
T
H

E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

EPCC-SS2001-01

Portable Lattice-Boltzmann in Java

Rubén Jesús García Hernández

Abstract

Java performance has been increasing steadily for the past few years, and can now
compete with that of C and Fortran. This paper describes the porting of Ludwig, which is
a versatile code for the simulation of Lattice-Boltzmann models in 3D on cubic lattices, to
Java in order to increase its portability. The performance difference between the original C
code and the Java port is analysed. The Java port has been benchmarked on different Java
Virtual Machines, and the performance differences among the different JVMs for the main
routines of the code is shown. The difficulties encountered in the porting operation are
discussed. Two parallel versions of the program have been developed, using JOMP (Java
OpenMP) and mpiJava (Message Passing Interface for Java), respectively. However, the
mpiJava version is still under development, so no benchmarking results are yet available.
The problems encountered in the JOMP port are discussed, and an explanation of the dif-
ferent algorithms programmed to overcome a speedup limitation of the original C code is
provided. The problems found in the mpiJava port are addressed, and will be dealt with in
a latter project.

EPCC-SS2001-01 2

Contents

1 Introduction 3
1.1 What is the Boltzmann equation? . 3
1.2 What is Lattice-Boltzmann? . 3
1.3 What is Ludwig? . 4

1.3.1 Propagation . 4
1.3.2 Collision . 4

1.4 Reasons for the Java port. 5

2 Comparison Sequential C versus Sequential Java 6
2.1 Porting problems for the Sequential Java . 6
2.2 Benchmarking results . 8

2.2.1 Comparison among different Java Virtual Machines 9

3 Comparison Optimized C versus Optimized Java 12

4 Parallel Java version 12
4.1 OMP . 13

4.1.1 Algorithms developed . 13
4.1.2 Benchmarking results . 15
4.1.3 Comparison among different Java Virtual Machines 16
4.1.4 Benchmarking in NUMA architectures 19

4.2 MPI . 21
4.2.1 Porting problems for the MPI version 21

5 Future work 21
5.1 MPI . 21
5.2 Object Oriented version . 22
5.3 Adding specialized routines and graphics . 22
5.4 64-bit mode . 22

6 Conclusion 22

7 Appendix: LUDWIG manual 22
7.1 Requisites . 23
7.2 Build . 23
7.3 Directory Structure . 23
7.4 Installation . 23
7.5 Running the program . 24
7.6 Other files . 24

8 Bibliography 25

EPCC-SS2001-01 3

1 Introduction

1.1 What is the Boltzmann equation?

The Boltzmann equation is any equation of the form

∂

∂t
Φ(x, t) = −v · Φ(x, t) + v ·

∫

∞

−∞

K(x, s) · Φ(s, t)ds (1)

This equation first appeared in the theory of particle transport in the end of the 19th cen-
tury. The Φ the equation refers to is the particle density in the phase-space.

It is now also used in many fields of physics, e.g. Nuclear physics. [2]

1.2 What is Lattice-Boltzmann?

Lattice-Boltzmann is a method for solving the Boltzmann Equation (in the original form). The
simulation code will eventually be able to handle multicomponent fluids, amphiphilic systems,
and flow in porous media as well as colloidal particles and polymers. Future development might
include detergency, binary fluids in porous media, mesophase formation in amphiphiles, col-
loidal suspensions, and liquid crystal flows. So far, we have restricted our attention to simple
binary fluids.

The first step in doing so is discretizing the equation. The discretized equation has the form

Φ(x, n + 1) =

∫

∞

−∞

K(x, s) · Φ(s, n) · ds (2)

Both the densities and the velocities have been discretized as well, so we now have a set of
velocities, shown in Figure 1.

Figure 1 : D3Q15 Model: 15 velocities, one with speed zero
(a rest particle), six with speed2 = 1 (to nearest neighbours),
and eight with speed2 = 3 (to next next nearest neighbours).

