∥y∗n∥ = 1, so there are elements of the form (0, yn) ∈ Sn. We now define, for

each n ∈ N, elements zn of the absolute sum as follows:

zn =

{
(∥xn∥un, yn), n ∈ I;

(0, yn), n ∈ J.

Observe that zn ∈ Sn for every n ∈ N. By assumption, the sequence {Sn : n ∈ N} is determining for
(a, 0), therefore we can find elements (λn) ⊆ [0, 1] with

∑∞
n=1 λn = 1 and only finitely many λn being

non-zero, such that ∥∥∥∥∥(a, 0)−
∞∑
n=1

λnzn

∥∥∥∥∥
p

< ε2p.

From this, we derive that

ε2p >

∥∥∥∥∥(a, 0)−
∞∑
n=1

λnzn

∥∥∥∥∥
p

=

∥∥∥∥∥(a, 0)−∑
n∈I

λn(∥xn∥un, yn)−
∑
n∈J

λn(0, yn)

∥∥∥∥∥
p

=

∥∥∥∥∥
(
a−

∑
n∈I

λn ∥xn∥un,−
∞∑
n=1

λnyn

)∥∥∥∥∥
p

=

∥∥∥∥∥a−
∑
n∈I

λn ∥xn∥un

∥∥∥∥∥
p

+

∥∥∥∥∥
∞∑
n=1

λnyn

∥∥∥∥∥
p

⩾

∥∥∥∥∥a−
∑
n∈I

λn ∥xn∥un

∥∥∥∥∥
p

,

so
∥∥a−

∑
n∈I λn ∥xn∥un

∥∥ < ε2. Moreover, the reverse triangle inequality gives us

ε2 > ∥a∥ −

∥∥∥∥∥∑
n∈I

λn ∥xn∥un

∥∥∥∥∥ ,
hence

∥∥∑
n∈I λn ∥xn∥un

∥∥ > 1− ε2, and, in particular,

1− ε2 <
∑
n∈I

λn ∥un∥ ∥xn∥ ⩽
∑
n∈I

λn.

To proceed, we will separate the index set I, by defining

A := {n ∈ I : ∥xn∥ > 1− ε}, B := I \A = {n ∈ I : ∥xn∥ ⩽ 1− ε}.

Then,

1− ε2 <
∑
n∈I

λn ∥xn∥ ∥un∥ =
∑
n∈A

λn ∥xn∥ ∥un∥+
∑
n∈B

λn ∥xn∥ ∥un∥

⩽
∑
n∈A

λn + (1− ε)
∑
n∈B

λn =
∑
n∈A

λn +
∑
n∈B

λn − ε
∑
n∈B

λn

⩽
∑
n∈I

λn − ε
∑
n∈B

λn ⩽ 1− ε
∑
n∈B

λn,
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which means that
∑

n∈B λn < ε. Now,∥∥∥∥∥a−
∑
n∈I

λnun

∥∥∥∥∥ ⩽

∥∥∥∥∥a−
∑
n∈I

λn ∥xn∥un

∥∥∥∥∥+
∥∥∥∥∥∑
n∈I

λn(1− ∥xn∥)un

∥∥∥∥∥
< ε2 +

∑
n∈A

λn |1− ∥xn∥| ∥un∥+
∑
n∈B

λn |1− ∥xn∥| ∥un∥

< ε2 +
∑
n∈A

λnε ∥un∥+
∑
n∈B

λn ∥un∥

< ε2 + ε
∑
n∈A

λn +
∑
n∈B

λn < ε2 + ε+ ε = ε2 + 2ε.

Finally, denote Λ :=
∑

n∈I λn and remind that

1− ε2 < Λ ⩽ 1.

By writing µn := λn
Λ ∈ [0, 1], we have

∑
n∈I µn = 1 and, therefore,

∑
n∈I µnun ∈ conv{un : n ∈ I}. To

conclude, we see that this convex combination is the one we are looking for, since∥∥∥∥∥a−
∑
n∈I

µnun

∥∥∥∥∥ ⩽

∥∥∥∥∥a−
∑
n∈I

λnun

∥∥∥∥∥+
∥∥∥∥∥∑
n∈I

(λn − µn)un

∥∥∥∥∥ < ε2 + 2ε+
∑
n∈I

∣∣∣∣λn − λn

Λ

∣∣∣∣ ∥un∥
⩽ ε2 + 2ε+

∣∣∣∣1− 1

Λ

∣∣∣∣∑
n∈I

λn ⩽ ε2 + 2ε+
|Λ− 1|

Λ
< ε2 + 2ε+

ε2

1− ε2
.

The arbitrariness of ε now concludes that the sequence of slices {Tn : n ∈ N} is determining for a. □

We can now partially characterize the SCD points of the unit sphere of X ⊕1 Y .

Proposition 3.5. Let X and Y be Banach spaces and (a, b) ∈ SX⊕1Y , where a ∈ X \ {0} and
b ∈ Y \ {0}. Then, (a, b) ∈ SCD(BX⊕1Y ) if and only if a

∥a∥ ∈ SCD(BX) and b
∥b∥ ∈ SCD(BY ).

Proof. Necessity. Let the slices Sn = S(BX⊕1Y , (x
∗
n, y

∗
n), αn), n ∈ N, determine the point (a, b). We

assume that ∥(x∗n, y∗n)∥∞ = max{∥x∗n∥ , ∥y∗n∥}=1, and using this fact, we construct the sets

I := {n ∈ N : ∥x∗n∥ = 1}, J := N \ I = {n ∈ N : ∥y∗n∥ = 1}.

We prove that the slices {Tn : n ∈ I}, where Tn = S(BX , x∗n, αn), are determining for the point a
∥a∥ .

Pick for each n ∈ I an element xn ∈ Tn. Now, we define elements zn ∈ BX⊕1Y by

zn =

{
(xn, 0), n ∈ I;

(0, yn), n ∈ J,

where yn belongs to slice S(BY , y
∗
n, αn) for every n ∈ J . Evidently, zn ∈ Sn for each n ∈ N and,

consequently, since the sequence {Sn : n ∈ N} determines the point (a, b), we have that (a, b) ∈
conv({zn : n ∈ N}).

