En este video se muestra
como funciona el menu correspondiente al análisis
descriptivo de series cronológicas. Así, se
trabaja con una serie de tiempo donde se recoge información
correspondiente al número de víctimas mensuales
(medidas en miles) en las carreteras españolas durante los
años 1986 a 2010 (
datos).
En primer lugar se calcula la tendencia de la serie por el
método de las medias móviles.
Obteniéndose además la representación
de la serie original:
y la representación de la serie original y suavizada (en
rojo):
Podemos observar que el número de víctimas
aumenta a mediados del año y disminuye al principio del
mismo. Además, la tendencia de los últimos
años es claramente decreciente (a partir de la
observación 250 aproximadamente).
A continuación se procede a desestacionalizar la serie y
obtener los índices de variación estacional. En
primer lugar, usando el método de las medias
móviles:
$`Índices
Variación Estacional`
[,1]
[,2]
[,3]
[,4]
[,5]
[,6]
[,7]
[,8]
[,9]
[,10]
[,11] [,12]
[1,] 0.8414827 0.7809224
0.906268 0.9416423 0.979274 1.013640 1.25412
1.372269 1.022816 0.9830074 0.9103511 0.9942068
$`Serie
Desestacionalizada`
[,1]
[,2]
[,3]
[,4]
[,5]
[,6]
[,7]
[,8]
[,9] [,10]
[,11] [,12]
[1,] 5.792157
5.516553 6.670212 5.512709 6.603872 6.620695
7.020061 7.848313 6.707952 6.454682 6.816052 7.005585
[2,] 6.584806
6.695928 6.769521 7.167265 7.410592 7.482934
7.977705 8.620756 7.513571 6.846337 7.001694 7.179593
[3,] 7.354875
6.977646 7.419439 7.812946 7.505560 7.894323
8.287085 8.318337 7.995574 7.957213 7.882673 7.858526
[4,] 8.111872
7.813837 8.518451 7.725864 8.492005 7.785803
8.806972 8.586506 7.899760 7.817845 7.632220 7.285204
[5,] 7.342992
7.560290 7.136962 7.657897 6.797893 7.026164
7.752846 7.657388 7.982864 7.092520 7.389457 7.238936
[6,] 6.627588
6.552508 7.063032 6.235914 6.683523 7.123832
7.272828 7.645729 7.396248 6.500459 7.104951 6.751110
[7,] 6.299595
6.530739 6.560973 6.215736 6.782576 5.399354
5.594361 6.376299 5.730259 5.807687 5.238638 5.932367
[8,] 5.825432
5.123429 5.073554 5.833425 5.437702 5.322403
5.739482 5.926679 5.618802 5.875846 4.576256 5.056292
[9,] 5.460600
5.015863 4.831904 4.614279 4.952648 5.011642
5.515421 5.433335 5.463349 5.031498 5.154055 5.315795
[10,] 5.508135 5.453807
5.037141 6.181753 5.313120 5.107337 6.033712
5.635191 5.954151 5.209523 5.493485 5.624584
[11,] 5.123100 5.511431
5.514925 5.672005 5.561263 5.708142 5.497879
5.755429 5.630535 5.469948 5.498977 5.629613
[12,] 5.039914 4.914701
6.128430 4.967916 5.696056 5.467425 5.206040
6.056391 5.251190 5.319390 5.965830 5.704044
[13,] 5.858707 6.186274
6.127327 6.488664 6.318967 6.313880 6.264950
6.831020 6.657112 6.734435 7.044535 6.632423
[14,] 6.802279 6.794529
6.519043 6.606543 6.605914 6.352355 6.706694
6.421479 6.927933 6.780213 6.117420 6.280383
[15,] 6.916364 6.651109
6.519043 7.381784 6.544644 6.274418 6.671610
6.189746 6.488949 6.663225 6.189920 6.771227
[16,] 6.937754 6.771480
6.844554 7.165141 6.199490 6.617735 6.445156
6.215252 6.749015 6.562514 6.743552 6.779273
[17,] 6.135599 6.412929
7.044274 5.954490 6.472141 6.993608 6.390138
6.231283 6.368693 6.733418 7.141201 6.768209
[18,] 6.695325 6.708733
6.918483 7.072749 6.955152 7.330020 6.708289
6.974578 7.107829 7.370239 7.234571 6.862757
[19,] 6.634718 7.085211
6.096431 6.348483 6.526263 6.635493 5.844735
5.719722 5.785988 6.580825 6.124011 6.089276
[20,] 5.994182 6.313047
6.132844 5.729352 6.306713 6.430292 5.918891
5.227836 5.765456 6.564548 6.263517 6.206958
[21,] 7.864690 7.313147
7.253925 7.420015 6.848951 6.722309 5.810448
5.347346 6.288522 6.847354 7.086277 6.825541
[22,] 6.886654 7.159482
7.099445 6.832743 6.966385 6.968945 6.560775
5.807897 6.506548 6.561497 6.857794 6.220034
[23,] 6.446954 6.703611
6.258634 5.810062 6.030998 5.893612 5.361528
5.044199 5.464327 5.837189 5.865869 5.802616
[24,] 5.708971 5.816199