We solve for each velocity:

fi(~r + ~ci, t + 1) − fi(~r, t) = −ω(f eq
i (~r, t) − fi(~r, t)) (3)

Where fi(~r, t) is the density of particles with velocity ~ci resident at node ~ri at time t. This
particle density will propagate to the site ~r+~ci. ~ci is a lattice vector. The model is characterized

EPCC-SS2001-01 4

by a finite set of velocities {~ci}, as seen in the graph above (Fig 1). f
eq
i (~r, t) is the equilibrium

distribution of fi(~r, t) and characterizes the type of fluid simulated. The right-hand side of
Eq.(1) describes a mixing of the different particle densities (collision): the fi distribution relaxes
towards f

eq
i at a rate determined by ω, the relaxation parameter. The relaxation parameter is

related (through η = 2ω−1
−1

6
) to the viscosity η of the fluid. The hydrodynamic quantities, such

as the local density, ρ, momentum, ρ~v and stress, Pαβ are given as moments of the densities of
particles fi(~r, t) as

∑

i fi = ρ,
∑

i fi~ci = ρ~v, and
∑

i ficiαciβ = Pαβ

Equation (1) shows that Lattice-Bolzmann can be divided into two main routines:

• Propagation (Left-hand side of the equation): Nested loops performing memory-to-memory
copies.

• Collision (Right-hand side of the equation): Strong degree of spatial loclity and relies on
basic add and multiply operations.

The LB model is extended to describe a binary mixture of fluids, of tunable miscibility, by
adding a second distribution function, gi. This function describes the order parameter field, φ.

1.3 What is Ludwig?

Ludwig is a general purpose parallel Lattice-Boltzmann code, capable of simulating the hydro-
dynamics of complex fluids in 3D. A C version was developed in 1998.[3]
The Boltzmann equation was divided for computational purpuses into two main routines in the
Ludwig code:

• Propagation.

• Collision.

1.3.1 Propagation

The density of the particles in the prisma evolves with time. This routine uses a mesoscale
simulation technique to calculate the density of the particles in the next instant of time.

1.3.2 Collision

Once the propagation has ended, we have particles from neighbouring sites crashing in every
site. This stage calculates the movement of the particles after the crash. This routine has three
main parts:

• Get gradients.

• Fix gradients.

• The collision loop itself.

Interested readers should refer to [3] for a detailed explanation.

Here is one of the simulated results using Ludwig:

EPCC-SS2001-01 5

Figure 2 : Evolution of the fluid-fluid interface

Figure 3 : Time-resolved velocity maps (cropped for clarity
to a thin section). See [?] for a detailed explanation.

The code has now been ported to Java (Sequential, Parallel using JOMP and Parallel using
mpiJava). This paper explains the issues concerning the Java port.

1.4 Reasons for the Java port.

Due to the fact that most programs last longer than the machines they are executed on (especially
in High Performance Computing, where the mean life expectancy of a computer is four years),
considerable effort is spent in porting the programs to new architectures. Java was designed so
that no porting would ever be necessary (Write Once, Run Anywhere(TM) is the Java logo)

C is a very portable language, but it has no builtin support for high performance parallel
programming or graphics. This means most programs have to include non-standard code which
must be modified when the hardware or Operating System changes.

Since Java is an Object Oriented language, Software Engineering is easier in this lan-
guage. The availability of parallel programming support and graphics mean no porting costs.
Also threads and RMI (Remote Method Invocation) are built in the language and some advanced
parallel programming libraries have been written in pure Java. Nevertheless, parallelism in Java
is less mature than in C or Fortran. This can be seen in the fact that the popular standards for

EPCC-SS2001-01 6

parallel computing (MPI and OMP) are still under development in their Java bindings.
Now that Java compilers and interpreters have a similar performance to that of C ones, it

would be interesting to know if the performance penalty of Java code is important or not. The
aim of this project is being able to compare the performance between the C and Java implemen-
tation.

Java is a relatively new language. Its design goals were portability, Object Orientation
and security. The portability is obtained by means of creating a Virtual Machine, and having all
programs compiled into bytecode for the Java Virtual Machine. Then the bytecode is interpreted
on the real machine.

It has built in visualization routines and parallel support, which makes it potentially at-
tractive for Physics and Engineering work.

Since Java is an interpreted language, a few years ago there used to be an order of mag-
nitude difference between the programs written in C and in Java. This made the language un-
suitable for High Performance Computing, and few efforts were dedicated to Java in that area.
Now, new methods (Just In Time compiling, incremental compiling) allow Java to run at speeds
comparable to C.

