
EPCC Summer Scholarship Programme – 2001

SS-2001-01: Portable Lattice-Boltzmann in Java
Rubén Jesús Garcı́a Hernández

EPCC, University of Edinburgh
University of Edinburgh

email ruben@epcc.ed.ac.uk

Lattice-Boltzmann
The Lattice-Boltzmann (LB) is an algorithm which allows physicists to simulate the
hydrodynamics of complex fluids in 3D.

What is Ludwig?
Ludwig is a general purpose parallel Lattice-Boltzmann code. A C version was de-
veloped in 2000.[1] It divides the calculation into four routines:

• Set boundary conditions.

• Propagation.

• Collision.

• Bounce Back.

This project consists in the Java port of Ludwig. Three major versions have been
developed: a serial version, a parallel version using shared memory, and a parallel
version using message passing.
Here is one of the simulated results using Ludwig:

Figure 1 : Evolution of the fluid-fluid interface

Figure 2 : Time-resolved velocity maps (cropped for clarity to
a thin section)

Comparison Sequential C versus Sequential
Java

0

100000

200000

300000

400000

500000

600000

700000

800000

30 40 50 60 70 80 90 100 110 120 130

T
im

e 
(m

ill
is

ec
on

ds
)

Size of the side of the cube

C code
Unoptimized Java code

Optimized Java code

Figure 3 : Graphic comparison C vs Java.

Comparison among different Parallel Java
versions

OMP
• First version

The problem with the original propagation algorithm was that a copy had to
be made of the boundary planes of each processor because the other pro-
cessors needed to access them before they are overwritten. As the number
of processors increased, so did the amount of copying done. The final re-
sult is no speedup in this zone of the program. When enough processors
are used, Amdahl’s Law causes the total speedup to freeze.

• Second version
A close examination of the sequential loops showed that part of the calcu-
lation done dealt with obtaining the first and last elements each processor
had. That calculation was independent of the loop index and was moved
outside. This provided a small increment in speed.

• Third version
The final approach was a new algorithm which consisted in using a dou-
ble buffer for the sites array. This meant that no copying of the buffers
was necessary, since the original array was not modified. This eliminated
the non-scaling part of the algorithm at the cost of doubling the amount of
memory needed. Since in High Performance the scaling is much more im-
portant than the memory needs (because what is wanted is to be able to
use more processors as new machines are available and a new machine
usually means more memory as well), this new algorithm is preferable.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Speedup for original algorithm
Speedup for the second version of the 	algorithm

Speedup for double buffer algorithm
Linear speedup

Figure 4 : Comparison between the scaling of the original par-
allel version and the new double buffer version

MPI
This version is still under development. Most of the code has been ported, but
validation, error correction and benchmarking have to be done.

Acknowledgements
Supervisors in this project:
Dr J-C Desplat
Mark Bull
Thanks to Alexander Wagner and Lorna Smith for their help.

References
1. J.-C. Desplat, I. Pagonabarraga, and P. Bladon, ’LUDWIG: A parallel

Lattice-Boltzmann code for complex fluids’, Computer Physics Com-
munications 134, pp 273-290 (2001)


