
Real Time Global Illumination for Quasi-Static
Scenes

Rubén J. García Hernández, Carlos Ureña Almagro, Miguel Lastra Leidinger

July 16, 2003

2

Contents

1 Introduction and State of the Art 9
1.1 Introduction . 9

1.1.1 Uses of Global Illumination . 9
1.1.2 Goal . 9
1.1.3 Description of the article . 10

1.2 Density Estimation Methods . 10
1.2.1 Optimizations of Density Estimation on the Tangent Plane 11
1.2.2 Remarks . 13

1.3 Interactive Global Illumination . 13
1.3.1 Finite Element Methods . 13
1.3.2 Real Time Ray Tracing . 13
1.3.3 Interactive Global Illumination using Selective Photon Tracing (Dmitriev) 13

2 Real Time Optimizations 15
2.1 Algorithm overview . 15
2.2 Simplifications . 16

2.2.1 Model Geometry . 16
2.2.2 Scene change . 17

2.3 Computing and updating the ray set . 17
2.4 Computing and updating radiosity . 18

2.4.1 Calculation of the first frame . 18
2.4.2 Updating radiosity in static vertexes 18

2.5 Computing and updating radiosity on dynamic vertexes 21
2.5.1 Impact Count . 21
2.5.2 Photon Maps and Density Estimation on the Tangent Plane 21
2.5.3 Comparison between Impact Count and DETP 22

2.6 Reuse of Point ordering . 23
2.7 Disc Indexing . 24
2.8 Study of Pre-intersection tests . 26
2.9 Comparison between Photon Maps and DETP 27

2.9.1 Error and bias analysis of PM and DETP 28
2.9.2 Performance Tables . 29

2.10 Glossy Surfaces . 31
2.10.1 QuadTree . 32

3

4 CONTENTS

3 Implemented System 37
3.1 Goals . 37
3.2 Further Characteristics . 37

3.2.1 Supported Surface Types . 37
3.3 Supported Estimation Methods . 38
3.4 Classic optimizations present in our system 38

3.4.1 General Purpose Optimizations 38
3.4.2 Radiosity Specific Optimizations 39

4 Future Work 41
4.1 Hardware accelerated direct illumination 41
4.2 Transparent surfaces . 41
4.3 Ray Tracer . 41

List of Figures

1.1 Performance of Photon Maps and DETP for 50 000 photons 11

2.1 Pseudocode for the Initial Photosimulation Calculation 18
2.2 Pseudocode for the Photosimulation Recalculus 19
2.3 Pseudocode for the Initial Radiosity Calculation 20
2.4 Pseudocode for the Recalculation of Radiosity for the Impact Count method 21
2.5 Density Estimation on the Tangent Plane, 50 000 photons 22
2.6 Density Estimation using Impact Count, 1 000 000 photons 23
2.7 Second Tree Scene, 20 000 photons . 26
2.8 Flat Shaded Render of the Tree Scene 28
2.9 Photon Maps Bias: Detail of a border vertex 29
2.10 Measurement of the border angle . 30
2.11 Density Estimation on the Tangent Plane, 1 000 photons 31
2.12 Density Estimation on the Tangent Plane, 10 000 photons 32
2.13 Photon Maps Density Estimation, 10 000 photons 33
2.14 Photon Maps Density Estimation, 50 000 photons 34
2.15 Photon Maps Density Estimation, 200 000 photons 35

5

6 LIST OF FIGURES

List of Tables

2.1 Comparison between DETPR and Impact Count 22
2.2 Recalculation time for 10 000 photons, tree scene 24
2.3 Radiosity recalculation time for 20 000 photons for the Tree Scene 25
2.4 Radiosity recalculation time for 20 000 photons for the Second Tree Scene 25
2.5 Times to simulate the Tree Scene using different preintersection tests . . 27
2.6 DETP, 1 000 photons . 30
2.7 DETP, 10 000 photons . 35
2.8 Photon Maps . 35

7

8 LIST OF TABLES

Chapter 1

Introduction and State of the Art

1.1 Introduction

1.1.1 Uses of Global Illumination

Global illumination techniques provide computer generated images with realistic ap-
pearence. This is useful in many applications, such as building design, interior design,
light design (both for lamps and for car headlights) and movies, for example. Interactive
global illumination provides these applications with a more comfortable interface.

Other applications, such as video games, do not require interactive global illumina-
tion. Nevertheless, it is a very important bonus in their goal towards realism.

1.1.2 Goal

Our goal is solving the problem of calculating global illumination in a quasi-static scene
in real time. We define a quasi-static scene as the combination of a static scenario and
a dynamic object, when the complexity of the dynamic object is much smaller than the
complexity of the scenario. Two facts must be taken into account:

� We are creating an animation. Each Photogram is seen during approximately 40
milliseconds (at 25 fps, which is the refresh rate of television in Europe). There-
fore the exact solution is not needed; an approximation would be enough, even in
the hypotetic case of no real time requirements.

� We wish for interactive refresh rates. This means we only have 40 ms worth of
computing power per frame, so some simplifications will have to be made in order
to fit performance requirements.

These two facts lead us to an approximate calculation of illumination.

This is the most usual scene type, especially in videogames, which are the most
common interactive graphical applications.

9

10 CHAPTER 1. INTRODUCTION AND STATE OF THE ART

1.1.3 Description of the article

This document describes the new algorithms created in the Global Illumination Sub-
group of the Computer Graphics Research Group for the development of a Real-Time
version of the Density Estimation on the Tangent Plane algorithm. The program devel-
oped using these improvements is also described.