There is still some work to do on the interpreters, and the differences in performance
among VM is noticeable, but the tendency is to have similar performance on well developed
VMs. [6]

Furthermore, due to the fact that Java is an interpreted language, the VM has much more
information on the program than a C compiler, so it can (in theory) optimize more, therefore
getting better performance than the C equivalent.

Some tests show better timing in the Java language for specific programs, and the trend
will continue as the compilers and VM mature.

2 Comparison Sequential C versus Sequential Java

2.1 Porting problems for the Sequential Java

It was decided to do a direct translation into Java in order to measure the difference in perfor-
mance. As LUDWIG now includes a large number of ‘specialised’ routines (e.g. Lees-Edwards,
wetting, etc.), it was proposed that only the core routines were to be translated in the first in-
stance. These included:

• main()

• COM_init()

• COM_halo()

• COM_write_site()

• COM_finish()

• RAN_init()

• MODEL_init()

• MODEL_collide()

• MODEL_propagate()

EPCC-SS2001-01 7

• MODEL_bounce_back()

• MODEL_write_phi()

• MODEL_finish()

• MISC_print_velocity_profile()

• MISC_find_max_velocity()

• MISC_find_max_phi()

as well as any other functions which were called by the above (e.g. the BS_* and BC_* routines
required to implement the solid sites and wet links linked lists). The code was validated by com-
paring the output of the Java implementations with that of the native C code prior undertaking
any benchmarking.

The starting version of LUDWIG for this project was a serial-only trimmed down version
of 4,616 lines (vs. 19,126 for the latest fully-featured release). As the timescale of the project
was quite short, it was important to ensure that the method adopted to port the code to Java
maximised copy/paste operations wherever practical. The few non-essential features left in the
code (such as user-defined ASCII/Binary I/O operations, and possibly linked lists to implement
solid sites) were also left aside in the first instance, but were completed afterwards.

Since most of the program consisted of calculations using simple data types (arrays and
structures, mostly) and these data types and operations have the same syntax in both C and Java
(including numbers, definite (for) and indefinite (while) loops, function calls, vectors and struc-
tures) it was decided to keep the C code and modify only the code which differed in syntax.
Therefore only I/O (including files and screen), pointer arithmetic, object creation and destruc-
tion and timing code had to be modified. The resulting program behaved exactly like the C
version except for two semantic differences:

• The Java standard forces the output of floating point results to be accurate enough so that
the value can be restored from the text representation.
This meant that the ASCII result files where different from the C ones, and had to be
compared by hand.

• Java arrays of objects behave like C arrays of pointers to that data. This means that assign-
ing from one position of the array into another position effectively links the two positions
so that changes in one are visible from the other.
On the other hand, C copies the data into the other position in the array. This lead to a sub-
tle bug in the Java version which was finally corrected. An example may clarify this point:

class A {
int i;
}

EPCC-SS2001-01 8

Java code:

void f (A a[2]) a=0,0
{
a[0].i=5; a=5,0
/* Some code */
a[1]=a[0]; a=5,5
/* Some code */
a[1].i=2; a=2,2
}

C code:

void f (A a[2]) a=0,0
{
a[0].i=5; a=5,0
/* Some code */
a[1]=a[0]; a=5,5
/* Some code */
a[1].i=2; a=5,2
}

The problem is further obscured by the fact that Java arrays of primitive types behave like
their C counterparts, while C arrays of pointers (used very often with objects) behave like
the Java ones.

2.2 Benchmarking results

As can be seen in Figure 4, the calculation time of the unoptimized version of Java is aproxi-
mately 1.5 times that of the C version.

Nevertheless, some hand-made optimization of the Java code shows a behaviour identical
to the C code. The optimizations included data transfer optimizations to take care of processor
cache and pre-calculation of constant expressions in loops.

EPCC-SS2001-01 9

0

100000

200000

300000

400000

500000

600000

700000

800000

30 40 50 60 70 80 90 100 110 120 130

T
im

e
(m

ill
is

ec
on

ds
)

Size of the side of the cube

C code
Unoptimized Java code

Optimized Java code

Figure 4 : Graphic comparison C vs Java.