Let ε > 0. Take δ ∈ (0, 1) such that
2δ

∥a∥ − δ
< ε and find a convex combination

∑∞
n=1 λnzn ∈

conv({zn : n ∈ N}), where λn ∈ [0, 1] and only finitely many λn are non-zero, such that∥∥∥∥∥(a, b)−
∞∑
n=1

λnzn

∥∥∥∥∥
1

< δ.
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Then,

δ >

∥∥∥∥∥(a, b)−
∞∑
n=1

λnzn

∥∥∥∥∥
1

=

∥∥∥∥∥(a, b)−∑
n∈I

λn(xn, 0)−
∑
n∈J

λn(0, yn)

∥∥∥∥∥
1

=

∥∥∥∥∥(a−
∑
n∈I

λnxn, b−
∑
n∈J

λnyn

)∥∥∥∥∥
1

=

∥∥∥∥∥a−
∑
n∈I

λnxn

∥∥∥∥∥+
∥∥∥∥∥b−∑

n∈J
λnyn

∥∥∥∥∥ ,
therefore

δ >

∥∥∥∥∥a−
∑
n∈I

λnxn

∥∥∥∥∥ ⩾ ∥a∥ −

∥∥∥∥∥∑
n∈I

λnxn

∥∥∥∥∥ ⩾ ∥a∥ −
∑
n∈I

λn,

meaning that
∑

n∈I λn > ∥a∥ − δ. Similarly, we can see that
∑

n∈J λn > ∥b∥ − δ.
On the other hand,∑

n∈I
λn = 1−

∑
n∈J

λn < 1− ∥b∥+ δ = ∥a∥+ ∥b∥ − ∥b∥+ δ = ∥a∥+ δ,

so in conclusion we have
∣∣∥a∥ −∑n∈I λn

∣∣ < δ. Now, by denoting Λ :=
∑

n∈I λn, we have that∑
n∈I

λn

Λ
xn ∈ conv({xn : n ∈ N})

and ∥∥∥∥∥ a

∥a∥
−
∑
n∈I

λn

Λ
xn

∥∥∥∥∥ =

∥∥∥∥ a

∥a∥
−
∑

n∈I λnxn

Λ

∥∥∥∥ =

∥∥Λa− ∥a∥
∑

n∈I λnxn
∥∥

Λ ∥a∥

=

∥∥Λa− ∥a∥
∑

n∈I λnxn + ∥a∥ a− ∥a∥ a
∥∥

Λ ∥a∥

=

∥∥a(Λ− ∥a∥) + ∥a∥ (a−
∑

n∈I λnxn))
∥∥

Λ ∥a∥

⩽
∥a(Λ− ∥a∥)∥+

∥∥∥a∥ (a−
∑

n∈I λnxn)
∥∥

Λ ∥a∥

⩽
∥a∥ |Λ− ∥a∥|+ ∥a∥

∥∥a−
∑

n∈I λnxn
∥∥

Λ ∥a∥
<

δ + δ

Λ

=
2δ

Λ
⩽

2δ

∥a∥ − δ
< ε,

Therefore a
∥a∥ ∈ conv({xn : n ∈ I}). The proof for the point b

∥b∥ is analogous.

Sufficiency. Assume a
∥a∥ ∈ SCD(BX) and b

∥b∥ ∈ SCD(BY ) and observe that

(a, b) = ∥a∥
( a

∥a∥
, 0
)
+ ∥b∥

(
0,

b

∥b∥

)
,

where ∥(a, b)∥1 = ∥a∥+ ∥b∥ = 1. By Proposition 3.4, (a), we have( a

∥a∥
, 0
)
∈ SCD(BX⊕1Y ) and

(
0,

b

∥b∥

)
∈ SCD(BX⊕1Y ),

and since the set of SCD points is convex, we have (a, b) ∈ SCD(BX⊕1Y ). □
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3.3. SCD points in infinite ℓp direct sums for 1 < p < ∞. Our aim here is to show that it is
possible that 0 is the only SCD point of a unit ball. Actually, the same result shows that it is possible
to get SCD points in the unit ball of an infinite ℓp-sum even if there is no SCD points of the unit ball
of any of the summands. Here is the main result in this line.

Theorem 3.6. Let {Xn : n ∈ N} be a sequence of Banach spaces with the Daugavet property and write
Xp := [

⊕∞
n=1Xn]ℓp for 1 < p < ∞. Then, SCD(BXp) = {0}.

With this result we may show an example as announced as the beginning of the subsection. Con-
sider the Banach space Xp = [

⊕∞
n=1C[0, 1]]ℓp , where 1 < p < ∞. Then, by Theorem 3.6 we have

SCD(BXp) = {0}. It is also worth noting that by Theorem 2.24, we know that SCD(BC[0,1]) = ∅.
For the proof of Theorem 3.6 we will combine Propositions 3.7 and 3.11 below, which are interesting

by themselves.

Proposition 3.7. Let {Xn : n ∈ N} be a sequence of arbitrary (non-trivial) Banach spaces and write
Xp := [

⊕∞
n=1Xn]ℓp for 1 < p < ∞. Then, 0 ∈ SCD(BXp).

Proof. Firstly, for each n ∈ N select an element x∗n ∈ SX∗
n
and for every k ∈ N define a slice

Sk
n = S

(
BX , (0, 0, . . . , 0, x∗n︸ ︷︷ ︸

n components

, 0, 0, 0, . . . ),
1

k

)
.

Let us prove that the countable collection of slices {Sk
n : n, k ∈ N} is determining for the point 0 =

(0, 0, . . . ) ∈ BX . To this end, pick xkn ∈ Sk
n for every n, k ∈ N and fix ε > 0. It suffices to find

x ∈ conv({xkn : n, k ∈ N}) such that ∥x∥ < ε.

Pick K ∈ N such that (p/K)1/p < ε/2 and K1/p−1 < ε/2. We will show that then x :=
∑K

n=1
1
KxKn

is the element we are looking for.
Now for given n ∈ N,

xKn = (wK
n,1, w

K
n,2, . . . , w

K
n,n, w

K
n,n+1, . . . ),

so we have

1− 1

K
< Re (0, 0, . . . , 0, x∗n, 0, 0, . . . )(w

K
n,1, w

K
n,2, . . . , w

K
n,n, w

K
n,n+1, . . . )

= Re x∗n(w
K
n,n) ⩽ ∥x∗n∥

∥∥wK
n,n

∥∥ =
∥∥wK

n,n

∥∥ ,
hence

∥∥wK
n,n

∥∥ > 1− 1/K. Moreover, we have xKn ∈ BX , which means that∥∥xKn ∥∥p = ∞∑
i=1

∥∥wK
n,i

∥∥p ⩽ 1.

Recall also the generalization of the Bernoulli inequality, which states that

(1 + s)r > 1 + rs

for every r > 1 and s ̸= 0 satisfying s > −1 (see [30, p. 34]). Now, we can derive another estimation:

∞∑
i ̸=n

∥∥wK
n,i

∥∥p = ( ∞∑
i=1

∥∥wK
n,i

∥∥p )− ∥∥wK
n,n

∥∥p < 1−
(
1− 1

K

)p
⩽ 1−

(
1− p

K

)
=

p

K
.

Define for each n ∈ N an element

x̂Kn = (0, 0, . . . , wK
n,n, 0, 0, . . . ).
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Using the estimation above we get∥∥xKn − x̂Kn
∥∥ =

∥∥(wK
n,1, . . . , w

K
n,n−1, 0, w

K
n,n+1, . . . )

∥∥ =
( ∞∑

i ̸=n

∥∥wK
n,i

∥∥p )1/p < ( p

K

)1/p
.