Firstly, (section 1.2) a quick survey of different density estimation methods for ra-
diosity is made. Then published algorithms for Real-Time global illumination are com-
mented.

In the following chapter, the reasons for our new algorithm are shown. In chapter
2.1 the Real Time algorithms and techniques are explained. These algorithms include
improvements in photon tracing, density estimation, and non diffuse surfaces. Some
timing results are included, showing the increased performance of new algorithms, and
the interactivity of the results. Some more improvements are needed to reach Real-
Time performance, though.

Later on in chapter 3 our system is described, including a description of surface
types supported (such as diffuse or glossy) and classic optimizations (such as Space
Partitioning) present in the system. Finally a description of our future work is mentioned.

1.2 Density Estimation Methods

In order to obtain a radiosity value in a point, we have to integrate the incident radi-
ance for all the directions in that point. Since we are using numeric approximation, the
most straightforward way to obtain an estimate of the integral are the so called Density
Estimation Methods.

Different estimation methods have been described in Literature. The following meth-
ods are relevant to our paper.

The most basic method is Impact Count, described by Patanaik in [12] and Arvo in
[2]. It is based on the particle model of light. Photons are traced from the light sources
and interact with the surfaces until eventually they are absorbed or leave the scene. The
interaction between photons and surfaces are stored in order to reconstruct radiosity on
surfaces. In order to obtain the radiosity on a surface, the energy of the impacts on the
faces are added. Then, for each vertex, a mean value is computed taking into accout
the faces it belongs to.

Henrik van Jensen, [6] explains a method to calculate the radiosity of a scene, which
he calls Photon Maps. A spatial data structure which keeps the photon impacts on sur-
faces is created, and a fixed number of impacts (the closest to the point where radiosity
is being calculated) is used to estimate the radiosity.

There is a problem with this method, namely that if relativelly very small surfaces
exist in the scene, these zones tend to appear too dark if the number of photons is not
large enough. [8] explains this problem in detail. See figure 1.2 for an example.

Miguel Lastra et all, in [7] describes a method to correct this problem storing the

1.2. DENSITY ESTIMATION METHODS 11

a) Photon Maps

b) Tangent Plane estimation

Figure 1.1: Performance of Photon Maps and DETP for 50 000 photons

rays in the scene and using a fixed size disc centered in the point where radiance is
being calculated, and contained in the plane tangent to the surface. Rays intersecting a
given disc are used to calculate the radiance in the point the disc is centered on.

The algorithm is called Density Estimation on the Tangent Plane. We will refer to it
by its initials DETP in latter sections of the article. Since our work is based on this last
method, we will explain it in more detail here.

1.2.1 Optimizations of Density Estimation on the Tangent Plane

Some optimizations have been described which increase performance or reduce the
bias of the algorithm in certain situations. This section provides a quick overview.

Artifact Control

The basic DETPR algorithm does not take into account the fact that, when a disc is
generated, it may have an unreachable zone. An obvious example is places near walls
and corners in a room. The disc intersects the wall, and no photon can reach the
part of the disc behind the wall. The solution is using the reachable area of the circle
in the irradiance estimation. Another similar problem appears on concave surfaces.
The corresponding solution is taking into account rays which intersect the disc after
intersecting the mesh the vertex is in, but before any other intersection with the scene.
This algorithm is explained in detail in [8].

This algorithm produces a better solution but requires some processing. In the case
of Real-Time requirements, it should be studied whether the increased quality of the

12 CHAPTER 1. INTRODUCTION AND STATE OF THE ART

solution is worth the extra effort. If both solutions are visually similar, disabling Artifact
Control frees some time for other processing tasks, so for example more photons can
be shot.

Ray Caché

There exists a huge number of rays and only a small subset intersects a given disc.
Therefore, a data structure which allows to query for nearby (and therefore posibly in-
tersecting) rays of a disc is useful. Rays that cannot intersect are discarded. This is
useful when vertices are ordered in a way which preserves spatial coherence.

Ray Caché ([8]) is a method which tries to use this idea. It also uses the fact that
nearby points in a scene share many intersecting rays (i.e: the rays intersect both
points), so some calculations can be reused for different vertices. The coherence is
created by means of an optional sorting step. This algorithm increases the performance
of the system and therefore is good for our Real Time purposes.

Pre-Intersection Test

Intersecting a ray against a disc is a relatively complex operation. It is useful, in some
circumstances, to create a polygon which contains the disc and intersect the ray and the
polygon. If the ray does not intersect the polygon, it may be discarded, since it cannot
intersect the disc.

There are some algorithms based in this idea. We have implemented the most
common ones:

� Badouel
This ray-triangle intersection method is explained in [3]

� Plücker
This one is based in using the Plücker coordinates of a ray and a polygon which
contains the disc. This intersection method is computationally faster than the
geometric standard method [16].

� Möller
This is the well known Möller-Trumbore method for ray-triangle intersection, de-
scribed in [10]

Currently, we are using small scenes with a large radius for the discs, which means
that an important fraction of the rays intersect the discs. Since these pre-tests are
useful when most of the rays do not intersect, these pre-tests are not being very useful.
Results indicate increases in performance of around 1% in these circumstances (see
section 2.8 for details). Our expectations are larger increases in performance when we
use larger scenes.

1.3. INTERACTIVE GLOBAL ILLUMINATION 13

1.2.2 Remarks

As we will see later, the recalculation procedure for Photon Maps and Density Estima-
tion on the Tangent Plane is more time consuming than that of Impact Count, but the
resulting quality is higher (lower noise). See section 2.5 for an analysis.

