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Abstract The aim of the present work is to relate the shape of a liquid drop in
some contexts on capillarity and wetting with the surfaces that are mathematical
models of these droplets. When a liquid drop is deposited on a support substrate,
we are interested whether the geometry of the support imposes restrictions to the
possible configurations of the droplet. Recently there is a progress in experiments
done for liquid drops deposited on (or between) spherical rigid bodies, an assembly
of cylinders and on a cone that allows to consider new theoretical problems in the
field of capillary surfaces. We exploit the symmetries of these supports to apply
the maximum principle of elliptic equations concluding that in some cases the drop
inherits part of the symmetries of the support.
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1 Introduction

1.1 A brief approach to capillarity and wetting

Following [12], capillarity studies the interfaces between two immiscible phases and
wetting refers how a liquid deposited on a solid (or liquid) substrate spreads out.
Capillarity and wetting appear in a variety of industrial and engineering processes
(e.g., automobile manufacturing, textile production, ink-jet printing or colloid-
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polymer mixtures) where it is of interest to understand the physical and chemical
behavior of a fluid. Many experiments consist of modifying the characteristics of the
liquid and the solid until to attain the desirable wetting/spreading properties [5, 12].
A simple, but illustrative example, is when a given amount of an incompressible
liquid is deposited on a solid substrate. Under idealized conditions (non-roughness,
constant pressure and temperature, purity or low viscosity), the only forces acting
on the liquid molecules are of order of a few nanometers and are determined by the
Van der Waals and electrostatic interactions. These forces are balanced except for
the molecules on the liquid-air interface S of the drop which, to be in contact with
the air and solid phases, are mainly attracted inward and to the sides so that the at-
traction energy at the interface is less than in the interior. See Fig. 1, left. Under the
above physical assumptions, the total energy E of the system is E = ES +EA +EG
where ES is the surface tension, EA is a wetting energy and EG the gravitational
energy (Fig. 1, right). The energy ES is the surface energy to create the interface S
and is proportional to the number of interfacial molecules, that is, the surface area
of S. The energy per area of S is called the surface tension σ . Similarly, EA is the
energy by the adhesion of the droplet on the solid phase which is also proportional
to the number of molecules of the droplet in contact with the solid. Finally, EG rep-
resents the weight of the drop and can written as an integral

∫
V gz, where V is the

volume of the drop, g is the gravitational constant and z is the height at a point of
S with respect to a reference system. In this physical system, there are present three
different phases, namely, liquid-air, solid-liquid, and solid-air phase, and the three
corresponding surface tensions σ , σSL and σSA, respectively: see Fig. 2, left.
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Fig. 1 Left: an interface is the boundary of two homogenous systems with different physical and
chemical properties. Right: a liquid droplet deposited on a substrate under ideal physical conditions

In thermodynamic equilibrium, the interface S is free to change of shape in order
to minimize its total free energy E. Assuming that the volume V of the drop remains
fix (no evaporation), or in other words, if V is a Lagrange multiplier, and according
to the principle of virtual work, the system will be in equilibrium if the energy E
attains a critical point in the position of S. Then S satisfies the well-known Laplace
equation

(PL−PA)+(∆d) g z =
(

1
R1

+
1

R2

)
σ = 2Hσ . (1)
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Here PL−PA is the difference between the liquid pressure PL under S and the air
pressure PA just above S, ∆d is the difference of densities between the liquid and air
phases and H is the mean curvature of S. The mean curvature H at each point of S
is defined by 2H = 1/R1 + 1/R2, where Ri are the curvature radii. Because we are
assuming ideal conditions, PL−PA is constant, as well as, ∆d, g and σ . In particular,
the mean curvature H is a linear function of z, that is, for each point (x,y,z) ∈ S, we
have H(x,y,z) = λ z+µ , where λ = g∆d/(2σ), µ = (PL−PA)/(2σ). Usually there
are two extra boundary conditions. The first one supposes that the liquid-solid phase
is prescribed, that is, the part that the drop wets the solid is confined in a fixed region
so the boundary ∂S of S is a prescribed curve. A second (and more natural) scenario
is assuming that the droplet can move freely on the substrate Π (free boundary
condition). In this situation, S satisfies the so-called Young equation

