
Portable Lattice- Boltzmann in Java

Portable Lattice- Boltzmann in Java.

Rubén Jesús García Hernández.

Edinburgh Parallel Computing Centre

Tuesday 28th August 2001, 13:30

Portable Lattice- Boltzmann in Java 1



Background physics

The behaviour of the liquids is governed by the Boltz-

mann equation
@

@t
�(x; t) = �v ��(x; t) + v �

Z
1

�1

K(x; s) ��(s; t)ds (1)

This equation can be discretized. Then the changes

in the liquid can be further divided into four parts
Set boundary conditions
Propagation.
Collision.
Bounce Back.

Portable Lattice- Boltzmann in Java 2



Set boundary conditions

The simulation consists of a rectangular prisma.

The rest of the universe interacts with the prisma in

the surface

The behaviour in the surface of the prisma has to be

modelized so that we don’t have to take into account

what happens outside.

We fix the parameters in the boundary from the be-

ginning of the simulation.

Portable Lattice- Boltzmann in Java 3



Propagation

The particles moving in the prisma have a current

position and velocity.

We use particle density and discretize the speeds so

that we don’t have to keep track of all the atoms in

the liquid.

Portable Lattice- Boltzmann in Java 4



Figure 1 :

D3Q15 Model: 15 velocities, one with speed zero
(a rest particle), six with speed2 = 1 (to nearest
neighbours), and eight with speed2 = 3 (to next
next nearest neighbours).

Portable Lattice- Boltzmann in Java 5



Collision

Once the propagation has ended, we have particles

from neighbouring sites crashing in our site.

This stage calculates the movement of the particles

after the crash.

Portable Lattice- Boltzmann in Java 6



Bounce Back

We have added solid objects floating in the liquid.

The propagation algorithm does not take these into
account.

That means we have some particles which have “en-
tered” the solids.

This stage takes the particles that have invaded a
solid and fixes them.

The final result is equivalent to the particle having
bounced back from the solid.

Portable Lattice- Boltzmann in Java 7



Here is one of the simulated results using Ludwig:

Figure 2 : Evolution of the fluid-

fluid interface

Portable Lattice- Boltzmann in Java 8



Figure 3 : Time- resolved velocity

maps (cropped for clarity to a thin

section)

Portable Lattice- Boltzmann in Java 9



C vs Java Sequencial comparison

The behaviour of the Java version is quite similar to

the C one.

The Java version is a bit slower still.

Portable Lattice- Boltzmann in Java 10



0

100000

200000

300000

400000

500000

600000

700000

800000

30 40 50 60 70 80 90 100 110 120 130

"C.data"
"Java.data"

"opt.data"

Figure 1 : Graphic comparison C

vs Java.

Time as a function of the length of

the side of the lattice.
Portable Lattice- Boltzmann in Java 11



Parallel Java versions

Java OpenMP version.

Message Passing Interface for Java version.

Portable Lattice- Boltzmann in Java 12



JOMP version

Porting problems.

Benchmarking results.

1st version. Bad scaling due to the propagate function.

2nd version. Optimizing the first sequencial loop.

3rd version. Using double buffer to avoid copies

Portable Lattice- Boltzmann in Java 13



0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

"128.su.data"
"128.su.db.data"

x

Figure 2 : Comparison between the

scaling of the original parallel ver-

sion and the new double buffer

version
Portable Lattice- Boltzmann in Java 14



MPI version

Porting problems.

Benchmarking results.

Portable Lattice- Boltzmann in Java 15