1.3 Interactive Global Illumination

There are some algorithms to calculate Interactive global illumination. This section cites
the characteristics of the most important ones.

1.3.1 Finite Element Methods

These methods were the first ones developed for the calculation of radiance. They
divide the scene in a set of patches, and calculate the form factor between pairs of
patches. The form factor is the fraction of energy leaving the first patch and arriving at
the second patch. Then a system of equations is solved in order to know the radiance
in each patch.

Different optimizations have been proposed for this schema. The state of the art in
this method is [14], which uses the fact that nearby surfaces have comparatively large
form factors. This allows the use of group iterative methods to increase convergence
speed. The interactivity is achieved using ideas from Progressive Refinement, i.e., so-
lutions are displayed before convergence is complete.

1.3.2 Real Time Ray Tracing

Wald, in [17] explains a method which applies techniques from Distributed Programming
to RayTracing. It uses a 16-node cluster of PCs to obtain global illumination in real time.

He mentions merging results from nearby points, i.e, a blur filter is used when nearby
pixels belong to the same object, decreasing noise.

Hand-made assembler optimizations are also mentioned as a source of the incre-
mented performance of their system. Other low level optimizations include optimizing
the layout and alignment of data structures, prefetching, cache management, SIMD and
changing the algorithms to be able to follow various (typically four) rays at the same time
to bump cache performance.

An extension to caustics photon maps (hashing photon impacts) is used to be able
to use transparent surfaces. Specular reflections are calculated with a raytracing pass.
Quasi Monte-Carlo Integration is used in his system to speed up convergence.

1.3.3 Interactive Global Illumination using Selective Photon Trac-
ing (Dmitriev)

We are now going to focus in algorithms which simulate illumination by shooting photons
from the light source.

14 CHAPTER 1. INTRODUCTION AND STATE OF THE ART

Dmitriev, in [4] proposes a method which allows for the recalculation of illumination
and radiosity along a number of frames, and for the fast finding of the photons which
need to be recalculated. This method is based in the multidimensional Halton sequence,
which due to its quasi-periodicity, allows for easy finding of photons with a similar path
to the one being recalculated. Most of these photons will also have to be recalculated.
He uses raytracing from the light sources, so his solution is view-independent.

The hardware requisites for his method are a mid-end computer. He discusses the
illumination update procedure, in which he uses only the recalculated rays to update
illumination. Graphic hardware is used to calculate shadows, and then only indirect
illumination is calculated and added to the resulting image.

Chapter 2

Real Time Optimizations

2.1 Algorithm overview

All the algorithms proposed in the previous section have some drawbacks when applied
to rendering of quasi-static scenes in Real-Time. The Density Estimation algorithms
present in section 1.2 were designed for the rendering of a static scene. Therefore, they
do not reuse information from the previous frame when used to compute an animation.
We have developed techniques which allow for the reuse of information from previous
frames, therefore increasing performance.

Finite element methods have the problem that the movement of one patch affects the
form factor of the patch with all the other patches. This means a whole line and column
of coefficients of the system of equations must be recomputed, and the whole system
must be resolved again. Taking into account the fact that Progressive Refinement shows
non-converged solutions, the net result is that shadows and indirect illumination lag
behind current object positions. This is visually much more unrealistic than using, for
example, softening of shadows from direct illumination.

On the other hand, our algorithm must recalculate the photons which hit the mobile
object, and use the recalculated photons to update illumination. The displayed frame
has indirect illumination and shadows corresponding to geometry.

The algorithm Wald proposes has a series of drawbacks:
We are focusing in using a standard PC for Real-Time global illumination, since this

is the most common platform. His distributed algorithm is not suited for our chosen
platform.

Our use of an independent-of-view solution, justified since it makes changes in cam-
era position less expensive, means we cannot make use of interpolation in nearby pix-
els. We use a similar idea: estimate radiance on vertices and interpolate inside the
polygons.

No low-level optimizations were added for our program. State of the art compilers
are used for the optimization. Regarding the low level optimizations Wald mentions, only

15

16 CHAPTER 2. REAL TIME OPTIMIZATIONS

the last one (following batches of rays concurrently) is not implemented by compilers,
since it requires a change to the interface of the ray-primitive intersection functions.
However, it can be seen as a loose form of loop unrolling, and some compilers can
create a similar algorithm when the intersection function is inlined. We are confident
this form of optimization will be inserted into compilers in the near future.

Even though interactive refresh rates can be obtained by Wald while objects are
moving, the correct illumination takes two to three seconds to compute after objects stop
moving. The problem with this approach is that shadows are calculated from information
from previous frames, and object positions have changed. This makes the shadow
position lag behind their correct position. A couple of seconds after the object has
settled, the shadows gain their correct position. The problem is analogous to the one
present in Finite Element Methods. This divergence comes from the fact that Wald is
using his algorithm for the preview of global illumination in scenes, so waiting a few
seconts for illumination to settle is not an issue. On the other hand, we are focusing
on obtaining a realistic approach to global illumination in all frames, which is needed for
example for 3D games.

We have not included support for transparent surfaces due to the small number of
scenes which have them. Future plans in our work include extending our support for
glossy surfaces to take into account transparencies, though.

Quasi Monte-Carlo is not being used, but it would integrate easily in our system.
We have found that radiosity density estimation time is much higher than the raytracing
phase, and are focusing on optimizing the Density Estimation part.

The multidimensional Halton sequence mentioned in Dmitriev’s paper would inte-
grate easily in our system, but we are not using it. As was mentioned above, we are
firstly optimizing the Density Estimation phase.