cosγ =
σSA−σSL

σ
, (2)

where γ is the angle that makes S with the liquid-solid-air contact line ∂S. Because
the three surfaces tensions are constant, the Young equation (2) establishes that the
contact angle γ between the drop and the substrate is constant along ∂S [10, 17].
Here γ is the angle between the unit normal vectors NS and NΠ of S and Π , respec-
tively: cosγ = 〈NS,NΠ 〉, where NS points to the liquid drop and NΠ points outward
the drop.
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Fig. 2 Left: the contact angle γ between S and Π and the equilibrium between the three sur-
face tensions. Right: the pendant drop method to measure the surface tension for an axisymmetric
droplet

In a specific problem it is necessary the prediction of the magnitude of the capil-
lary forces for eliminating or minimizing undesirable events, for example, an uncon-
trolled growth of agglomeration of particles or an abrupt change of the flow behavior
of a fluid. According this, the wetting state of the fluid is determined once the three
surface tensions are known. In general, it is difficult to compute all them, although
the difference σSA−σSL in (2) is a property of the solid and independent off the
liquid used. Thus the interest focuses to compute the surface tension σ which is ob-
tained from the Laplace equation (1) once calculated H or from the Young equation
(2) if the contact angle γ is known.
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1.2 The measurement of the surface tension

Among numerous measurement techniques of the surface tension σ , we describe the
sessile and pendant drop method [1]. A drop is sitting (or hanging) on a horizontal
plane which is taken aside-view photographs of the profile and we use a snapshot to
determine the shape of S (or the angle γ) by comparing the actual shape of the drop
with theoretical simulations based on the parameter σ ; see Fig. 2, right. However
in order to use the Young equation (2), it is actually difficult to compute explicitly
the contact angle γ because the liquid is easily contaminated. The other (and more
common) procedure consists to determine the mean curvature H adequating the
profile shape of the drop to a well-controlled geometry and extracting σ from the
Laplace equation (1). The mean curvature H of a surface z = u(x,y) in Euclidean
space R3 satisfies

(1+u2
y)uxx−2uxuyuxy +(1+u2

x)uyy = 2H(1+u2
x +u2

y)
3/2. (3)

We observe that Eq. (3) is a PDE of order two that cannot be integrated, even if H is
constant, and only be numerically approximated by analytic methods. Assuming a
small scale (wetting) or that the typical size of the meniscus is much smaller that the
capillary length (capillarity), the surface tension dominates the gravitational force,
so the gravity can be neglected. Thus g = 0 in the Laplace equation (1) and we de-
duce that the mean curvature H is constant. As a consequence we can affirm that the
liquid-air interface S of a liquid droplet is modeled by a surface in Euclidean space
where the mean curvature is the same at every point and makes a constant contact
angle with the support substrate. Surfaces with zero mean curvature everywhere
(H = 0) are called minimal surfaces and they appear when the pressures coincide in
both sides of S. Constant mean curvature surfaces are easily obtained when we dip
in and out a closed wire in a container with soapy water. The soap film spanning
by the wire is a minimal surface because there is not pressure difference across it.
However if the wire traps air inside it, or if we blow air on it making a bubble, then
there is an enclosed volume, the pressure difference is non-zero (but constant) and
the surface has nonzero constant mean curvature.

Therefore experimentalists need to simplify Eq. (3) and the usual idea is assum-
ing symmetric shapes so the discrete computational procedures developed to sim-
ulate the mathematical behavior of these processes can be fast and manageable. In
this sense, it would be useful to reduce this equation into an ODE if, owing to sym-
metries, the equation depends only on one coordinate. The most common situation
is assuming axisymmetric solutions of (3), that is, S is a surface of revolution. If
u = u(r) is the distance to the rotation axis, a first integration of (3) is

Hu2− u√
1+u′2

= c (4)

for some c ∈ R. From this equation, we can solve some cases: if c = 0, the solution
of (4) is the circle u(r) =