Finally, we have that∥∥∥∥∥
K∑

n=1

1

K
xKn

∥∥∥∥∥ ⩽

∥∥∥∥∥
K∑

n=1

1

K
(xKn − x̂Kn )

∥∥∥∥∥+
∥∥∥∥∥

K∑
n=1

1

K
x̂Kn

∥∥∥∥∥
⩽

1

K

K∑
n=1

∥xKn − x̂Kn ∥+ 1

K

∥∥∥∥∥
K∑

n=1

x̂Kn

∥∥∥∥∥
⩽

1

K
·K ·

(
p

K

)1/p

+
1

K

(
K∑

n=1

∥wK
n,n∥p

)1/p

⩽ ε/2 +
1

K
·K1/p < ε. □

Two comments are pertinent.

Remark 3.8. We note that a similar result to Proposition 3.7 does not hold for p = 1 or p = ∞.
Indeed, if Z is a space with the Daugavet property, then so are X := [

⊕∞
n=1 Z]ℓ1 and Y := [

⊕∞
n=1 Z]ℓ∞

by [26, Proposition 2.16]. But SCD(BX) = SCD(BY ) = ∅ by Example 2.22.

Remark 3.9. The converse of assertion (a) of Proposition 3.4 does not hold and assertion (b) of the
same proposition does not hold for a with ∥a∥ < 1. Indeed, consider the space Z := [

⊕∞
n=1C[0, 1]]ℓ2 .

Then, we can write Z = C[0, 1]⊕2Y , where Y = [
⊕∞

n=2C[0, 1]]ℓ2 . By Proposition 3.7, (0, 0) is an SCD

point in BZ , however, 0 is not an SCD point in BC[0,1] because C[0, 1] has the Daugavet property.

We now aim to prove that in a direct sum of two spaces E ⊕p Y such that E has the Daugavet
property, the SCD points of the unit ball of E ⊕p Y can only be of the form (0, b). To this end, we
need the following result which is a consequence of [26, Lemma 2.8], as can be seen in the proof of [4,
Example 2.13].

Lemma 3.10 ([26, Lemma 2.8], see [4, Example 2.13]). Let X be a Banach space with the Daugavet
property. Then, for every sequence of slices {Sn : n ∈ N} of BX and every x ∈ SX , there is a sequence
{xn : n ∈ N} with xn ∈ Sn for each n ∈ N, such that x ̸∈ span({xn : n ∈ N}).

We may now state and proof the indicated result.

Proposition 3.11. Consider the Banach space X := E ⊕p Y , where E has the Daugavet property, Y
is arbitrary, and 1 < p < ∞. If (a, b) ∈ SCD(BX), then a = 0.

Proof. We prove the contrapositive. Let a ̸= 0 and fix an arbitrary sequence of slices {Sn : n ∈ N},
where Sn = S(BX , (a∗n, b

∗
n), αn). We may assume that ∥(a∗n, b∗n)∥q = 1 (q is the Hölder conjugate of

p). We aim to find a sequence (xn) such that xn ∈ Sn for each n ∈ N and (a, b) ̸∈ conv{xn : n ∈ N}.
Define

A := {n ∈ N : a∗n ̸= 0}, B = N \A = {n ∈ N : a∗n = 0}.
Using these sets, let us define the desired sequence. First, if n ∈ B, we will pick xn = (0, vn) ∈ Sn,
where the first coordinate can be taken zero due to the fact that a∗n = 0. Now, for every n ∈ A define
a slice

Tn = S
(
BE , a

∗
n,

αn

4

)
,
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and consider the sequence of slices {Tn : n ∈ A}. By Lemma 3.10, we can find a sequence (un)n∈A so
that un ∈ Tn for all n ∈ A and

a ̸∈ span({un : n ∈ A}).

The latter means that there exists ε > 0 such that ∥a− u∥ ⩾ ε for every u ∈ span({un : n ∈ A}). We
claim the following:

∀n ∈ A ∃rn, sn ∈ R ∃qn ∈ BY such that un ∈ Tn =⇒ (rnun, snqn) ∈ Sn. (3.2)

Indeed, fix n ∈ A and observe that we can find (en, yn) ∈ Sn such that

Re (a∗n, b
∗
n)(en, yn) = Re a∗n(en) + Re b∗n(yn) > 1− αn

2
.

Take rn := ∥en∥ and sn := ∥yn∥. In addition, find qn ∈ BY such that

Re b∗n(qn) > ∥b∗n∥ −
αn

4
.

By assumption, un ∈ Tn, which means that

Re a∗n(un) > ∥a∗n∥ −
αn

4
.

To conclude, first notice that

(rnun, snqn) = (∥en∥un, ∥yn∥ qn) ∈ BX .

as we have that

∥(rnun, snqn)∥pp = ∥(∥en∥un, ∥yn∥ qn)∥pp
= ∥en∥p ∥un∥p + ∥yn∥p ∥qn∥p

⩽ ∥en∥p + ∥yn∥p ⩽ 1.

Finally, using all the estimations derived above, we get

Re (a∗n, b
∗
n)(rnun, snqn) = Re a∗n(un) ∥en∥+Re b∗n(qn) ∥yn∥

>
(
∥a∗n∥ −

αn

4

)
∥en∥+

(
∥b∗n∥ −

αn

4

)
∥yn∥

= ∥a∗n∥ ∥en∥+ ∥b∗n∥ ∥yn∥ −
αn

4

(
∥en∥+ ∥yn∥

)
⩾ Re a∗n(en) + Re b∗n(yn)−

αn

2
> 1− αn

2
− αn

2
= 1− αn,

which means that (rnun, snqn) ∈ Sn, as claimed.
Now, we are able to pick, by using the claim, for each n ∈ A

xn = (rnun, snqn) ∈ Sn.
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Pick arbitrary λn ∈ [0, 1], finitely many being non-zero with
∑∞

n=1 λn = 1. We have∥∥∥∥∥(a, b)−
∞∑
n=1

λnxn

∥∥∥∥∥
p

=

∥∥∥∥∥(a, b)−∑
n∈A

λn(rnun, snqn)−
∑
n∈B

λn(0, vn)

∥∥∥∥∥
p

=

∥∥∥∥∥(a−
∑
n∈A

λnrnun, b−
∑
n∈B

λn(snqn − vn)
)∥∥∥∥∥

p

=

(∥∥∥∥∥a−
∑
n∈A

λnrnun

∥∥∥∥∥
p

+

∥∥∥∥∥b−∑
n∈B

λn(snqn − vn)

∥∥∥∥∥
p)1/p

⩾

∥∥∥∥∥a−
∑
n∈A

λnrnun

∥∥∥∥∥ ⩾ ε,

which means that (a, b) ̸∈ conv({xn : n ∈ N}). □

We can now glue the two proposition above to provide the pending proof of Theorem 3.6.

Proof of Theorem 3.6. First, we know that 0 ∈ SCD(BXp) by Proposition 3.7. Assume now that
(an) ∈ SCD(BXp). We show that an = 0 for all n ∈ N. Indeed, for n ∈ N, write

Xp = Xn ⊕p

[⊕
k ̸=n

Xk

]
ℓp
.