Dmitriev’s use of hardware to calculate shadows could be used in our system in
order to decrease the number of photons, but is not yet being used. Future plans include
implementing this technique.

For our density estimation methods, using only recalculated rays as Dmitriev does is
not enough. The result is incorrect for moving objects, which is fine by Dmitriev because
photons are removed when they reach a certain age, while we keep all photons which
have a valid path. Our algorithm is described in the following sections.

The Density Estimation methods were designed for the rendering of a still image.
However, when rendering an animation in real time, most of the information from the
previous frame can be used to speed up the calculation of the current frame.

In order to obtain a Real-Time algorithm, we have restricted ourselves to some
simplifications:

2.2 Simplifications

2.2.1 Model Geometry

The most widespread way to model a scene is a set of triangle meshes. Most of the
Graphic Design utilities can work with these meshes. Other utilities work with implicit

2.3. COMPUTING AND UPDATING THE RAY SET 17

surfaces, but usually export them as triangle meshes.

Therefore, we are going to restrict ourselves to triangle meshes. The scene is made
of a set of triangles. Our algorithm computes radiosity the vertexes and interpolates
inside the triangles.

2.2.2 Scene change

Animations are usually made of a static background and a moving character. This is
most clear in videogames. Another example are films.

Most of the vertexes in the scene are static. A minority of the vertexes move. We
have separated thus the scene in two parts, the ’static’ scene and the ’mobile’, which
can move and rotate with respect to the static scene. Conceptually, our algorithm can
take into account a set of moving characters, since it only checks the previous and
actual position of the triangles the moving objects are made of.

Taking into account mobile light sources introduces many difficulties in the treatment
of recalculation of radiosity. Solving these difficulties requieres more processing power.
We are going to restrict ourselves to static light sources, since we are trying to obtain a
Real-Time algorithm. These scenes have wide applications, such as interior design, so
our decision is justified.

2.3 Computing and updating the ray set

The algorithm’s first step is the generation of the rays and storage of the intersection
points of each ray with the scene. The pseudocode can be seen in figure 2.1

In latter frames, the ray set is updated like this: We know which triangle intersected
the ray in the previous frame. If this triangle belongs to the mobile object, the ray is
recalculated, taking into account the new position of the mobile object. If the triangle
does not belong to the mobile object (or if there was no hit at all in the previous frame)
the ray is tested against the mobile object’s current position. If it hits, its reflections are
recalculated. Otherwise, the ray is still valid, but the procedure should be repeated for
its reflections. Note that for most rays, no intersection test against the scene is needed,
which is where most of the complexity lies.

In order to implement this approach efficiently, a two-level ray list is used: The first
level contains the primary rays; these rays allow access to a simply linked list of rays
produced by subsequent reflections of themselves. Recalculating a ray means storing
a copy of the ray (drawing along a reference to the rest of the reflections of this ray)
in a helper list, referred to as “Old Rays” from now on, and rechecking the original ray
against the scene and mobile object. This will generate a list of new reflections, which
are stored where the reference to the old reflections was. They also have to be stored
in another helper list, “New Rays” With this approach, we have three ray lists: Old Rays,
New Rays and Ray List. These lists are later used to calculate radiosity values in the
vertexes. The pseudocode of the algorithm can be seen in figure 2.2

18 CHAPTER 2. REAL TIME OPTIMIZATIONS

Algorithm 2.3.1: INITIALPHOTOSIMULATIONCALCULATION(
Photons)

Let numLights be the number of lights of a scene.
Let Photons be the number of photons to be simulated.
Calculate number of photons for each light,
according to the percentage of energy emited from that light.
for Light � 1 to numLights

for i � 1 to number of photons for Light
Ray � Lights

�
Light ��� GETPHOTON ���

Insert Ray in RayList
while Ray is not absorbed

IntersectedTriangle � First intersection of Ray
against the scene

Ray � IntersectedTriangle � REFLECT � Ray �

Figure 2.1: Pseudocode for the Initial Photosimulation Calculation

2.4 Computing and updating radiosity

2.4.1 Calculation of the first frame

The first time the radiosity algorithm is run, all the rays in the scene must be taken into
account. The procedure is shown in figure 2.3. This algorithm is expressed in a very
high abstraction level, because the specific algorithm (Impact Count, Photon Maps or
Density Estimation on the Tangent Plane) is passed as an argument to the program.

2.4.2 Updating radiosity in static vertexes

On the next run of the algorithm, the mobile object is located in a new position. The
rays which intersected the object in the previous frame have been recalculated in the
Photosimulation phase. Obviously, the rays which did not intersect before and now do
have also been recalculated. However, most of the rays have the same contribution as
before to the radiosity on a given point.

It is therefore interesting to try and conserve the old valid radiosity information.
This is the expression of the radiance leaving a point x in direction ω0:

Lr � x � ω0 �
	��
Ω

fr � x � ω0 � ω � Li � x � ω � cos � θ � dω (2.1)

For diffuse surfaces, it can be simplified into:

Lr � x � ω0 �	 ρ � x �
π

�
Ω

Li � x � ω � cos � θ � dω 	 ρ � x �
π

E � x � (2.2)

2.4. COMPUTING AND UPDATING RADIOSITY 19

Algorithm 2.3.2: FOLLOWRAY(Ray)

while Ray is not absorbed
Intersect Ray against the scene
Ray � next � next reflection of Ray
Ray � Ray � next

Algorithm 2.3.3: PHOTOSIMULATIONRECALCULUS()

OldRayList � EmptyList
NewRayList � EmptyList
for i � 1 to Photons

Ray � RayList
�
i �

while Ray is not absorbed
if Ray intersected the mobile object or
Ray intersects now the mobile object

Insert Ray in OldRayList
FOLLOWRAY � Ray �
Insert Ray in NewRayList
break

Ray � next reflection of Ray

Figure 2.2: Pseudocode for the Photosimulation Recalculus

where ρ � x � is the reflectivity at x and E � x � the irradiance at x.
When we have a dynamic scene, the time has to be taken into account: Let E � x � t �

be the irradiance at x at instant t. Let Ẽ � x;S � be the irradiance at x due to the set of rays
S. Let St be the set of rays at instant t.