√
1−H2r2/H and S is a sphere of radius 1/|H|; if u is

a constant function, then the solution is u(r) = 1/(2H) (for 1+ 4Hc = 0) and S is
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a cylinder of radius 1/(2|H|); if H = 0, then c = m2 > 0, u(r) = mcosh(r/m) and
S is a catenoid. However for arbitrary c, the solutions of (4) can not integrate com-
pletely and they can only be represented by elliptic integrals. The profile curves of
the solutions of (4) are mathematically characterized to be the roulettes of the fo-
cus of a conic and the surfaces are called Delaunay surfaces [8, 9]. Besides spheres
and cylinders, they are unduloids, nodoids and catenoids: see Fig. 3. Usually, ex-
periments utilize symmetric devices to sit or hang a droplet from a circular opening
where the observed interface is assumed to be a surface revolution. In general, it
is utilized pendant drops that the sessiles one because they are easily controllable.
Once that we know that the interface is rotational, determining the geometry of the
drop consists to capture and digitalize its image, extracting its contour, smoothing
the profile and comparing the shape with the theoretical Delaunay surfaces (Fig. 4).
Finally, a software (for example, a Runge-Kutta method, a technique based on fi-
nite elements or the Surface Evolver) works to compute the mean curvature H. This
measurement method is simple and it does not require a sophisticated machinery or
any special cleanliness of the solid substrate.

Fig. 3 Delaunay surfaces. From left to right: sphere, cylinder, unduloid, nodoid and catenoid

In contrast to the assumption that a droplet hanging for a circular opening is ax-
isymmetric (independently with or without gravity), and from the theoretical view-
point, the shape of a surface with constant mean curvature (cmc surface in short)
in Euclidean space spanning a circle S1 is not well known up today and only some
partial results ensure that a compact cmc surface in R3 spanning S1 is a planar disk
or a spherical cap. For the state-of-the-art in this topic, see [19]. In the free boundary
problem, it is unknown whether the geometry of the substrate affects to the geome-
try of a cmc surface supported on it, for example, if it inherits its symmetries. First
mathematical results were obtained by Wente in [34] assuming embeddedness of
the surface.

2 Capillary surfaces supported on spheres, cylinders, cones and
wedges

Recently there is a great interest in the study of liquid drops deposited on (or be-
tween) configurations formed by spherical rigid bodies, an assembly of cylinders,
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Fig. 4 Left: description of the typical apparatus of the pendant drop method. Right: a pendant drop
is modeled by an axisymmetric surface by adjusting its contour

cones or planes because this variety of systems may be found like a crystallization,
agglomeration, phase sintering, liquid foams and emulsions [14, 16, 18, 24, 28].
Moreover, the improvement of the numerical analysis methods as well as the model-
ing software allows to consider new theoretical problems in capillarity and wetting.
When the size of the liquid drop is very small, the effect of gravity is negligible and
no other force is considered. In such a case, the interface S has the same mean curva-
ture H everywhere. We need again to model the liquid bridges as Delaunay surfaces
where the geometry associated is relatively simple or at least giving conditions that
ensure that S is rotational. In this section, by a capillary surface we mean a cmc
surface S with free boundary on a substrate Π and S makes a constant contact angle
with Π along its boundary ∂S. Since we are considering bounded droplets, we also
suppose that S is compact. The symmetry of the mentioned supports in this section
allows to get (at least theoretically) explicit examples of pieces of Delaunay surfaces
that are capillary surfaces. Some examples appear in Fig. 5, where the support Π is
a sphere, a circular cylinder and a circular cone and the rotation axis of S coincides
with the one of Π .

Fig. 5 Pieces of Delaunay surfaces that make a constant contact angle with a sphere, a circular
cylinder and a cone

In what follows, we show some results on the symmetry of a capillary surface
when the support substrate is a sphere, a right cylinder, a cone and a wedge. See
[20, 21, 22, 23].
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2.1 Droplets on a sphere

Consider a cmc surface S whose boundary lies on a sphere, which we suppose to be
the unit sphere S2 and denote by B3 the unit ball enclosed by S2. Previous results
on capillary surfaces on S2 included in B3 were obtained assuming that the contact
angle is constant [11, 30, 31].

