Papers
- J. Pozuelo, M. Ritoré, Pansu-Wulff shapes in H^1. arXiv:2007.04683.
- S. Barbero, M. Ritoré, Circle involute as an optimal scan path, minimizing acquisition time, in surface topography, Surface Topography: Metrology and Properties, 7 no. 3 (2019).
- G. Citti, G. Giovannardi, M. Ritoré, Variational formulas for submanifolds of fixed degree. arXiv:1905.05131.
- G. Citti, G. Giovannardi, M. Ritoré, Variational formulas for curves of fixed degree. arXiv:1902.04015.
- G. P. Leonardi, M. Ritoré, E. Vernadakis, Isoperimetric inequalities in unbounded convex bodies, Memoirs of the AMS (to appear). arXiv:1606.03906.
- M. Ritoré, J. Yepes Nicolás, Brunn-Minkowski inequalities in product metric measure spaces, Adv. Math. 325 (2018) 824–863. arXiv:1704.07717.
- M. Ritoré, Tubular neighborhoods in the sub-Riemannian Heisenberg groups, Adv. Calc. Var. arXiv:1703.01592.
- M. Ritoré, E. Vernadakis, Large isoperimetric regions in the product of a compact manifold with Euclidean space. Adv. Math. 306 (2017) 958-972. arXiv:1312.1581.
- M. Ritoré, Continuity of the isoperimetric profile of a complete Riemannian manifold under sectional curvature conditions. Rev. Mat. Iberoam. 33, no. 1 (2017) 239-250. arXiv:1503.07014.
- M. Ritoré, E. Vernadakis, Isoperimetric inequalities in conically bounded convex bodies, J. Geom. Anal. 26, no. 1 (2016) 474-498. arXiv:1404.0370.
- M. Galli, M. Ritoré, Regularity of C^1 surfaces with prescribed mean curvature in three-dimensional contact sub-Riemannian manifolds, Calc. Var. PDE 54, no. 3 (2015) 2503-2516. arXiv:1501.07246.
- M. Galli, M. Ritoré, Area-stationary and stable surfaces of class C^1 in the sub-Riemannian Heisenberg group H^1, Adv. Math. 285 (2015) 737–765. arXiv:1410.3619.
- M. Ritoré, E. Vernadakis, Isoperimetric inequalities in convex cylinders and cylindrically bounded convex bodies, Calc. Var. PDE 54, no. 1 (2015) 643-663. arXiv:1401.3542.
- M. Ritoré, E. Vernadakis, Isoperimetric inequalities in Euclidean convex bodies, Transactions Amer. Math. Soc. 367 (2015) 4983-5014. arXiv:1302.4588.
- M. Galli, M. Ritoré, Existence of isoperimetric regions in contact sub-Riemannian manifolds, Journal of Mathematical Analysis and Applications 397 (2013) 697-714. Accepted Author Manuscript.
- A. Hurtado, M. Ritoré, V. Palmer, Comparison results for capacity, Indiana Univ. Math. J. 61 (2012), 539-555. arXiv:1012:0487
- M. Ritoré,
A proof by calibration of an isoperimetric inequality in the Heisenberg group H^n, Calc. Var. PDE 44 no. 1-2 (2012), 47-60. (preprint)
- A. Hurtado, M. Ritoré, C. Rosales, The classification of complete stable area-stationary surfaces in the Heisenberg group H^1, Adv. Math. 224 no. 2 (2010) 561-600. (preprint)
- M. Ritoré, C. Sinestrari, Mean
curvature flow and isoperimetric inequalities, Advanced Courses in
Mathematics - CRM Barcelona, Birkhaüser, 2010. ISBN: 978-3-0346-0212-9.
- M. Ritoré, Examples of area-minimizing surfaces in the sub-Riemannian Heisenberg group H^1 with low regularity, Calc. Var. PDE 34 no. 2 (2009) 179-192. (preprint)
- M. Ritoré, C. Rosales, Area-stationary surfaces in the Heisenberg group H^1, Adv. Math. 219 no. 2 (2008) 633-671. (preprint)
- A. Cañete, M. Ritoré, The isoperimetric problem in complete annuli of revolution with increasing Gauss curvature, Proc. Royal Society Edinburgh 138 no. 5 (2008) 989-1003. (preprint)
- J. Choe, M. Ritoré, The relative isoperimetric
inequality in Cartan-Hadamard 3-manifolds, J. Reine Angew. Math.