5.666094 5.408636 5.404003 5.617380 5.236341
4.779673 5.082049 5.367202 5.651666 5.786522
[25,] 5.441586 5.295021
4.824180 4.902074 5.185474 5.431910 5.127898
4.429159 5.040986 5.802601 5.630795 5.065344
Obteniéndose también la representación
de la serie original y la desestacionalizada:
Y por último, usando el método de
regresión:
$`Índices
Variación Estacional`
[,1]
[,2]
[,3]
[,4]
[,5]
[,6]
[,7]
[,8]
[,9]
[,10]
[,11] [,12]
[1,] 0.8386307 0.7763826
0.9080547 0.9363672 0.9797545 1.014238
1.256466 1.369344 1.024303 0.9877897 0.9153625 0.9933072
$`Serie
Desestacionalizada`
[,1]
[,2]
[,3]
[,4]
[,5]
[,6]
[,7]
[,8]
[,9] [,10]
[,11] [,12]
[1,] 5.811855
5.548811 6.657088 5.543765 6.600633 6.616789
7.006952 7.865082 6.698215 6.423432 6.778735 7.011930
[2,] 6.607199
6.735082 6.756201 7.207642 7.406958 7.478519
7.962807 8.639176 7.502665 6.813191 6.963361 7.186095
[3,] 7.379887
7.018447 7.404841 7.856960 7.501879 7.889665
8.271610 8.336111 7.983968 7.918690 7.839517 7.865643
[4,] 8.139459
7.859527 8.501691 7.769388 8.487841 7.781209
8.790525 8.604853 7.888293 7.779996 7.590435 7.291803
[5,] 7.367963
7.604498 7.122919 7.701038 6.794559 7.022019
7.738368 7.673750 7.971277 7.058183 7.349001 7.245493
[6,] 6.650126
6.590823 7.049135 6.271044 6.680245 7.119629
7.259247 7.662065 7.385512 6.468988 7.066053 6.757225
[7,] 6.321018
6.568926 6.548064 6.250753 6.779249 5.396168
5.583914 6.389923 5.721941 5.779570 5.209958 5.937740
[8,] 5.845243
5.153387 5.063572 5.866288 5.435035 5.319263
5.728764 5.939342 5.610646 5.847399 4.551202 5.060872
[9,] 5.479170
5.045193 4.822397 4.640273 4.950220 5.008685
5.505121 5.444945 5.455419 5.007139 5.125838 5.320610
[10,] 5.526866 5.485698
5.027230 6.216578 5.310514 5.104323 6.022445
5.647231 5.945508 5.184302 5.463409 5.629678
[11,] 5.140522 5.543659
5.504074 5.703959 5.558535 5.704774 5.487612
5.767727 5.622362 5.443466 5.468871 5.634712
[12,] 5.057053 4.943439
6.116372 4.995903 5.693263 5.464199 5.196319
6.069331 5.243567 5.293637 5.933168 5.709211
[13,] 5.878630 6.222448
6.115271 6.525218 6.315868 6.310154 6.253251
6.845616 6.647449 6.701831 7.005967 6.638430
[14,] 6.825412 6.834259
6.506216 6.643761 6.602674 6.348607 6.694170
6.435200 6.917877 6.747388 6.083928 6.286072
[15,] 6.939884 6.690001
6.506216 7.423370 6.541435 6.270716 6.659151
6.202972 6.479530 6.630966 6.156031 6.777360
[16,] 6.961348 6.811075
6.831087 7.205506 6.196450 6.613831 6.433121
6.228532 6.739219 6.530742 6.706632 6.785414
[17,] 6.156464 6.450428
7.030414 5.988035 6.468968 6.989482 6.378205
6.244598 6.359448 6.700819 7.102104 6.774340
[18,] 6.718094 6.747962
6.904871 7.112594 6.951742 7.325695 6.695762
6.989480 7.097511 7.334557 7.194964 6.868973
[19,] 6.657281 7.126641
6.084436 6.384247 6.523063 6.631578 5.833821
5.731943 5.777589 6.548965 6.090483 6.094791
[20,] 6.014566 6.349962
6.120777 5.761628 6.303620 6.426498 5.907838
5.239007 5.757087 6.532767 6.229226 6.212580
[21,] 7.891435 7.355910
7.239652 7.461816 6.845592 6.718343 5.799598
5.358772 6.279394 6.814204 7.047481 6.831724
[22,] 6.910074 7.201347
7.085477 6.871236 6.962969 6.964833 6.548524
5.820307 6.497103 6.529730 6.820249 6.225667
[23,] 6.468878 6.742810
6.246320 5.842793 6.028041 5.890135 5.351516
5.054977 5.456395 5.808929 5.833754 5.807871
[24,] 5.728385 5.850209
5.654946 5.439105 5.401353 5.614066 5.226562
4.789886 5.074672 5.341218 5.620724 5.791763
[25,] 5.460091 5.325982
4.814688 4.929690 5.182931 5.428705 5.118322
4.438623 5.033668 5.774509 5.599967 5.069932
Los índices de variación estacional confirman las
suposiciones que se observaban a partir de la representación
gráfica del inicio. El número de
víctimas aumenta en los meses del verano (especialmente en
julio y agosto) y disminuye en los primeros meses del año
(especialmente enero y febrero). Por tanto, para poder interpretar
correctamente la serie, es necesario desestacionalizarla.