Then, by Proposition 3.11, we have that an = 0. □

4. SCD points in projective tensor products

Recall that the projective tensor product of two Banach spaces X and Y , denoted by X⊗̂πY , is the
completion of the algebraic tensor product X ⊗ Y under the norm given by

∥u∥ := inf

{
n∑

i=1

∥xi∥ ∥yi∥ : u =

n∑
i=1

xi ⊗ yi

}
.

It follows easily from the definition that BX⊗̂πY
= conv (BX ⊗BY ) = conv (SX ⊗ SY ), where

A⊗B := {x⊗ y : x ∈ A, y ∈ B}

for subsets A ⊂ X and B ⊂ Y . It is well known that
(
X⊗̂πY

)∗
= L (X,Y ∗) = B(X × Y ) [33, p. 24].

We will now present the main result of this section.

Theorem 4.1. Let X and Y be Banach spaces. If a ∈ dent(BX) and b ∈ SCD(BY ) \ {0}, then
a⊗ b ∈ SCD

(
BX ⊗̂π Y

)
.

We need the following useful lemma from [31].

Lemma 4.2 ([31, Lemma 3.4]). Suppose that we have a norm one bilinear form B ∈ B(X × Y ) =
(X ⊗̂π Y )∗ and ε > 0. Then,

S(BX ⊗̂π Y , B, ε2) ⊆ conv({x⊗ y : x ∈ BX , y ∈ BY , ReB(x, y) > 1− ε}) + 4εBX ⊗̂π Y .
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Proof of Theorem 4.1. First, notice that since a is a denting point of BX , we can find for each n ∈ N
a slice S(BX , x∗n, αn), where ∥x∗n∥ = 1 and

a ∈ S(BX , x∗n, αn) ⊆ B
(
a,

1

n

)
. (4.1)

On the other hand, we can find a sequence of slices

{S(BY , y
∗
m, βm) : m ∈ N, ∥y∗m∥ = 1}, (4.2)

which is determining for b. Let us now define for each n,m, k ∈ N the following slices:

Sk
n,m = S

(
BX ⊗̂π Y , x

∗
n ⊗ y∗m,

1

k

)
,

where, as usual,
(x∗n ⊗ y∗m)(x⊗ y) = x∗n(x)y

∗
m(y)

for every x ∈ X and y ∈ Y . Note here that the function x∗n ⊗ y∗m is bilinear and bounded, therefore
(x∗n⊗y∗m) ∈ (X ⊗̂π Y )∗. Our goal is to prove that the countable collection of slices {Sk

n,m : n,m, k ∈ N}
is determining for the elementary tensor a⊗ b. To this end, we will use Proposition 2.3 Condition (ii).
Let S = S(BX ⊗̂π Y , B, α), where B is a norm one bounded bilinear form and a⊗ b ∈ S. It suffices to

find a member of the sequence of slices {Sk
n,m : n,m, k ∈ N}, which is contained in S.

First, since a⊗ b ∈ S, we have

ReB(a, b) > 1− α =⇒ ∃γ > 0 such that ReB(a, b) > 1− α+ γ.

This in turn means that
a ∈ {x ∈ BX : ReB(x, b) > 1− α+ γ},

where the set above is actually a slice of BX , since it is not empty and the mapping x 7→ ReB(x, b)
is clearly linear and continuous.

Take n ∈ N such that 1/n < γ/32. Then,

a ∈ S(BX , x∗n, αn) ⊆ B
(
a,

1

n

)
⊆ B

(
a,

γ

32

)
(4.3)

by (4.1). Using the fact that ReB(a, b) > 1− α+ γ, we see that similarly to the last case

b ∈ {y ∈ BY : ReB(a, y) > 1− α+ γ},
where the set is again a slice of BY . Since the sequence of slices in (4.2) determines b, we can find
m ∈ N such that

S(BY , y
∗
m, βm) ⊆ {y ∈ BY : ReB(a, y) > 1− α+ γ}. (4.4)

Consider now the following set:

S⊗ := {u⊗ v : u ∈ S(BX , x∗n, αn), v ∈ S(BY , y
∗
m, βm)}.

We claim that

S⊗ ⊆
{
z ∈ BX ⊗̂π Y : ReB(z) > 1− α+

31γ

32

}
. (4.5)

Indeed, assume that u ∈ S(BX , x∗n, αn) and v ∈ S(BY , y
∗
m, βm). By (4.4) we get ReB(a, v) > 1−α+γ

and using (4.3), we obtain

ReB(u⊗ v) = ReB(u, v) = ReB(a, v)− ReB(a− u, v)

> 1− α+ γ − ∥B∥ ∥v∥ ∥a− u∥ > 1− α+ γ − 1

n

> 1− α+ γ − γ

32
> 1− α+

31γ

32
.
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To proceed further, pick for each n,m ∈ N another k ∈ N satisfying 1/k < min{αn, βm}. Now, we
claim that

S
(
BX ⊗BY , x

∗
n ⊗ y∗m,

1

k

)
⊆ S⊗. (4.6)

Fix x⊗ y ∈ S(BX ⊗BY , x
∗
n ⊗ y∗m, 1/k), i.e.

Re(x∗n ⊗ y∗m)(x⊗ y) = Re(x∗n(x)y
∗
m(y)) > 1− 1

k
.

Pick θ ∈ K with |θ| = 1 such that x∗(θx) = Rex∗(θx); then x⊗ y = θx⊗ θ−1y and

Rex∗n(θx) · Re(y∗m(θ−1y)) = Re(x∗n(θx)y
∗
m(θ−1y)) > 1− 1

k

Since θ−1y ∈ BY , we have

Rex∗n(θx) ⩾ Rex∗n(θx) · Re(y∗m(θ−1y)) > 1− 1

k
> 1− αn,

which means that θx ∈ S(BX , x∗n, αn). Analogously, θ
−1y ∈ S(BY , y

∗
m, βm). In conclusion

x⊗ y = θx⊗ θ−1y ∈ S⊗.

Let k ∈ N be such that 4/k < γ/32 and still 1/k < min{αn, βm}. In order to finish the proof, we will
show that

S
(
BX ⊗̂π Y , x

∗
n ⊗ y∗m,

1

k2

)
= Sk2

n,m ⊆ S = S(BX ⊗̂π Y , B, α).

Indeed, 4.2 gives that

S
(
BX ⊗̂π Y , x

∗
n ⊗ y∗m,

1

k2

)
⊆ conv

(
S
(
BX ⊗BY , x

∗
n ⊗ y∗m,

1

k

))
+

4

k
BX ⊗̂π Y . (4.7)

Pick an element z ∈ S(BX ⊗̂π Y , x
∗
n ⊗ y∗m, 1/k2). By (4.7), we can write

z = a+
4

k
h with a ∈ conv

(
S
(
BX ⊗BY , x

∗
n ⊗ y∗m,

1

k

))
, h ∈ BX ⊗̂π Y .

This means that we can find â ∈ conv(S(BX ⊗ BY , x
∗
n ⊗ y∗m, 1/k)) such that ∥a− â∥ < γ/32. By

defining ẑ = â+ (4/k)h, it is obvious that

∥z − ẑ∥ = ∥a− â∥ <
γ

32
.