2.2.1 Comparison among different Java Virtual Machines

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

30 40 50 60 70 80 90 100 110 120 130

T
im

e
(m

ill
is

ec
on

ds
)

Size of the side of the cube

Java 1.3.1 server
Java 1.3.1 client
Java 1.4.0 client

C code

Figure 5 : Graphic of time of different Java Virtual Machines.
The C code has been added for comparison purposes.

As can be seen, some of the Java virtual machines outperform slightly the C code. The server
version of the 1.4.0 JVM was tried as well, but due to bugs in the JVM code, it terminated with

EPCC-SS2001-01 10

signal 11 (Segmentation violation) in all executions.
In the following pages a set of graphs comparing the different routines of Ludwig (Propa-

gation, Collision and Halo) is given: Figures 6, 7 and 8. The results show that Java 1.4.0, being
a beta version, usually performs worse than 1.3.1. Java 1.3.1 server, having been designed for
high memory demands, usually performs worse than the other on small size problems.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

30 40 50 60 70 80 90 100 110 120 130

T
im

e
(m

ill
is

ec
on

ds
)

Size of the side of the cube

Java 1.3.1 server
Java 1.3.1 client
Java 1.4.0 client

Figure 6 : Graphic of time of different Java Virtual Machines
for the propagation algorithm.

EPCC-SS2001-01 11

0

50000

100000

150000

200000

250000

300000

350000

30 40 50 60 70 80 90 100 110 120 130

T
im

e
(m

ill
is

ec
on

ds
)

Size of the side of the cube

Java 1.3.1 server
Java 1.3.1 client
Java 1.4.0 client

Figure 7 : Graphic of time of different Java Virtual Machines
for the collision algorithm.

0

2000

4000

6000

8000

10000

12000

30 40 50 60 70 80 90 100 110 120 130

T
im

e
(m

ill
is

ec
on

ds
)

Size of the side of the cube

Java 1.3.1 server
Java 1.3.1 client
Java 1.4.0 client

Figure 8 : Graphic of time of different Java Virtual Machines
for the halo algorithm.

EPCC-SS2001-01 12

3 Comparison Optimized C versus Optimized Java

The optimizations performed were similar in both the C and Java codes, and the result obtained
is a net gain in both codes. As can be seen in Figure 9, optimizing the C code obtains better
results, since the optimizations map directly to the hardware. In Java, the JVM slows down
the program. This shows that the C and Java compiler are performing similar optimizations,
but neither are mature enough to perform the data transfer and pre-calculation of constants
optimizations automatically.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 20 40 60 80 100 120 140

T
im

e
(m

ill
is

ec
on

ds
)

Size of the side of the cube

Optimized C code
Optimized Java code

Figure 9 : Graphic of time of the optimized C and Java
codes.

4 Parallel Java version

There are limitations in computer technology which impose a limit on the maximum speed of
current machines. In order to bypass these limitations, the most popular solution nowadays is
the design of parallel computers. The speed of each of these computers is still limited by the
above statement, but the combined performance of all the processors can exceed that of any
single computer. However, for this combined performance to be realised, well designed parallel
programs are needed. Therefore an effort was made to port Ludwig to parallel architectures.

There are two main subarchitectures in parallel computing. One of them uses shared
memory, and the other one uses distributed memory.

A shared memory machine has a memory bank accessible from all the processes. This
means the data does not have to be distributed among the processors, and allows faster com-
munication and synchronization. The drawback is that these architectures have a bottleneck in
the processor-memory bus, which limits maximum number number of processors that can be
added.

A distributed memory machine, on the other hand, has a set of memory and processor

EPCC-SS2001-01 13

pairs. Each processor accesses only the local memory, and the comunication among processes
are achieved by means of Message Passing only. This architecture allows better scaling, but
has the disadvantage of a more difficult programming technique because the data has to be dis-
tributed among processors and all communication is to be explicitly coded.

Each of these architectures requires a different programming approach. Two standards
have therefore been developed for these machines: Open Multi Processing (OpenMP) for shared
memory machines, and Message Passing Interface (MPI) for distributed memory machines.
Ludwig has been parallelized using both approaches. The OMP version is working, but the MPI
version is still under development.