Theorem 1. Let S be an embedded cmc surface on S2 whose boundary ∂S is in-
cluded in a hemisphere S2

+. Suppose S is a capillary surface. Let W be the 3-domain
bounded by S∪Ω , where Ω ⊂ S2

+ is the domain bounded by ∂S. If W ⊂R3−B3 or
S⊂ B3, then S is part of a sphere.

This result extends if we replace the capillary condition by assuming that the
boundary ∂S is a circle. In such a case and when W ⊂ R3−B3, we add the hypoth-
esis that the mean curvature H satisfies |H| ≥ 1.

2.2 Droplets on a right cylinder

By a right cylinder we mean Σ = C×R, where C ⊂ R2 is a simple planar closed
curve. The cylinder is said to be circular if C is a circle. The cylinder Σ determines
two domains in R3, namely, the inside and the outside, that is, Ω ×R and R3 \
Ω ×R, where Ω ⊂ R2 is the bounded domain by C. Consider a capillary surface S
on Σ that lies in one side of Σ . A first question to elucidate is if the boundary ∂S is
a curve nullhomotopic in Σ or if ∂S is homotopic to C. For example, the first setting
could occurs if the volume of S is very small, and the second one when a cylindrical
tube is introduced in a container of liquid and the liquid rises up by capillarity. In
the latter one, we ask if S is a graph z = u(x,y) on Ω .

Theorem 2. Let Σ be a right cylinder and let S be an embedded capillary surface
on Σ such that S⊂ inside(Σ).

1. If ∂S is homotopic to C, then S is a graph on Ω . If Σ is a circular cylinder, then
S is a planar disk or a spherical cap.

2. If ∂S =C1∪C2 and each Ci, (i = 1,2) is homotopic to C, then S has a symmetry
with respect to a plane orthogonal to the axis.

3. If Σ is a circular cylinder and ∂S is contained in a half cylinder of Σ , then S has
two mutually planes of symmetry and S is a topological disk.

In the item 3, by a half cylinder of Σ we mean one of the two components remaining
when we intersect Σ by a plane containing the rotation axis.

In case that S has zero mean curvature, we have a strong result under the hypoth-
esis that the surface is immersed.

Theorem 3. Let S be capillary minimal surface on Σ such that S⊂ inside(Σ). If ∂S
is a graph on C, then S is a horizontal planar domain.
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2.3 Droplets on a cone

Consider Ω ⊂ S2 a simply connected domain of S2 and included in a hemisphere of
S2. If Γ = ∂Ω , the cone determined by Γ is defined as Σ = {λ p : λ > 0, p ∈ Γ },
that is, the set of all rays starting from the origin O through all points of Γ . If Γ is a
circle, we say that Σ is a circular cone. The inside of the cone Σ is the corresponding
3-domain {λ p : λ > 0, p ∈Ω}.

We consider a capillary surface S whose boundary lies on Σ and contained in
the inside of Σ . As in the case of a right cylinder, we do not know whether ∂S is
nullhomologous in Σ −{O} or if ∂S is homotopic to Γ in Σ −{O} and S has a
one-to-one central projection on Ω (a radial graph), that is, each ray starting from
the vertex intersects S one point at most. See Fig. 6, left. We obtain:

Theorem 4. Let S be an embedded capillary surface supported on a cone Σ and let
us fix N the unit normal vector field of S pointing towards the liquid drop. If H ≤ 0,
then S is a radial graph and the boundary ∂S has only one connected component
which is homologous to Γ in Σ−{O}. In the particular case that the cone is circular,
then S is a planar disk or a spherical cap.

In other words, Theorem 4 says that the non-positivity of H implies that S is a
topological disk and that there are no capillary bridges between the walls of Σ . As a
consequence, and dropping the assumption on the sign of H, we have (Fig. 6, right):

Corollary 1. If S is a capillary surface on a circular cone Σ such that the contact
angle γ satisfies γ ≤ (π−ϕ)/2, being ϕ the amplitude of Σ , then S is a planar disk
or a spherical cap.