In addition, by (4.5) and (4.6) we have

conv
(
S(BX ⊗BY , x

∗
n ⊗ y∗m, 1/k)

)
⊆
{
z ∈ BX ⊗̂π Y : ReB(z) > 1− α+

31γ

32

}
,

because slices are convex. With this, we obtain

ReB(ẑ) = ReB(â) +
4

k
ReB(h) > 1− α+

31γ

32
− 4

k
.

Now, using the above estimations as well as (4.5) and (4.6), we get

ReB(z) = ReB(z)− ReB(ẑ) + ReB(ẑ) = ReB(ẑ)− ReB(ẑ − z)

> 1− α+
31γ

32
− 4

k
− ∥B∥ ∥ẑ − z∥ > 1− α+

31γ

32
− 4

k
− γ

32

= 1− α+
30γ

32
− 4

k
> 1− α+

γ

32
− 4

k
> 1− α. □
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Let us comment that, as far as we know, it is unknown whether X ⊗̂π Y is an SCD space, whenever
X and Y are SCD spaces. The following can be considered as partial progress towards this open
question.

Corollary 4.3. Let X and Y be Banach spaces such that BX = conv(dentBX) and SCD(BY ) = BY .
Then, SCD(BX ⊗̂π Y ) = BX ⊗̂π Y . If additionally X and Y are separable, then BX ⊗̂π Y is an SCD set.

Proof. Notice that using elementary properties of projective tensor products together with the as-
sumption, we can write

BX ⊗̂π Y = conv(BX ⊗BY ) = conv
(
conv(dent(BX))⊗ SCD(BY )

)
= conv(dent(BX)⊗ SCD(BY )).

By Theorem 4.1,

dent(BX)⊗ (SCD(BY ) \ {0}) ⊆ SCD(BX ⊗̂π Y ). (4.8)

This in turn implies that

dent(BX)⊗ SCD(BY ) ⊆ SCD(BX ⊗̂π Y ). (4.9)

Indeed, pick x ⊗ y ∈ dent(BX) ⊗ SCD(BY ), where y ̸= 0 (such elements clearly do exist). Then by
(4.8) we directly obtain that x⊗ y ∈ SCD(BX ⊗̂π Y ). Using Corollary 2.21, we get 0 ∈ SCD(BX ⊗̂π Y ).

Therefore, picking x⊗ 0 ∈ dent(BX)⊗ SCD(BY ), we have

x⊗ 0 = 0 ∈ SCD(BX ⊗̂π Y )

and consequently (4.9) holds.
As the set of SCD points of the unit ball is closed and convex by Lemma 2.6, we obtain

conv(dent(BX)⊗ SCD(BY )) ⊆ SCD(BX ⊗̂π Y ).

In conclusion

BX ⊗̂π Y = conv(dent(BX)⊗ SCD(BY )) ⊆ SCD(BX ⊗̂π Y ) ⊆ BX ⊗̂π Y .

If additionally X and Y are separable, so is the set BX ⊗̂π Y , hence by Lemma 2.8 we have that BX ⊗̂π Y
is an SCD set. □

The next result gives another sufficient condition for the elementary tensor of two SCD points to
be also an SCD point.

Theorem 4.4. Let X and Y be Banach spaces, and let a ∈ SCD(BX) and b ∈ SCD(BY ). Assume
that

(1) every operator T : X → Y ∗ is compact;
(2) b is a preserved extreme point.

Then, a⊗ b ∈ SCD(BX ⊗̂π Y ).

Proof. Let Sn = S(BX , x∗n, αn) and Tm = S(BY , y
∗
m, βm), where ∥x∗n∥ = ∥y∗m∥ = 1 and αn, βm > 0, be

the determining sequences of slices for a and b, respectively.
Let us now define for each n,m, k ∈ N the following slices:

Sk
n,m = S

(
BX ⊗̂π Y , x

∗
n ⊗ y∗m,

1

k

)
,

where

(x∗n ⊗ y∗m)(x⊗ y) = x∗n(x)y
∗
m(y)
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for every x ∈ X and y ∈ Y . Note here that the function x∗n ⊗ y∗m is bilinear and bounded, therefore
(x∗n⊗y∗m) ∈ (X ⊗̂π Y )∗. Our goal is to prove that the countable collection of slices {Sk

n,m : n,m, k ∈ N}
is determining for the elementary tensor a⊗ b.

Let S = S(BX ⊗̂π Y , T, α) be a slice containing the element a ⊗ b, where T ∈ L(X,Y ∗) and α > 0.
Find η > 0 such that

ReT (a)(b) > 1− α+ η.

Since a ∈ {x ∈ BX : ReT (x)(b) > 1− α+ η} and a ∈ SCD(BX), then there exists n ∈ N such that

S(BX , x∗n, αn) ⊆ {x ∈ BX : ReT (x)(b) > 1− α+ η}.
By our assumption T is compact, so there are x1, . . . , xp ∈ S(BX , x∗n, αn) such that

T (S(BX , x∗n, αn)) ⊆
p⋃

i=1

B
(
T (xi),

η

16

)
.

Since, xi ∈ {x ∈ BX : ReT (x)(b) > 1− α+ η} for every 1 ⩽ i ⩽ p, then

b ∈
p⋂

i=1

{y ∈ BY : ReT (xi)(y) > 1− α+ η} =: W.

Note that W is a relatively weakly open subset of BY containing b, which is a preserved extreme point,
hence we can find a slice S of BY such that b ∈ S ⊆ W [27]. Since b ∈ SCD(BY ), we can find m ∈ N
such that

S(BY , y
∗
m, βm) ⊆ S ⊆ W.

Consider now the following set

S⊗ := {u⊗ v : u ∈ S(BX , x∗n, αn), v ∈ S(BY , y
∗
m, βm)}.

Then, by arguing as in the proof of Theorem 4.1, one has that

S⊗ ⊆
{
z ∈ BX ⊗̂π Y : ReB(z) > 1− α+

15η

16

}
. (4.10)

Finally, the proof follows by repeating the arguments in the last part of the proof of Theorem 4.1,
using now (4.10) instead of (4.5). □

5. SCD points in Lipschitz-free spaces

Let M be a metric space with metric d and a fixed point 0. We denote by Lip0(M) the real Banach
space of all Lipschitz functions f : M → R with f(0) = 0 equipped with the norm

∥f∥ := sup

{
|f(x)− f(y)|

d(x, y)
: x, y ∈ M, x ̸= y

}
.

Let δ : M → Lip0(M)∗ be the canonical isometric embedding of M into Lip0(M)∗ given by x 7→ δx,
where δx(f) = f(x). The norm closed linear span of δ(M) in Lip0(M)∗ is called the Lipschitz-free
space over M and is denoted by F(M) (see [15] and [37] for the background). It is well known that
F(M)∗ = Lip0(M). An element in F(M) of the form

mx,y :=
δx − δy
d(x, y)

for x, y ∈ M with x ̸= y is called a molecule.