It is worth mentioning that both mpiJava[1] and JOMP[7] are still research prototypes,
and have not yet been approven as standards. This is one example of the lack of mature paral-
lelism of Java.

4.1 OMP

4.1.1 Algorithms developed

Some effort has been spent in improving the scalability of the Ludwig code. Three different
propagation algorithms were developed in order to increase the scalability of Ludwig.

• First version
A first version was developed which used the same approach as the C code. The bench-
marking indicated that the propagation algorithm did not scale well. This made the overall
scaling of the program low. The problem with the propagation algorithm was that a copy
had to be made of the boundary planes of each processor because the other processors
needed to access them to calculate the new values before they were overwritten by the
processor calculating his own new values. As the number of processors increased, so
did the amount of copying done. The final result was bad speedup in this zone of the
program. When enough processors are used, Amdahl’s Law limits the total speedup. An-
other drawback of this algorithm was the number of barriers it contains. These barriers
limit the scalability, because the time to synchronize all the processors increases as more
processors are used. This algorithm also had false sharing cache problems when used for
high resolution cubes or with a small cache, because the size of the planes were a multiple
of the cache size.

EPCC-SS2001-01 14

The thin lines need to be copied in
an auxiliar buffer

The halos are propagated.
Sequential

Propagation from x −> 2 Parallel

Propagation into halos Sequential

Propagation from 1 −> x−1

Update missing planes using
internal halos

Parallel

Parallel

Barrier

Velocities (1,*,*)

Velocities(−1,*,*)

Update missing planes using
internal planes

Figure 10 : Diagram of the first version of the Propagation
algorithm

• Second version
A close examination of the sequential loops showed that part of the calculation done dealt
with obtaining the first and last elements each processor had. That calculation was inde-
pendent of the loop index and was moved outside the loop, so that it was only calculated
once. This provided a small increment in speed.

• Third version
The final approach was a new algorithm which consisted in using a double buffer for the
sites array. This meant that no copying of the buffers was necessary, since the original
array was not modified. This eliminated the non-scaling part of the algorithm at the cost
of doubling the amount of memory needed. Since in High Performance the scaling is

EPCC-SS2001-01 15

much more important than the memory needs (because what is wanted is to be able to use
more processors as new machines are available and a new machine usually means more
memory as well), this new algorithm is preferable.

Figure 11 : Diagram of the double buffer version of the Prop-
agation algorithm

• A naïve implementation was also discussed, which consisted in calculating the different
loops each in one processor. The major disadvantage of this approach is that the number
of loops is fixed, so the algorithm cannot use more processors than the number of loops.

4.1.2 Benchmarking results

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Speedup for original algorithm
Speedup for the second version of the 	algorithm

Speedup for double buffer algorithm
Linear speedup

Figure 12 : Comparison between the scaling of the three dif-
ferent parallel versions developed.

Nevertheless, the speedup achieved was still less than expected. Further measures of
the Bandwidth needed for the propagation algorithm indicated that the algorithm was
suffering from the bandwidth limitation in the machine. In Figure 11 are presented the
Bandwidth measures for the main routines of Ludwig, together with Stream, a simple
synthetic benchmark program that measures sustainable memory bandwidth (in MB/s)

EPCC-SS2001-01 16

and the corresponding computation rate for simple vector kernels.[5]

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16

B
an

dw
id

th
 (

M
b/

s)

Processors

Propagation
Collision main loop

Get Gradients
Stream benchmark

Figure 13 : Bandwidth of the different routines in Ludwig,
together with the Bandwidth benchmark Stream version 4.0-
BETA for C.