605 (2007) 179-191.
- J. Choe, M. Ghomi, M. Ritoré, The relative isoperimetric inequality
outside a convex domain in R^n, Calc. Var. PDE 29 no. 4 (2007) 421-429.
- M. Ritoré, C. Rosales, Rotationally
invariant hypersurfaces with constant mean curvature in the Heisenberg
group H^n, J. Geom. Anal. 16, no. 4 (2006) 703-720.
- J. Choe, M. Ghomi, M. Ritoré, Total positive curvature of hypersurfaces with
convex boundary, J. Differential Geom. 72, no. 1 (2006)
129-147.
- M. Ritoré, Optimal
isoperimetric inequalities for three-dimensional Cartan-Hadamard
manifolds, Global theory of minimal surfaces, 395-404, Clay Math.
Proc., 2, Amer. Math. Soc., Providence, RI, 2005.
- F. Morgan, M. Ritoré, Geometric measure theory and the proof of the
double bubble conjecture, Global theory of minimal surfaces,
1-18, Clay Math. Proc., 2, Amer. Math. Soc., Providence, RI, 2005.
- A. Cañete, M. Ritoré, Least-perimeter partitions of the disk into
three regions of given areas, Indiana Univ. Math. J. 53, no.
3 (2004) 883-904.
- M. Ritoré, C. Rosales, Existence and characterization of
regions minimizing perimeter under a volume constraint inside Euclidean
cones, Trans. Amer. Math. Soc. 356, no. 11 (2004) 4601-4622.
- F. Pacard, M. Ritoré, From constant mean curvature
hypersurfaces to the gradient theory of phase transitions, J.
Differential Geom. 64, no. 3 (2003) 359-423.
- M. Ritoré, A. Ros, Some updates on isoperimetric
problems, Math. Intelligencer 24, no. 3 (2002) 9-14.
- F. Morgan, M. Ritoré, Isoperimetric regions in cones,
Trans. Amer. Math. Soc. 354 (2002), no. 6, 2327-2339.
- M. Hutchings, F. Morgan, M. Ritoré, A. Ros, Proof of the double bubble conjecture,
Ann. Math. (2) 155 (2002), no. 2, 459-489.
- M. Ritoré, The isoperimetric problem in complete surfaces
with nonnegative curvature, J. Geom. Anal. 11 (2001), no. 3,
509-517.
- M. Ritoré, Constant geodesic curvature curves and
isoperimetric domains in rotationally symmetric surfaces, Comm. Anal.
Geom. 9 (2001), no. 5, 1093-1138.
- M. Hutchings, F. Morgan, M. Ritoré, A. Ros, Proof
of the double bubble conjecture, Electron. Res. Announc. Amer.
Math. Soc. 6 (2000) 45-49.
- M. do Carmo, M. Ritoré, A. Ros, Index one minimal surfaces
in Real Projective Spaces, Comment. Math. Helvetici 75 (2000),
no. 2, 247-254.
- R. Pedrosa, M. Ritoré, Isoperimetric domains in the
Riemannian product of a circle with a simply connected space form and
applications to free boundary problems, Indiana Univ. Math. J.
48 (1999) 1357-1394.
- M. Ritoré, Index one minimal surfaces in flat three-space
forms, Indiana Univ. Math. J. 46, no. 4 (1997) 1137-1153.
- F. J. López, M. Ritoré, F. Wei, A characterization of
Riemann's minimal surfaces, J. Differential Geom. 47(1997)
376-397.
- M. Ritoré, Stable periodic projective planes, Proc.
Amer. Math. Soc. 124 (1996) 3851-3856.
- M. Ritoré, Applications of compactness results for harmonic
maps to stable constant mean curvature surfaces, Math. Z. 226
(1997) 465-481.
- M. Ritoré, Examples of constant mean curvature surfaces
obtained from harmonic maps to the two sphere, Math. Z. 226
(1997) 127-146.
- M. Ritoré, A. Ros, The spaces of index one minimal surfaces
and constant mean curvature surfaces embedded in flat three manifolds ,
Transactions Amer. Math. Soc. 348 (1996) 391-410.
- M. Ritoré, A. Ros, Stable constant mean curvature tori and
the isoperimetric problem in three-space forms, Comment. Math.
Helvetici 67 (1992) 293-305.
- M. Ritoré, Superficies con
curvatura media constante, Tesis doctoral, Universidad de Granada,
1994.
10 Jul 2020