The main result of the section is a characterization of SCD point of the unit ball of a Lipschitz-free
space for complete metric spaces.
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Theorem 5.1. Let M be a complete metric space and let µ ∈ SF(M). Then, the following are
equivalent:

(i) µ ∈ SCD(BF(M));

(ii) µ ∈ conv
(
dent(BF(M))

)
.

In particular, if M is separable, then BF(M) is an SCD set if, and only if, BF(M) = conv
(
dent(BF(M))

)
.

We need a preliminary result which is interesting by itself. Recall that a Lipschitz function f ∈
Lip0(M) is said to be local if, for every ε > 0, there exists u, v ∈ M with 0 < d(u, v) < ε and
f(u)−f(v)

d(u,v) > ∥f∥ − ε. In short, a local Lipschitz function is a function whose Lipschitz norm can be

approximated by pairs of points which are arbitrarily close. The next lemma shows that only non-local
functions are needed to construct a sequence of determining slices for a norm-one element of the unit
ball of a Lipschitz-free space.

Lemma 5.2. Let M be a metric space and µ ∈ SCD(BF(M))∩SF(M). Assume that Sn = S(BF(M), fn, αn)
is a determining sequence for µ. Set

I := {n ∈ N : fn is not local }.
Then, {Sn : n ∈ I} is determining for µ.

Proof. Assume, by contradiction, that {Sn : n ∈ I} is not determining for µ. Consequently, for every
n ∈ I there exist xn ∈ Sn satisfying that µ /∈ conv({xn : n ∈ I}). By the Hahn-Banach theorem, there
exists f ∈ SLip0(M) and α > 0 such that

f(µ) > α > sup
{
f(z) : z ∈ conv{xn : n ∈ I}

}
.

Furthermore, we can find 0 < β < α satisfying

f(µ) > α > β > f(xn)

for every n ∈ I. Let us also find ε, η > 0 small enough so that

(1− β)(η + 2ε) + η < α− β. (5.1)

Now, set J = N \ I = {n ∈ N : fn is local } and write J = {kn : n ∈ N} (admitting that kn may
be eventually constant if J is finite). Choose a sequence (εn) of positive real numbers such that
1− ε <

∏∞
n=1(1− εn). Our aim is to construct, by induction, a sequence xkn ∈ Skn with the property

that ∥∥∥∥∥µ+
n∑

i=1

λixki

∥∥∥∥∥ >
n∏

i=1

(1− εi)
(
1 +

n∑
i=1

|λi|
)

(5.2)

for every n ∈ N and λ1, . . . , λn ∈ R. Let us construct xk1 . Since fk1 is local, we can find a sequence of

points uj , vj ∈ M with 0 < d(uj , vj) → 0 such that fk1(muj ,vj ) =
fk1 (uj)−fk1 (vj)

d(uj ,vj)
> 1− αk1 or, in other

words, that muj ,vj ∈ Sk1 holds for every j ∈ N. Since d(uj , vj) → 0, [20, Theorem 2.6] implies that

∥ν +muj ,vj∥ → 1 + ∥ν∥
holds for every ν ∈ F(M). Consequently, we can find j ∈ N big enough so that xk1 := muj ,vj satisfies

∥µ± xk1∥ > 2− ε1
2
.

Notice that an application of [21, Lemma 2.2] secures us that

∥µ+ λxk1∥ > (1− ε1)(1 + |λ|)
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holds for every λ ∈ R, hence equation (5.2) for k1 is satisfied.
Now assume the inductive step that xk1 , . . . xkn has been constructed with the desired property, and

let us construct xkn+1 . In order to do so, let Y := span{µ, xk1 , . . . , xkn}, which is a finite-dimensional
subspace of F(M). Since SY is compact as Y is finite-dimensional, we can select a finite set F ⊆ SY

which is an εn+1

2 -net for SY . Once again the condition that fkn+1 is local allows us to guarantee the
existence of a sequence muj ,vj ∈ Skn+1 such that d(uj , vj) → 0. Since

∥ν +muj ,vj∥ → 2

for every ν ∈ F , again by [20, Theorem 2.6], we can find j ∈ N large enough so that, if we select
xkn+1 := muj ,vj , we have ∥ν ± xkn+1∥ > 2 − εn+1

2 for every ν ∈ F (since F is finite). As F is an
εn+1/2-net, it follows that the inequality

∥ν ± xkn+1∥ > 2− εn+1

holds for every ν ∈ SY . From here it can be proved that

∥ν + λxkn+1∥ > (1− εn+1)(∥ν∥+ |λ|)
holds for every ν ∈ Y and every λ ∈ R. Let us prove that xk1 , . . . , xkn+1 satisfy the desired condition.
In order to do so, select λ1, . . . , λn+1 ∈ R. Observe that, since µ+

∑n
i=1 λixki ∈ Y , we obtain∥∥∥∥∥µ+

n+1∑
i=1

λixki

∥∥∥∥∥ ⩾ (1− εn+1)

(∥∥∥∥∥µ+
n∑

i=1

λixki

∥∥∥∥∥+ |λn+1|

)
.

Now, the inductive step implies ∥µ+
∑n

i=1 λixki∥ ⩾
∏n

i=1(1− εi)(1 +
∑n

i=1 |λi|), so∥∥∥∥∥µ+
n+1∑
i=1

λixki

∥∥∥∥∥ ⩾ (1− εn+1)

(
n∏

i=1

(1− εi)

(
1 +

n∑
i=1

|λi|

)
+ |λn+1|

)

⩾ (1− εn+1)

(
n∏

i=1

(1− εi)

(
1 +

n∑
i=1

|λi|

)
+

n∏
i=1

(1− εi)|λn+1|

)

=
n+1∏
i=1

(1− εi)

(
1 +

n+1∑
i=1

|λi|

)
which finishes the proof of the construction of xkn .

As we have xn ∈ Sn for every n ∈ N and {Sn : n ∈ N} is determining for µ, we conclude µ ∈
conv({xn : n ∈ N}). Consequently, we can find (λn) ⊆ [0, 1] with

∑∞
n=1 λn = 1 and only finitely many

λn being non-zero, satisfying ∥∥∥∥∥µ−
∞∑
n=1

λnxn

∥∥∥∥∥ < η. (5.3)

If we evaluate at f , we obtain

η > f

(
µ−

∞∑
n=1

λnxn

)
= f(µ)−

∞∑
n=1

λnf(xn) > α−
∑
n∈I

λnf(xn)−
∑
n∈J

λnf(xn)

⩾ α− β
∑
n∈I

λn −
∑
n∈J

λn = α− β

(
1−

∑
n∈J

λn

)
−
∑
n∈J

λn

= α− β − (1− β)
∑
n∈J

λn,
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hence ∑
n∈J

λn >
α− β − η

1− β
. (5.4)

On the other hand, by the construction of xn, n ∈ J , we have from (5.2) that∥∥∥∥∥µ−
∑
n∈J

λnxn

∥∥∥∥∥ > (1− ε)
(
1 +

∑
n∈J

λn

)
.