The different bandwidth observed corresponds to the cache misses in the different algorithms.
Get gradients is an algorithm with a very strong spatial locality, so the number of cache misses is
extremely low; therefore the bandwidth observed exceeds that of the Stream benchmark. Prop-
agation and collision, on the contrary, have less spatial locality, and thus the lower bandwidth
needed to reach saturation. These figures have been taken using java version "1.3.1"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1-b24)
Java HotSpot(TM) Client VM (build 1.3.1-b24, mixed mode)
in an 18 processor SunOS e6500 5.7 Generic_106541-16 sun4u sparc SUNW,Ultra-Enterprise

4.1.3 Comparison among different Java Virtual Machines

Four different JVM have been tested:

• java version "1.3.1"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1-b24)
Java HotSpot(TM) Client VM (build 1.3.1-b24, mixed mode)

• java version "1.3.1"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1-b24)
Java HotSpot(TM) Server VM (build 1.3.1-b24, mixed mode)

• java version "1.4.0-beta"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0-beta-b65)
Java HotSpot(TM) Client VM (build 1.4.0-beta-b65, mixed mode)

EPCC-SS2001-01 17

• java version "1.4.0-beta"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.0-beta-b65)
Java HotSpot(TM) Server VM (build 1.4.0-beta-b65, mixed mode)

As can be seen in figures 14-17, the performance of the JVMs is similar. None of the JVMs is
preferable to the others, their relative performance depending on the underlying program.

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16

Ite
ra

tio
ns

 p
er

 s
ec

on
d

Processors

Java 1.3.1 server
Java 1.3.1 client

Java 1.4.0 server
Java 1.4.0 client

Figure 14 : Time of the Ludwig algorithm, with a 128 cube
and no solids, using each of the Java Virtual Machines.

EPCC-SS2001-01 18

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 2 4 6 8 10 12 14 16

Ite
ra

tio
ns

 p
er

 s
ec

on
d

Processors

Java 1.3.1 server
Java 1.3.1 client

Java 1.4.0 server
Java 1.4.0 client

Figure 15 : Time of the Ludwig propagation algorithm, with
a 128 cube and no solids, using each of the Java Virtual Ma-
chines.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16

Ite
ra

tio
ns

 p
er

 s
ec

on
d

Processors

Java 1.3.1 server
Java 1.3.1 client

Java 1.4.0 server
Java 1.4.0 client

Figure 16 : Time of the Ludwig collision algorithm, with a
128 cube and no solids, using each of the Java Virtual Ma-
chines.

EPCC-SS2001-01 19

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Ite
ra

tio
ns

 p
er

 s
ec

on
d

Processors

Java 1.3.1 server
Java 1.3.1 client

Java 1.4.0 server
Java 1.4.0 client

Figure 17 : Time of the Ludwig halo algorithm, with a 128
cube and no solids, using each of the Java Virtual Machines.

4.1.4 Benchmarking in NUMA architectures

The double buffer algorithm was benchmarked in an SGI Origin 2000 and in an SGI Origin
3000. The Origin 3000 and the Origin 2000 are NUMA (Non-Uniform Memory Access) ma-
chines. This means that each processor has its own memory, but it also serves other processors
asking for data on the processor. These arquitectures have the scalability of the Distributed
Memory machines with the additional advantage that they can be programmed as Shared Mem-
ory machines. However, there is one drawback. Attempting to access memory from other
processor results in an important delay. Since the memory is distributed, care must be taken
to distribute the data among all the processors so that they access local memory, in the same
fashion as in a Distributed environment.

The difference between the Origin 2000 and the Origin 3000 is that the 2000 has two
processors per node whereas the 3000 has four.

The LU factorization benchmark from the Java Grande Forum [4] was used to compare
the results to a known scalable program. The resulting measurements are shown in Figure 16
(Origin 2000) and Figure 17 (Origin 3000).

EPCC-SS2001-01 20

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Ludwig code
LU Factorization benchmark

Linear speedup

Figure 18 : Speedup of Ludwig and LU factorization in an
SGI Origin 2000 using Java 1.2.1.

The JVM used in these measurements is: java version "1.2.1"
Classic VM (build JDK-1.2.1, native threads, mipsjit)
As can be seen, none of the algorithms scale at all.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Ludwig code
LU Factorization benchmark

Linear speedup

Figure 19 : Speedup of Ludwig and LU factorization in an
SGI Origin 3000 using JavaVM-1.3

EPCC-SS2001-01 21

The JVM used was
java version "JavaVM-1.3"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3)
Classic VM (build JavaVM-1.3, build 1.3, native threads, mipsjit).