Ẽ � x � t �	 Ẽ � x;St � (2.3)

is an approximation of E � x � t �
Then,

E � x � t ��� Ẽ � x � t � 1 � � Ẽ � x;Nt ��� Ẽ � x;Ot � (2.4)

where

Nt 	 St � St � 1 (2.5)

(new Rays) and

Ot 	 St � 1 � St (2.6)

(old Rays).
This formula can be extracted from the following reasoning:

20 CHAPTER 2. REAL TIME OPTIMIZATIONS

Algorithm 2.4.1: INITIALRADIOSITYCALCULATION(
DensityEstimatonAlgorithmDE)

for each Vertex in the scene
DE �CalculateRadiosity � Vertex � RayList �

Figure 2.3: Pseudocode for the Initial Radiosity Calculation

Let It be the invariant indices in instant t:

It 	 St � St � 1 (2.7)

Since the contribution of each ray to radiosity is additive,

Ẽ � x;St � 	 ∑
i � St

Ẽ � x; � i � � (2.8)

St 	 It � Nt (2.9)

follows from set theory from 2.7 and 2.5

St � 1 	 It � Ot (2.10)

can be extracted in a similar way from 2.7 and 2.6

Ẽ � x;St �
	 ∑
i � It

Ẽ � x; � i � � � ∑
i � Nt

Ẽ � x; � i � � (2.11)

from 2.8 and 2.9
Ẽ � x;St � 1 � 	 ∑

i � It

Ẽ � x; � i � � � ∑
i � Ot

Ẽ � x; � i � � (2.12)

from 2.8 and 2.10

Ẽ � x;St � � Ẽ � x;St � 1 �
	 ∑
i � Nt

Ẽ � x; � i � � � ∑
i � Ot

Ẽ � x; � i � � (2.13)

(substraction of 2.11 and 2.12)

Ẽ � x;St �
	 ∑
i � Nt

Ẽ � x; � i � � � ∑
i � Ot

Ẽ � x; � i � � � Ẽ � x;St � 1 � (2.14)

(from 2.13, moving E � x;St � 1 � to the right hand side)

Ẽ � x;St �
	 Ẽ � x;Nt � � Ẽ � x;Ot � � Ẽ � x;St � 1 � (2.15)

(Substituting 2.8 in 2.14). This equation is 2.4 with the right hand side terms in a different
order.

In order to recalculate the radiosity, we run the density estimation algorithm with the
old ray set generated in the previous step. The calculated radiance is substracted to
the previous value in each vertex. Then the algorithm is run again with the new ray set,
and the calculated radiance estimate is added to the value in the vertex. The result is
the identical to calculating the radiance estimate on the whole ray set, but much faster.
Note that this calculation does not require the use of the whole ray set.

2.5. COMPUTING AND UPDATING RADIOSITY ON DYNAMIC VERTEXES 21

2.5 Computing and updating radiosity on dynamic ver-
texes

The algorithm for dynamic vertexes depends on the density estimation method. We
will first discuss the algorithm for Impact Count. Then we will discuss the algorithm for
Photon Maps and Density Estimation on the Tangent Plane.

2.5.1 Impact Count

In order to update the radiosity using Impact Count, we need to know which triangles
have received new impacts or no longer have the impacts they had. Fortunately, the
Photon tracking phase calculates this information, so we can remove the contribution of
the rays which do not hit the triangles any longer and add the new impacts.

The radiosity on a vertex is finally calculated as an average of the radiosity of the
triangles it belongs to. Therefore, the algorithm for recalculation of the mobile objects
with Impact Count is identical to the recalculation of the static scene. The pseudocode
can be seen in figure 2.4

Algorithm 2.5.1: RADIOSITYRECALCULATIONFORIMPACTCOUNT()

for each Ray in OldRayList
TriangleIntersected 	 Ray �GetHit ���
TriangleIntersected � Substract � Ray �

for each Ray in NewRayList
TriangleIntersected 	 Ray �GetHit ���
TriangleIntersected � Add � Ray �

Figure 2.4: Pseudocode for the Recalculation of Radiosity for the Impact Count method

2.5.2 Photon Maps and Density Estimation on the Tangent Plane

Since the update of radiosity using these methods depend on impact information on
non-local points (the discs in DETP are unknown to the Photon Tracking Phase; and
the vertices which are affected in Photon Maps are unknown unless a specific search is
made) the algorithm used in Impact Count cannot be used for these methods.

To calculate the radiosity estimate in the points of the mobile object, we run the initial
algorithm, checking all the rays in the scene. Refer to Figure 2.3, where the pseudocode
for the initial calculation of radiosity is shown. Please note this algorithm is different from
the one in [4].

22 CHAPTER 2. REAL TIME OPTIMIZATIONS

2.5.3 Comparison between Impact Count and DETP

We have seen that the algorithm for Impact Count in intrinsically faster than the one
for DETP, since only the recalculated rays have to be taken into account. The problem
is that the noise and variance parameters are much higher. It is therefore necessary
to increase the number of photons, and the final illumination time for a given scene is
higher.