In this case, the hypothesis on γ implies H ≤ 0: this is a consequence of comparing
S with spherical caps or planar disks having the same mean curvature and the same
contact angle with Σ .

g
g

g

j jj

Fig. 6 Left: possible configurations of a liquid drop deposited on a cone. Right: spherical caps and
planar disk are examples of capillary surfaces on a circular cone
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2.4 Droplets on a wedge

If we intersect appropriately a Delaunay surface by two orthogonal planes Π1 ∪
Π2 to the rotation axis, we obtain a capillary surface contacting Π1 ∪Π2 with the
same contact angle. It is known by experiments that only some pieces of Delaunay
surfaces are physically realized, that is, only some surfaces are stable in the sense
that the second variation of the energy E is non-negative. Early results of Vogel and
Athanassenas prove that the only stable capillary surfaces connecting two parallel
planes are rotational surfaces and that if the contact angle γ is π/2, then the half-
sphere and the cylinder are the only possibilities [4, 33]. However, the problem is far
to be completely known for a general contact angle or other assumptions replacing
stability [2, 6, 15, 25, 35].

A similar situation occurs when Π1 and Π2 are not parallel planes. In this case,
the 3-domain determined by Π1 ∪Π2 is called a wedge. For this support, there are
explicit examples of capillary surfaces when we place a sphere centered in the plane
bisecting the wedge (γ > π/2), or if the center lies in the axes of the wedge (γ =
π/2). See Fig. 7. A first question posed is on the existence of capillary surfaces with
cylindrical topology connecting Π1 and Π2: see [7, 26, 27]. Under this context and
γ = π/2 (Fig. 7, right ), we prove:

Theorem 5. Consider a cmc surface S on a wedge with contact angle γ = π/2. If S
is stable or it is embedded, then S is part of a sphere centered at the vertex.

g

g

g

Fig. 7 Left: capillary surfaces on a wedge. Right: a spherical cap meeting orthogonally the walls
of a wedge

3 The proof methods

Motivated by experiments on wetting and capillarity, we assume that the interface of
a droplet is an embedded surface. In our context, and since our surfaces are compact,
embeddedness is equivalent to say that the surface has not self-intersections. In the
theory of embedded cmc surfaces, one of the main ingredients in the proofs is the
Alexandrov reflection principle. Alexandrov proved that the sphere is the only em-
bedded closed cmc surface [3]. Although this result was expected, the novelty came
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from the proof, where the very surface is utilized as a barrier with itself to obtain the
desired result. This idea has been extensively utilized not only in geometry but also
in PDE theory, starting with the breaking paper of Serrin [32]. We briefly explain
the Alexandrov method. The mean curvature equation (3) is elliptic but not linear.
However if u1 and u2 are two solutions of (3), the difference function u = u1− u2
satisfies a linear elliptic equation Lu = 0 and we can apply the maximum principle
[13]. In the context of cmc surfaces, this result is known as the tangency principle
which asserts that if S1 and S2 are two surfaces with the same constant mean curva-
ture, which are tangent at a point p ∈ S1 ∩ S2 and S1 lies in one side of S2 around
p, then S1 and S2 coincide in a neighborhood of p, and by extension of the argu-
ment, S1 and S2 coincide in a common open and closed set [19]. For the proof, let
S be an embedded closed cmc surface and let us fix a direction a ∈ R3. Consider a
plane coming from infinity and orthogonal to a until arriving the first contact point
with S: Fig. 8, left. Next, we follow moving the plane and reflecting the surface that
lies behind the plane until the first time that the reflected surface (with respect to a
plane Pa) reaches the initial surface. In the touching point between both surfaces,
the tangency principle implies that the reflected surface and the part of the surface
in that side of Pa must coincide, proving that Pa is a plane of symmetry of S. Doing
the same argument for all spatial directions a, we conclude that S must be a round
sphere.

aS
S

Fig. 8 The Alexandrov reflection method. Left: the closed embedded case. Right: the circular
boundary case

In case that the boundary of S is a circle, we need to assume that S lies in one
side of the plane containing ∂S: see Fig. 8, right. This prevents that the first contact
point may occur between an interior point with the boundary ∂S because in such a
case, the reflected surface and S are not tangent at the first touching point and we
can not utilize the tangency principle.