It is interesting to note that in this machine, the LU code scales reasonably well until 8
processes. As can be seen, the LU code scales well for two nodes in both processors. However,
when more nodes are used (8 processes in the 2000, 16 in the 3000), the remote memory access
limits the speedup. Wether this is a hardware problem or a consequence of the JVM Thread
allocation procedure is not still clear.

The Ludwig code does not scale at all. The Ludwig OMP code was developed taking
into account the properties of true Shared Memory machines. The net result is that most of
the data is stored in process 0, making all the other processes need to access the memory in
process 0. Since (as was seen earlier) Ludwig’s scalability problems lie in memory bandwidth,
no speedup can be achieved. In order to take advantage of NUMA machines, there are two
possible alternatives:

• Change the program so that memory allocation is done among all the processes. This
would make each process have the part of the data which they are going to use most
afterwards.

• Use the MPI version of Ludwig. Since the MPI version has to distribute the data, these
problems disappear.

These measurements were made requesting the processors needed, so the rest of the processors
were used concurrently by other users. Therefore the results are less accurate than in the bench-
marks shown earlier. The results shown are the best execution on the machine, since the load on
the machine tended to slow all the processes down.

4.2 MPI

4.2.1 Porting problems for the MPI version

Java Ludwig was intended to be ported to mpiJava (Message Passing Interface for Java) during
the project. However, the speedup problems detected in the OpenMP implementation have
reduced the time spent on the mpiJava port. The mpiJava port is currently under development,
with most of the routines ported.

5 Future work

5.1 MPI

The next step towards the completion of the Java port of Ludwig will be the completion of the
MPI version. This would allow Ludwig to be run on distributed memory machines with the
additional advantage, as was explained earlier, that it would also allow the use of computer
resources with NUMA architecture effectively.

EPCC-SS2001-01 22

5.2 Object Oriented version

Another proposed addition to the Java Ludwig port is a rewrite of the application using Object
Oriented techniques in order to improve maintenance.

This would allow measurement of Object Oriented performance penalties and might en-
courage further the use of Java if they prove to be negligible.

5.3 Adding specialized routines and graphics

• The Java version does not include all the different algorithms present in the C version.
The C version contains two lattice geometries D3Q15 and D3Q19 to choose from. It
also contains Lees-Edwards boundary conditions. Adding them to the Java version would
improve usability.

• The DIVE library is a portable system for on-line visualisation of remote distributed par-
allel simulations using MPI graphic library.[?] Adding it to the Java port would be an
important help for end users of the application.

5.4 64-bit mode

Currently there is a limitation in Java Virtual Machines to 32-bit addressing. This means only 2
Gb of memory can be referenced. With this limitation, the maximum resolution of Ludwig is a
128 cubic Lattice. In order to increase the resolution of Ludwig for more accurate simulations,
a 64 bit VM is needed. In theory, none of the code of Java Ludwig will need to be modified to
take advantage of new 64-bit Java Virtual Machines when they come out.

6 Conclusion

The aim of this project was to develop a medium-scale realistic application in Java. The basis
for this project was an existing code, called LUDWIG, which is written in C (and OMP/MPI).
The major part of this project consisted of translating the sequential C code into Java. This al-
lowed direct performance comparison between the two versions. As a further part of the project,
parallel versions of the Java code (using mpiJava and JOMP) were developed and benchmarked
in different parallel architectures.

We have seen that the speed of Java is high enough to allow High Performance Appli-
cations to be written in it. We have shown that it is possible to have performance similar to
that of classic languages (C in this case). We have discussed the differences among different
Java Virtual Machines. We would also like to note that the absence of stable 64-bit Java Virtual
Machines limits the usability of Java in Grande applications.

7 Appendix: LUDWIG manual

Ludwig is a general purpose parallel Lattice-Boltzmann code, capable of simulating the hydro-
dynamics of complex fluids in 3D. Ported to Java by Rubén J. García Hernández during Summer
2001 for EPCC SSP SS-2001-01

EPCC-SS2001-01 23

7.1 Requisites

For sequential and OMP
java 1.2.1 or newer.

For MPI
java 1.4.0 or newer.

