Density Estimation Optimizations for Global Illumination

Rubén García, Carlos Ureña, Jorge Revelles, Miguel Lastra, Rosana Montes

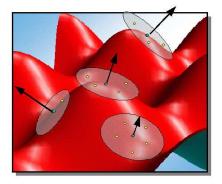
Thursday, February 2, 2006

Grupo de Investigación en Informática Gráfica. Lenguajes y Sistemas Informáticos. University of Granada.

Density Estimation on the Tangent Plane Sphere Caché

Method

Based on the density estimation technique of Photon Maps, however DETP


- Stores the trajectories of the photons.
- To calculate irradiance at a point, a disc of fixed radius centered at the point and tangent to the surface is created, and the contribution of the rays intersecting the disc are added.
- Finally, the result is divided by the area of the disc.

Introduction

New optimizations Theoretical study Future Work Conclusion

Diagram

Density Estimation on the Tangent Plane Sphere Caché

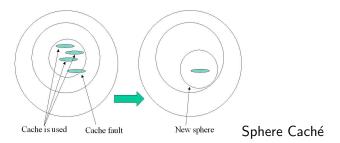
Density Estimation on the Tangent Plane

 $\mathcal{O} \land \mathcal{O}$

Density Estimation on the Tangent Plane Sphere Caché

DETP Optimization: Sphere Caché

- A hierarchy of englobing spheres is created which allows for the rapid calculation of the rays intersecting a given disc.
- Inner spheres are recalculated when the disc leaves the sphere.
- This method is useful if the discs have spatial coherency: Point sorting.


・ロン ・回と ・ヨン・

Introduction

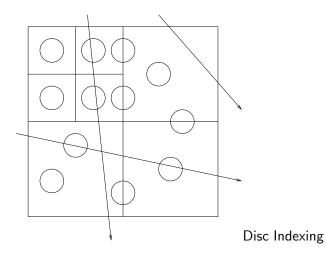
New optimizations Theoretical study Future Work Conclusion

Density Estimation on the Tangent Plane Sphere Caché

Diagram

< □ > < □ > < □ > < □ > < □ > .

æ


Disc Indexing Results

DETP Optimization: Disc Indexing

- A spatial indexing of the discs is created.
- For each ray, the structure is traversed from the origin of the ray until its intersection with the real scene.
- Each intersected disc increases its energy according to the energy of the ray.
- Independent of the spatial indexing method.

Disc Indexing Results

Disc Indexing

García et al Density Estimation Optimizations for Global Illumination

4

Disc Indexing Results

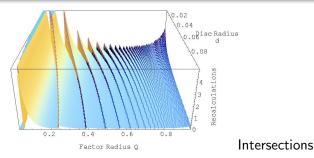
Experimental Results

TreeAtrium72 500 triangles122 318 trianglesDisc Indexing obtains up to 50 % reduction in time with respect toSphere Caché for small discs.

Notation Assumptions Results

Theoretical results: Notation

- n_R: number of rays
- *n_P*: number of irradiance points.
- d: disc radius
- r₀: radius of the first sphere, which surrounds the scene.
- Q: Radius factor: $r_{i+1} = Q * r_i$; 0 < Q < 1


Notation Assumptions Results

Assumptions of the analysis

- Uniform distribution of rays.
- Uniform distribution of irradiance points.
- With this, the average fraction of rays in a convex set can be calculated:
- It is the ratio between the surface of the set and the surface of the bounding box of the scene.

Notation Assumptions Results

Result: Estimation of the optimal value of Q

- optimal Q if the radius of the last sphere equals the disc radius.
- Small Q implies less cost in cache misses.
- The global minimum is around 0.6-0.7. This is coherent with experiments.

・ 回 と く ヨ と く ヨ と

Notation Assumptions Results

Theoretical efficiency results

- Sphere Cache
 - $O(n_R n_P)$, hidden constant $\frac{d^2}{r_0^2}$
 - For $d \approx$ distance between samples: $O(n_R \sqrt[3]{n_P})$
- Disc Indexing, $d \approx$ distance between samples
 - Unbalanced trees: $O(n_R \sqrt[3]{n_P} \log n_P)$
 - Balanced trees: $O(n_R \sqrt[3]{n_P})$
- Disc Indexing, large discs $O(n_R n_P)$, hidden constant $\frac{d^2}{r_c^2} \log \frac{r_0}{d}$

Future Work

- The theoretical study allows us to use known characteristics of the scene to guide hybrid algorithms.
- Example: Quasi-static scenes (static scene, relatively small mobile objects)
 - Static Scene: Disc Indexing theoretically more efficient.
 - Dynamic Objects: Sphere Cache theoretically more efficient.
 - This allows for an efficient hybrid algorithm for these scenes.

- Disc Indexing has been described and implemented. This technique increases performance of Global Illumination calculations.
- A theoretical study of the time efficiency has been carried out.
- The usefulness of the theoretical study to guide the development of algorithms has been shown. (Quasi-static scenes)

・ロン ・回と ・ヨン・