Although it has been noted in the literature that the parameters of noise and variance
are much higher in Impact Count than in Photon Maps ([6], page 52) or DETP ([7],
section 2), they have studied the time for the whole calculation of irradiance. In this case,
however, we are measuring the time of recalculating the whole scene in Photon Maps
or DETP, versus recalculating rays which intersect the mobile only in Impact Count. As
an example we’ll use the complex scene studied in detail in section 2.9.

Figure 2.5: Density Estimation on the Tangent Plane, 50 000 photons

Algorithm Fotosimulation Ilumination Total Error
DETPR 0.05 0.80 0.85 16.10 %

ImpactCount 1.09 0.02 1.11 139.54 %

Table 2.1: Comparison between DETPR and Impact Count

We will use the mean luminance difference between a reference image (Density
Estimation on the Tangent Plane, radius 0.01, 100 million photons) and the generated
images shown below. The figures 2.5 and 2.6 can be compared to see the improved

2.6. REUSE OF POINT ORDERING 23

Figure 2.6: Density Estimation using Impact Count, 1 000 000 photons

quality of DETP. Table 2.1 shows the time in seconds for the recalculation of the rays
(Fotosimulation), the density estimation (Illumination), and the total time. Finally the
error is shown. It can be seen that while the simulation time is similar (slightly lower for
DETP), the error is an order of magnitude higher in Impact Count.

2.6 Reuse of Point ordering

In [8], after describing Ray Caché, the fact that its performance depends on the ordering
of the vertices is remarked. This is due to the fact that a linear hierarchical data structure
is maintained, composed of spheres of decreasing radius. These spheres keep track
of the rays which traverse them. When Density Estimation is made on a point which is
inside the current sphere (actually when the whole disc used for the density estimation
is), finding the rays which affect its radiance is fast. When the point is outside the
sphere, (or at least part of the disc is) the sphere is discarded and the parent sphere in
the structure is checked until a valid sphere is found. Then the hierarchy of spheres is
rebuilt.

A preordering scheme is presented in [8] which gets the most performance of the
algorithm by lowering the number of times the spheres must be rebuilt. Due to the
static nature of part of (most of, actually) the scene and the fact that the mobile is
rigid, the optimum order for a minimum of caché misses can be studied in a first step.
On following steps, this order is reused. In the case of a non rigid mobile, it should be
studied whether the preprocess time to recalculate the order is less than the caché miss

24 CHAPTER 2. REAL TIME OPTIMIZATIONS

increment (It should be noted that the mobile deformation follows rules which conserve
part nearbyness; a walking person is a useful example)

2.7 Disc Indexing

A spatial indexing technique for the discs in the Density Estimation on the Tangent
Plane was implemented. The algorithm calculates the discs located in the vertices of
the scene, and orders them using a spatial indexing method. The radiance is calculated
by intersecting each ray against the discs, using the indexing to speed the process.

This method has higher performance than the original Ray Caché intersection method
when the discs have a radius of a similar size to the triangle sides, and for a small num-
ber of rays. In other situations, Ray Caché’s performance is higher.

The maximum number of primitives per voxel should be adjusted as the disc size
change, since when discs grow, they intersect one another; dividing the voxel creates
voxels in which most of the discs belongs to both voxels. This makes the intersection
time with the new voxels higher than the original combined voxel.

The timing results and optimum number of primitives per voxel are shown in table
2.2 for 10 000 photons. Table 2.3 has the timing information for 20 000 photons.

a) Comparison between Ray Caché and Disc Indexing for different scenes. Time as a
function of disc radius.

Algorithm � Radius 0.01 0.02 0.03 0.04
Ray Caché (Whole scene) 4.45 5.70 7.32 9.24
Disc Indexing (Whole scene) 1.46 3.43 7.18 17.79
Ray Caché (Tree) 4.03 5.34 6.78 8.38
Disc Indexing (Tree) 0.89 2.78 7.15 18.37
Ray Caché (Ground) 0.39 0.46 0.62 0.74
Disc Indexing (Ground) 0.21 0.33 0.50 0.68
Circle Area 1.57 6.28 14.14 25.13

b) Best number of primitives per voxel for the Disc Indexing as a function of disc radius.

Scene � Radius 0.01 0.02 0.03 0.04
Whole Scene 20 20 50 800
Tree 20 10 100 1600
Ground 20 80 120 160

Table 2.2: Recalculation time for 10 000 photons, tree scene

Triangles in the ground have a 0.02 x 0.02 size. Triangles in the tree have a size
around 0.01 x 0.01. Circle area is measured using 1 for the area of a triangle in the
ground. It can be seen that for sizes under 0.04, the new method is faster than Ray

2.7. DISC INDEXING 25

a) Comparison between Ray Caché and Disc Indexing for the Tree Scene. Time as a
function of disc radius.

Algorithm � Radius 0.01 0.02 0.03 0.04
Ray Caché (Whole scene) 5.50 8.16 11.38 15.89
Disc Indexing (Whole scene) 2.89 6.82 14.12 41.95

b) Best number of primitives per voxel for the Disc Indexing as a function of disc radius.

Scene � Radius 0.01 0.02 0.03 0.04
Whole scene 20 20 200 1600

Table 2.3: Radiosity recalculation time for 20 000 photons for the Tree Scene

a) Comparison between Ray Caché and Disc Indexing for the Second Tree Scene.
Time as a function of disc radius.