7.2 Build

From this directory, type
make

Remaking after modification:
make clean
make

If only one version is needed
cd <directory>
make

7.3 Directory Structure

. This directory contains the makefile for the project.
sequential This directory contains the source to the sequential code.
OMP This directory contains the source to the OMP parallel code.
MPI This directory contains the source to the MPI parallel code.
examples Examples of configuration files for ludwig.
extras C programs needed for config files (see extras/README): new_link_maker.

The MPI is not yet fuctional.

7.4 Installation

After typing make and waiting for all the files to build, there will be a set of .class files in each of
the subdirectories. These files can be copied to a suitable directory (/usr/local/ludwig/sequential,
/usr/local/ludwig/OMP and /usr/local/ludwig/MPI, or any other directory)

Then the directory of the program which is to be used should be added to the classpath,
for example for the OMP program:
CLASSPATH= $ CLASSPATH:/usr/local/ludwig/OMP
export CLASSPATH
Take into account that since the name of the class is the same, only one of the programs can be
in the CLASSPATH at the same time.

EPCC-SS2001-01 24

7.5 Running the program

java ludwig [<name of the input file>]
For big files it is usually necessary to add the -mx switch

java -mx1600m ludwig [<name of the input file>]
To tell the OMP version how many threads to use:

java -mx1600m -Djomp.threads=<n> ludwig [<name of the input file>]

7.6 Other files

input: This file contains the parameters of the simulation The file is organized in lines. Each
line contains a keyword, a space, and a value.
Parameters not included in this file are set to sensible default values in the routine MODEL_init.
The most used keywords include:

size: size of the lattice. Underline separated list of 3 numbers with the X, Y and Z
size of the lattice.

N_cycles: Number of cycles to simulate
A, B and K: free energy parameters. They determine the quench depth (ratio A

B
= 1 for a

deep quench) and interfacial tension (σ =
√

8KA3

9B2).

C and H: Used for the wetting (not yet implemented): As = 0.5Cφ2 − Hφ

viscosity: Viscosity of the fluid
mobility: Mobility of the fluid
freq_measure: After how many cycles must the phi and vel parameters be displayed?
freq_config: After how many cycles must the whole configuration be dumped to disk?
output_format: BINARY or ASCII
input_site_data: file with the location of the solids. See *.sd below.

Example:

size 32_32_32
N_cycles 10
A -0.00625
B 0.00625
K 0.004
C 0.0
H 0.0
viscosity 0.005
mobility 4.0
freq_measure 100
freq_config 100
output_format BINARY
input_site_data wall.sd

∗.sd: This file contains the solids present in the simulation. These files are generated by the
C program new_link_maker. See [3].

EPCC-SS2001-01 25

config.out∗: This file is generated by the program and contains the final configuration.

8 Bibliography

References

[1] Bryan Carpenter. http://www.npac.syr.edu/projects/pcrc/reports/mpiJava-spec/mpiJava-
spec/mpiJava-spec.html.

[2] Giulio M. Occhionero. The Boltzmann Equation. http://ourworld.compuserve.com/ home-
pages/ Giulio_Occhionero/ boltz.htm.

[3] J.-C. Desplat, I. Pagonabarraga, P. Bladon. LUDWIG: A parallel Lattice-Boltzmann code
for complex fluids. Computer Physics Communications 134, pp 273-290, 2001.

[4] J. M. Bull,L. A. Smith,M. D. Westhead,D. S. Henty, R. A. Davey. A Benchmark Suite for
High Performance Java. Concurrency: Practice and Experience 12, pp 375-388, 2000.

[5] John McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance Comput-
ers. http://www.cs.virginia.edu/stream/.

[6] Lorna Smith,Mark Bull. Java for High Performance Computing. Edinburgh Parallel Com-
puting Centre.

[7] M. E. Kambites,J.Obdrzalek,J.Mark Bull. An OpenMP-like Interface for Parallel Program-
ming in Java. To appear in Concurrency and Computation: Practice and Experience.

Rubén J. García Hernández is studying his 5th year of Computer Engineering
in the University of Granada (Spain). He is a student in the Edinburgh Parallel
Computing Centre Summer Scholarship Programme 2001 in Edinburgh.

Supervisors in this project:
Dr J-C Desplat
Dr Mark Bull
Thanks to Dr Alexander Wagner and Dr Lorna Smith for their help.