These estimations imply that

η >

∥∥∥∥∥µ−
∞∑
n=1

λnxn

∥∥∥∥∥ ⩾

∥∥∥∥∥µ−
∑
n∈J

λnxn

∥∥∥∥∥−
∥∥∥∥∥∑
n∈I

λnxn

∥∥∥∥∥
> (1− ε)

(
1 +

∑
n∈J

λn

)
−
∑
n∈I

λn = (1− ε)
(
1 +

∑
n∈J

λn

)
−
(
1−

∑
n∈J

λn

)
= 2

∑
n∈J

λn − ε
(
1 +

∑
n∈J

λn

)
⩾ 2

∑
n∈J

λn − 2ε > 2
α− β − η

1− β
− 2ε

>
α− β − η

1− β
− 2ε.

This, in turn, claims that α− β < (1− β)(η + 2ε) + η, which disagrees with (5.1). This contradiction
finishes the proof. □

We are now ready to present the pending proof.

Proof of Theorem 5.1. The proof of (ii)⇒(i) is immediate since every denting point is SCD (Exam-
ple 2.10) and the set of SCD points of a set is closed and convex (Lemma 2.6).

For the proof of (i)⇒(ii), assume that µ ∈ SCD(BF(M)) and take a determining sequences of slices
Sn = S(BF(M), fn, αn). By Lemma 5.2 we can assume with no loss of generality that fn ∈ SLip0(M) is
non-local for every n ∈ N. Given n ∈ N, since M is complete and fn is non-local, [36, Proposition 2.7]
implies that there exists a denting point xn of BF(M) with xn ∈ Sn for every n ∈ N. Since {Sn : n ∈ N}
is determining, we get that µ ∈ conv({xn : n ∈ N}) ⊆ conv(dent(BF(M)), as requested.

The final remark follows since F(M) is separable because M is separable. □

By additionally requiring the underlying metric space of the Lipschitz-free space to be compact and
taking into account the proof of Theorem 5.1, we can prove the following.

Theorem 5.3. Let M be a compact space and let µ ∈ SF(M). The following are equivalent:

(i) µ ∈ SCD(BF(M));

(ii) µ ∈ conv
(
str-exp(BF(M))

)
.

In particular, BF(M) is an SCD set if, and only if, BF(M) = conv
(
str-exp(BF(M))

)
.

Proof. The proof of (ii)⇒(i) is immediate since every strongly exposed point is denting and because
the set of SCD points is closed and convex.

For the proof of (i)⇒(ii), assume that µ ∈ SCD(BF(M)) and take a determining sequence of slices
Sn = S(BF(M), fn, αn). By Lemma 5.2 we can assume with no loss of generality that fn ∈ SLip0(M)

is non-local for every n ∈ N. Given n ∈ N, since M is compact and fn is non-local, [6, Lemma 3.13]
implies that fn attains its norm at a strongly exposed point xn of BF(M) which clearly belongs to Sn.
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Since {Sn : n ∈ N} is determining for µ, we get that µ ∈ conv({xn : n ∈ N}) ⊆ conv
(
str-exp(BF(M))

)
,

as requested.
The last statement follows since F(M) is separable, because M is separable as being a compact

metric space. □

6. Applications

In this section, we aim to establish some connections between SCD points and some related prop-
erties.

We begin by studying the inheritance of Daugavet property to its subspaces. It is known that
if X is a Banach space with the Daugavet property and Y is a subspace of X, then Y has the
Daugavet property whenever Y is an M -ideal in X [26, Proposition 2.10] or (X/Y )∗ is separable [26,
Theorem 2.14]. We now enlarge this list by proving that the subspace Y also inherits the Daugavet
property whenever 0 ∈ BX/Y is an SCD point in every convex set C ⊆ BX/Y containing it.

Theorem 6.1. Let X be a Banach space and let Y be a subspace of X. Assume that X has the
Daugavet property and that 0 ∈ X/Y satisfies that 0 is an SCD point in any convex subset C ⊆ BX/Y

containing it. Then, Y has the Daugavet property.

Proof. Let y0 ∈ SY , ε > 0 and let S = S(BY , y
∗, α) be a slice of BY with y∗ ∈ SX∗ and y∗|Y ∈ SY ∗ .

Let us find y ∈ S such that ∥y0 − y∥ > 2 − ε. In such a case, we will have that Y has the Daugavet
property by [26, Lemma 2.2]. In order to do so, write T = S(BX , y∗, β) for some 0 < β < α. Let
p : X −→ X/Y be the quotient mapping and notice that, since T ∩ SY ̸= ∅, we can guarantee that
0 belongs to the convex subset p(T ) of BX/Y . By the assumption, 0 ∈ SCD(p(T )), so we can find a
determining sequence of slices Sn ⊆ p(T ) for 0. Now, observe that the sets

Wn := T ∩ p−1(Sn) (n ∈ N)

are non-empty, weakly open, and contained in BX .
Since X has the Daugavet property, then for any δ > 0, there exists a sequence (xn) with xn ∈ Wn

for every n ∈ N, satisfying that ∥∥∥∥∥y0 −
∞∑
n=1

λnxn

∥∥∥∥∥ > 2− δ (6.1)

for every (λn) ∈ Sℓ1 . Indeed, this can be seen using the analogue of [26, Lemma 2.8] for relative weakly
open set which holds applying in the proof [34, Lemma 3] instead of [26, Lemma 2.1 (a)].

Since xn ∈ Wn = T ∩ p−1(Sn), we clearly have that p(xn) ∈ Sn. Taking into account that the
sequence {Sn : n ∈ N} is determining for 0 ∈ p(T ), there exists (λn) ∈ Sℓ1 such that∥∥∥∥∥

∞∑
n=1

λnp(xn)

∥∥∥∥∥
X/Y

< δ.

This means that there exists z ∈ Y such that∥∥∥∥∥z −
∞∑
n=1

λnxn

∥∥∥∥∥ < δ.

Observe that ∥z∥ ⩽ 1+δ. Furthermore, (6.1) implies that ∥
∑∞

n=1 λnxn∥ > 1−δ and thus ∥z∥ ⩾ 1−2δ.
Finally set y = z

∥z∥ . It is clear that ∥y − z∥ ⩽ 2δ so ∥y −
∑∞

n=1 λnxn∥ ⩽ 3δ by the triangle inequality.

Let us prove that y fits our requirements. Firstly, since xn ∈ Wn ⊆ T and T is convex, we infer
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n=1 λnxn ∈ T , so Re y∗(

∑∞
n=1 λnxn) > 1 − β. Hence Re y∗(y) > 1 − β − 3δ. On the other hand,

(6.1) implies
∥y0 − y∥ > 2− 4δ.

Consequently, y ∈ S(BY , y
∗, α) and ∥y0 − y∥ > 2− ε as soon as 4δ < ε and β +3δ < α, which finishes

the proof. □

The following particular case is specially interesting and extends some of the previously known cases
exposed before. If follows directly from Theorem 6.1 by using Example 2.17.