Algorithm � Radius 0.03 0.04 0.05 0.10
Ray Caché (Whole scene) 2.28 2.86 3.79 7.83
Disc Indexing (Whole scene) 1.34 2.17 3.22 10.29

b) Best number of primitives per voxel for the Disc Indexing as a function of disc radius.

Scene � Radius 0.01 0.02 0.03 0.04
Whole scene 40 80 160 32000

Table 2.4: Radiosity recalculation time for 20 000 photons for the Second Tree Scene

Caché. Since the triangles in the ground are bigger than the ones in the tree, the scene
with only the ground has better results also for disc radius of 0.04.

For 20 000 photons, the results are only better for sizes of 0.01 and 0.02. The
problem is that this method is linear in the number of rays.

Another scene was generated with a different sort of tree and ground, with bigger
triangles, which is shown in figure 2.7. The timing information for this scene can be
seen in table 2.4.

These tables show Disc Indexing’s performance decrease as the area of the discs
increases. It can be seen that the results are better using larger discs than in the
previous scene, due to the fact that the triangle size has increased.

For large discs, the normal procedure of dividing the voxels until few objects remain
in the voxel or a maximum depth is reached does not work. Since the discs are so
large, they belong to most or all of the newly created nodes. This makes the algorithm
go through the list of all discs for each node, so the resulting time is higher instead of
lower. In order to avoid this, the maximum depth must be decreased as the disc radius

26 CHAPTER 2. REAL TIME OPTIMIZATIONS

Figure 2.7: Second Tree Scene, 20 000 photons

increases.
One advantage of the Disc Indexing method is an easy parallelization, since the disc

indexing tree is static, and can be accessed with no contention problems. On the other
hand, synchronizing access and update of the ray caché is complex, and lessens the
caché performance.

2.8 Study of Pre-intersection tests

The Badouel, Plücker and Möller pre-intersection tests were studied with respect to
the ray-circle intersection tests. An equilateral triangle which is tangent to the disc is
created, and rays are intersected first against the triangle, and if hit, against the circle.
While these tests on their own achieve a performance boost of 34%, in combination
with Ray Caché they just have an increase in performance of arount 1 %. These tests’
performance depends on the size of the disc, since for small discs most rays do not
intersect either the triangle or the disc, which means the pre-test will speed up the
calculation, and for big discs a significant fraction of the discs intersect both the triangle
and the disc, so the pre-test will only be a burden. For Real-Time scenes, we are
interested in big discs, since that makes possible to have a smaller number of rays.
Unfortunately, it means that the pre-test increase in performance is almost negligible.

2.9. COMPARISON BETWEEN PHOTON MAPS AND DETP 27

The available pre-intersection tests were tested using the scene shown in section 2.9.
The results for the different tests can be seen in table 2.8 (times in seconds)

a) Times to simulate the Tree Scene using Badouel Preintersection test

Phase Initialization Frame
PhotoSimulation 10.34 1.02
Illumination 679.44 67.90
Total 689.78 68.92

b) Times to simulate the Tree Scene using Möller Preintersection test

Phase Initialization Frame
PhotoSimulation 10.29 0.98
Illumination 666.34 67.27
Total 676.63 68.25

c) Times to simulate the Tree Scene using Plücker Preintersection test

Phase Initialization Frame
PhotoSimulation 10.40 1.05
Illumination 716.47 68.66
Total 726.87 69.71

d) Times to simulate the Tree Scene using No Preintersection test

Phase Initialization Frame
PhotoSimulation 10.38 1.05
Illumination 678.75 68.00
Total 689.13 69.05

Table 2.5: Times to simulate the Tree Scene using different preintersection tests

The tests show that the pre-intersection tests Badouel and Möller are slightly faster
than no pre-test. Plücker is slower because it needs the Plücker coordinates to be
stored.

2.9 Comparison between Photon Maps and DETP

We are now going to compare the time needed for the update of radiosity information
for the Photon Maps density estimation method and Density Estimation on the Tangent
Plane.

We will use a scene with 71966 triangles and a 500-triengle mobile object. (See
figure 2.8) This scene has also been used in [9], although there was no mobile object in
that article. We will call this the “Tree Scene”.

28 CHAPTER 2. REAL TIME OPTIMIZATIONS

We will use as a reference the image created by using 100 million rays with the
DETP estimation method (radius is 1 % of the scene).

Figure 2.8: Flat Shaded Render of the Tree Scene

2.9.1 Error and bias analysis of PM and DETP

Both algorithms have a noise error due to their statistical nature. They also have a bias
error due to the intrinsic algorithm. Photon Maps calculates the mean radiance on a
semisphere surrounding the point. This estimator tends to the correct value when the
point is not a border. Otherwise, (see figure 2.9, which shows a vertex of a triangle
from the direction of the normal, and the corresponding circle), the calculated value has
a bias which depends on the angle of the border vertex This angle is defined as the
angle of the two sides of the triangle converging in the vertex when these sides belong
to the border. When the vertex can be considered the invariant vertex in a triangle fan
(i.e. the vertex has edges from different triangles converging in it), the angle is the
one between the first and the last edges of the triangle fan. For non planar surfaces,
the angle is measured after projection on the tangent plane. Figure 2.10 ilustrates the
different situations.

Let α be the angle of the vertex. Photon maps tries to calculate the energy density
by adding the energy of the impacts and dividing by the area of the circle. As the picture
shows, this gives a much lower estimate of the radiance than the correct one, since

2.9. COMPARISON BETWEEN PHOTON MAPS AND DETP 29

Rays

Impacts

α

Figure 2.9: Photon Maps Bias: Detail of a border vertex

there is an unreachable zone. There are two solutions. One is taking into account the
rays which do not intersect any geometry but intersect the disc (DETP). The other is
dividing by the area of the reachable zone.