In each one of the support substrates considered in Section 2, we have different
possibilities of choices of planes to start with the reflection method. We explain in
each case [20, 21, 22, 23].

1. Suppose that the support is a sphere S2 and that ∂S is a circle in S2
+ (Th. 1).

Recall that in this case, we are assuming |H| ≥ 1. Let Π be the horizontal plane
containing the center O of S2. A first step is proving that if W lies outside B3,
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then O 6∈W . On the contrary, consider the uniparametric family of spherical caps
of radius bigger than 1 below Π and with the common boundary to be the circle
Π ∩S2. Starting from the radius r = 1, we increase the radius of these caps until
the first contact with S: Fig. 9, left. At the contact point, the mean curvature of
the cap, namely 1/r, must be bigger than |H|, which it is not possible because
|H| ≥ 1. As a conclusion, if W lies outside B3, then O 6∈W . The reflection process
starts with horizontal planes coming from below until we reach S (Fig. 9, right).
Next, we follow moving up the plane and reflecting. Since ∂S lies in the upper
hemisphere, there is not a touching point before arriving to the plane Π since,
on the contrary, there would be a horizontal plane of symmetry: a contradiction
because ∂S ⊂ S2

+. Once arrived to the origin, we fix a horizontal straight line
L⊂Π passing through O. Let us replace the above planes by a family of planes
all containing L (Fig. 9, right). Next we are going to rotate the plane and we
follow the reflection method until the first touching point p. If p is an interior
point, a standard argument implies that the plane is a plane of symmetry, so
of ∂S. If p is a boundary point, then the plane is a plane of symmetry of ∂S.
Repeating this argument for any horizontal straight line L through the center of
S2, we conclude that S is a spherical cap.
In case that S is a capillary surface, the only difference in the above argument is
that if the first touching point p is a boundary point (necessarily with respect to a
plane containing L), the condition on the constancy of the contact angle implies
that the reflected surface and the initial one are tangent at p. Thus we apply the
(boundary version) tangency principle [13] concluding that the plane is a plane
of symmetry of the surface.

S
S

S

W

P

Fig. 9 Reflection method for a capillary surface droplet supported on a sphere

2. Suppose that the support is a right cylinder Σ =C×R. In the item 1 of Theorem
2, the reflection method uses a family of orthogonal planes to a vertical line and
coming from infinity (Fig. 10, left). In case of existence of a horizontal plane
where the reflected surface touches the first time with the initial surface at some
interior point, then this plane is a plane of symmetry. This is a contradiction with
the fact that ∂S is a curve homotopic to C. If the first contact point occurs at a
boundary point, the condition on the constancy of the contact angle implies that
the initial and the reflected surface are tangent at that point, and the proof works.
For the item 2, the argument is similar.
For the item 3, and because ∂S lies in a half cylinder, then ∂S is nullhomotopic
in Σ . Thus S together a domain of Σ bounds a 3-domain W ⊂ R3. A first step
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consists to apply the reflection method with a uniparametric family of planes
orthogonal to the rotation axis. Hence we obtain a first plane of symmetry P1
of S. Let Π be the plane containing the rotation axis that leaves in one side ∂S.
We now use a uniparametric family of planes parallel to Π and all them lie in
the other side of Π (not containing ∂S). The reflection method works until we
arrive to the very plane Π (Fig. 10, right). The hypothesis on ∂S to be contained
in a half cylinder prevents the existence of a first contact point. At this position,
we replace the planes by a family of planes containing the axis. We follow the
reflection method by rotating these planes until the first (interior or boundary)
contact point, obtaining a new plane of symmetry P2 of S. The plane P2 contains
the axis so P2 is orthogonal to P1. Because S is symmetric by these orthogonal
planes P1 and P2, then S is a topological disk.