Corollary 6.2. Let X be a Banach space with the Daugavet property and let Y be a subspace of X.
If X/Y is strongly regular (in particular, CPCP or RNP), then Y has the Daugavet property.

Our next aim is to show that separable Banach spaces for which every convex series of slices of BX

intersects the sphere, must contain an isomorphic copy of ℓ1.

Theorem 6.3. Let X be a Banach space such that every convex series of slices of BX intersects the
unit sphere. Then, SCD(BX) = ∅. If, moreover, X is separable, then X is not an SCD space and, in
particular, it contains an isomorphic copy of ℓ1.

Proof. Assume that every convex series of slices of BX intersects the sphere. This means that for every
sequence of slices {Sn : n ∈ N} of BX there are xn ∈ Sn ∩ SX and x∗ ∈ SX∗ such that x∗(xn) = 1 for
every n ∈ N [7, Lemma 2.8]. In particular, 0 /∈ conv({xn : n ∈ N}). This implies that 0 /∈ SCD(BX),
hence SCD(BX) = ∅ by Corollary 2.21. If moreover X is separable, it cannot be an SCD space, so X
contains a ℓ1-sequence (see [4, Theorem 2.22]). □

Some comments on the above result are pertinent.

Remark 6.4. We collect here some comments on Theorem 6.3:

(1) It also follows from the above theorem that if every convex series of slices of BX intersects the
unit sphere, then BX does not contain strongly regular points (by using Proposition 2.16), but
this follows directly from the hypothesis and it does not need Theorem 6.3.

(2) The assumption on convex series of slices intersecting the sphere cannot be relaxed to (finite)
convex combinations of slices intersecting the unit sphere. Indeed, the separable Banach space
c0 has the property that every finite convex combination of slices of BX intersects the unit
sphere [2, Example 3.3], but it does not contain ℓ1.

(3) Note that the second part of Theorem 6.3 cannot be extended to non-separable Banach spaces.
Indeed, if I is uncountable, then every convex series of slices of Bc0(I) intersects the unit sphere
[7, Proposition 3.6 and Example 6.2], but c0(I) does not contain ℓ1.

Our final application shows the validity of the Daugavet equation (DE) (i.e. ∥ Id+T∥ = 1 + ∥T∥)
for those operators T on a Banach space with the Daugavet property for which one can almost reach
the norm or T using SCD points of T (BX). It is actually the pointwise version of [4, Proposition 5.8].

Theorem 6.5. Let X be a Banach space with the Daugavet property and T ∈ L(X,X). Suppose that
for every ε > 0 there exists an element Tx ∈ SCD

(
T (BX)

)
such that ∥Tx∥ > ∥T∥ − ε. Then, T

satisfies (DE).

Proof. Let us first introduce some notation. We denote K(X∗) as the intersection of SX∗ with the
weak∗-closure in X∗ of ext(BX∗), which is a (James) boundary for X (as it contains ext(BX∗)).
Secondly, for a slice S of BX and ε > 0, write

D(S, ε) = {y∗ ∈ K(X∗) : S ∩ conv
(
S(BX , y∗, ε)

)
̸= ∅}.
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Assume now, without loss of generality, that ∥T∥ = 1. By assumption, we can pick x ∈ BX such that
Tx is an SCD point of T (BX) and

∥Tx∥ > 1− ε

2
.

Let {Sn : n ∈ N} be a determining sequence of slices of T (BX) for Tx, and observe that T−1(Sn)∩BX

are slices of BX . Since K(X∗) is a boundary for X and it is balanced, one can find y∗0 ∈ K(X∗) so that
Re y∗0(Tx) = ∥Tx∥, which in particular, implies that Re y∗0(Tx) > 1−ε/2. By [4, Proposition 4.3 (v)],
the set

⋂
n∈ND(T−1(Sn)∩BX , ε/2) is weak∗-dense inK(X∗). Therefore, we are able to find an element

y∗ ∈
⋂

n∈ND(T−1(Sn) ∩BX , ε/2) satisfying∣∣Re(y∗ − y∗0)(Tx)
∣∣ < ε

2
.

Utilizing the estimations derived above, we obtain

Re y∗(Tx) = Re y∗0(Tx) + Re(y∗ − y∗0)(Tx) > 1− ε

2
− ε

2
= 1− ε,

hence Tx ∈ S(BX , y∗, ε).
We wish now to use the fact that Tx is an SCD point for T (BX). In order to do so, observe that

for each n ∈ N
conv

(
S(BX , y∗, ε)

)
∩ T−1(Sn) ̸= ∅

by the definition of the set D(T−1(Sn) ∩BX , ε/2). This means that

T
(
conv

(
S(BX , y∗, ε)

))
∩ Sn ̸= ∅

for every n ∈ N, and since {Sn : n ∈ N} is determining for Tx, we infer that

Tx ∈ conv
(
T
(
conv

(
S(BX , y∗, ε)

)))
= T

(
conv

(
S(BX , y∗, ε)

))
.

This enables us to find

z ∈ T
(
conv

(
S(BX , y∗, ε)

))
such that ∥Tx− z∥ < ε,

which, in particular, implies that

ε > Re y∗(Tx− z) = Re y∗(Tx)− Re y∗(z)

and, therefore,
Re y∗(z) > Re y∗(Tx)− ε > 1− ε− ε = 1− 2ε. (6.2)

Notice that z can be represented as

z = T
( k∑

n=1

λnxn

)
=

k∑
n=1

λnT (xn),

where xn ∈ S(BX , y∗, ε), λn ⩾ 0 for n = 1, . . . , k, and
∑k

n=1 λk = 1. It follows from (6.2) that there
exists n0 ∈ {1, . . . , k} such that

Re y∗
(
T (xn0)

)
> 1− 2ε.

Since xn0 ∈ S(BX , y∗, ε), we also have

Re y∗
(
xn0 + T (xn0)

)
> 2− 3ε,

and, consequently,

∥Id+T∥ ⩾ ∥xn0 + T (xn0)∥ > Re y∗
(
xn0 + T (xn0)

)
> 2− 3ε.

Since ε was arbitrary, the desired result holds. □
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Let us give an interesting particular case, which is related to [4, Corollary 5.15].

Corollary 6.6. Let X be a Banach space with the Daugavet property and let T ∈ L(X,X). Suppose

that T (BX) is contained in the closed convex hull of the set of strongly regular points of T (BX) (in

particular, if T (BX) ⊂ conv
(
dent

(
T (BX)

))
). Then, T satisfies (DE).

Proof. As strongly regular points are SCD (Proposition 2.16), and the set of SCD points is closed

and convex (Lemma 2.6), it follows that T (BX) ⊂ SCD
(
T (BX)

)
. By Lemma 2.7, it follows that

T (BX) = SCD(T (BX)). The result now follows from Theorem 6.5. □
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[24] V. Kadets, M. Mart́ın, J. Meŕı, and D. Werner, Lushness, Numerical Index 1 and the Daugavet Property

in Rearrangement Invariant Spaces, Canad. J. Math. 65 (2013), 331–348.
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