S

S MS

P

Fig. 10 Reflection method for a capillary surface supported on a right cylinder. Right: a top view
of Σ

3. In the case of a cone, the reflection process with respect to planes is substituted
by a spherical reflection method, which appeared firstly in [26] replacing by in-
versions about a one parameter family of spheres all centered at the center O of
S2. Although an inversion does not preserve H, there is a certain control of the
mean curvature of the inverted surface in order to use the tangency principle. Ex-
actly if S2

r ⊂ R3 is the sphere of radius r centered at O, the spherical reflection
about S2

r is the inversion mapping defined by

φr : R3 \{O}→ R3 \{O}, p̂ := φr(p) =
r2

|p|2
p.

Let H be the mean curvature of S with respect to a unit normal vector field N.
Denote by Ŝr the spherical reflection of S about φr and consider on Ŝr the orien-
tation

N̂(p̂) = N(p)− 2〈N(p), p〉
|p|2

p.

Then the mean curvature of Ŝr is



Capillary surfaces modeling liquid drops on wetting phenomena 13

Ĥ(p̂) =
H|p|2 +2〈N(p), p〉

r2 . (5)

We start the spherical reflection method from spheres S2
r with r sufficiently big

until the first contact point p0 with S. Because N points inside the liquid, then
〈N(p0), p0〉 < 0. We have from (5) that Ĥ(p0) ≤ H|p0|2/r2 < H, where we use
H ≤ 0. Following with the reflection across inversions and using the assumption
on the non-positivity of H, we conclude that there is not a contact point between
the inverted surface with the part of S inside S2

r , which proves that S is a radial
graph on Ω . For the second part of Theorem 4, we use that the the only cmc
surface in R3 that is invariant by an inversion about a sphere is an open set of a
sphere or a plane.

4. We only prove Theorem 5 when S is an embedded surface. First we extend the
Ros formula [29] proving that if a compact embedded surface with not necessar-
ily constant mean curvature H meets orthogonally a wedge, then∫

S

1
H

dM ≥ 3V, (6)

where V is the volume of S and the equality holds if and only if S is part of
a sphere. The proof of (6) involves the Reilly formula for a solution of PDE
with Dirichlet and Neumann boundary conditions and the classical Minkowski
formula ∫

S
(1+H〈N,x〉) dS =−1

2

∫
∂S
〈ν ,x〉 ds,

where ν is the inward unit conormal along ∂S. After a rigid motion, the orthog-
onality intersection condition means that 〈ν ,x〉= 0 and as H is constant, we get
A−3HV = 0, where A is the area of S. This implies equality in (6) and the result
follows.

4 Conclusions

In the present paper we have discussed under what conditions some geometric con-
figurations of a liquid droplet in thermodynamic equilibrium is a surface of revolu-
tion. Our motivation comes from the fact that experiments devoted to compute the
surface tension σ of a liquid (e.g. the pendant drop method) assume previously that
if the boundary of the air-liquid interface is symmetric, or if the drop is supported
on a highly symmetric substrate, the liquid drop receives the same symmetries. In
recent years there is a great progress in the creation of new materials and exper-
imentation at nanometer and microscopic scales of fluids deposited between con-
figurations of spheres, cylinders and planes. In some industrial experiments, there
exist processes of crystallization and agglomeration which require the knowledge
of the effects of the capillary forces of the liquids bridges connecting these solids
and avoiding an abrupt change in the liquid shape, or preventing undesirable over-
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flowing events. To quantify and estimate these forces, the mathematical models for
droplets and liquid bridges are cmc surfaces which are assumed to be surfaces of
revolution because the analytic expression of the mean curvature equation (3) in the
axisymmetric case (4) is easier. Recent progress in experiments with a wider variety
of morphologies on the substrate has given a new boost in the theoretical study that
it was not previously considered.

Our results show that if these drops are modeled by a surface with constant mean
curvature and under assumptions of embeddedness, then the droplet inherits some
symmetries of the support substrate Π when Π is a sphere, a right cylinder, a cone
or a wedge. This allows to provide a mathematical understanding of why the shapes
of these drops are axisymmetric. These results provide us new directions of inves-
tigation, for example, assuming that the droplet has self-intersections which means
that in the fluid may appear empty chambers of liquid or that the droplet does not
lie completely in one side of the substrate.
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20. López, R.: Capillary surfaces with free boundary in a wedge. Adv. Math. 262, 476–483 (2014)
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