The bias created by doing neither is 1 � α
2π (Let E be the total energy of the impacts,

and R the radius of the circle. The PM estimator (PME) is E
πR2 and the correct estimator

(CE) is E�
α � 2 � R2 The bias is

CE � PME
CE

	 1 �
PME
CE

	 1 �
E

πR2

α � 2R2

E
	 1 �

α
2π

The error tends to this bias when the radius of the sphere tends to zero (i.e when
the number of impacts increases) Note that for inside vertexes, the angle is 2π, (impacts
in adjacent triangles are counted, so the angle spans the whole circle) and the bias is
0.

For DETP, the bias comes from the fact that we are calculating the mean radiance
in the disc. This bias tends to zero when the disc size tends to zero.

In this section the resulting images for DETP for 1 000 and 10 000 photons, and for
Photon Maps for 10 000 and 50 000 photons are shown, and the timing information is
given.

2.9.2 Performance Tables

DETP, 1 000 photons

The timing data for figure 2.11, on page 31, can be seen in table 2.6.
As we can see, activating the ray caché and sorting the queries allow us for 1/0.11=9

frames per second, which might be considered Real-Time.

30 CHAPTER 2. REAL TIME OPTIMIZATIONS

a) b) c)

Figure 2.10: Measurement of the border angle
a) Isolated border vertex b) Triangle Fan c) Interior vertex

Photosimulation time (first frame) 0.09
Photosimulation update 0.00

No Ray Caché Ray Caché

Init 26.14
Frame 0.29

No Sort Queries Sort Queries
Init 2.56
Frame 0.26

Init 2.56
Frame 0.11

Bias Error Noise Error Total Error
14.403 % 24.64 % 28.6912 %

Table 2.6: DETP, 1 000 photons

DETP, 10 000 photons

The timing data for figure 2.12 (page 32) can be seen in table 2.7 For this number of
rays, we have a refresh rate of two frames per second, which is interactive, but not
Real-Time.

Photon Maps

The timing data and error with respect to the reference file for figures 2.13 (10 000
photons, page 33), 2.14 (50 000 photons, page 34) and 2.15 (200 000 photons, page
35) can be seen in table 2.8

The reference files are an image generated with Photon Maps, 5 million photons,
used for the Noise column, and an image with DETP, 5 million photons, for the Total
column. The Bias column is the difference between the PM reference image and the
DETP reference image. It can be seen that as the number of photons increases, the

2.10. GLOSSY SURFACES 31

Figure 2.11: Density Estimation on the Tangent Plane, 1 000 photons

image tends to the PM reference image, diverging from the DETP image. This is due to
the bias of Photon Maps becoming more noticeable as the size of the sphere decreases.

Conclusion

As we can see, for Photon Maps the refresh rate is 5 fps (10 000 photons), 2 pfs (50
000 photons) and 0.43 fps (200 000 photons).

The quality of the images for the corresponding frame rates of DETP is much lower
for Photon Maps, so our preferred method for a real-time application is Density Estima-
tion on the Tangent Plane.

2.10 Glossy Surfaces

Recalculation of glossy surfaces presents some additional problems not present in dif-
fuse surfaces. Camera position changes do not modify the radiance estimate with dif-
fuse surfaces, but do with glossy surfaces. Therefore, the estimation method must be
called for camera moves.

The recalculation method is affected, since the radiance estimation depends on the
position of the camera. In the glossy case, a number with the radiance estimate in the
previous frame is not enough. The actual set of rays which affected the point must be

32 CHAPTER 2. REAL TIME OPTIMIZATIONS

Figure 2.12: Density Estimation on the Tangent Plane, 10 000 photons

stored. Then, they must be used in conjunction with the new camera position to obtain
the new radiance estimate.

When the object moves, the new rays and old rays which were used to update the
radiance estimate in the diffuse case, now must be checked against the ray list in the
vertex, and the ray list must be updated and a new radiance estimate be calculated.

2.10.1 QuadTree

The QuadTree method was developed for the rendering of static scenes. It allows the
rays to be summarized in a QuadTree, so that a small number of rays is enough to
estimate the radiance in a given direction.

This method does not allow for easy integration with recalculation in non static
scenes, since the original rays are lost. Two approaches have been designed in or-
der to integrate QuadTree and recalculation.

Disable summarizing in the QuadTree

The QuadTree can be configured to disable summarizing of rays. Then rays can be
added and removed, and the QuadTree is used to speed up the radiance estimate
calculation.

2.10. GLOSSY SURFACES 33

Figure 2.13: Photon Maps Density Estimation, 10 000 photons

Enable summarizing in the QuadTree

In order to do this, the original number of rays in the cell should be stored. Let � Ri;0 �
i � n � be the original rays. When the QuadTree summarizes a node, the resulting
direction of the new ray is calculated with this formula:

R 	
n � 1

∑
i � 0

Ri

n

In the next frame, some rays will be removed from the QuadTree, and some others will
be added. Let � Ni;0 � i � nn � be the new rays.
Let � Oi;0 � i � no � be the old rays.
The new ray created as a summary of the current rays is:

Rnew 	
�����
� R

�

nn � 1

∑
i � 0

Ni

n
�

no � 1

∑
i � 0

Oi

n

������
	 n

n
�

nn � no

34 CHAPTER 2. REAL TIME OPTIMIZATIONS

Figure 2.14: Photon Maps Density Estimation, 50 000 photons

This method has one problem: the list of rays in the QuadTree gets degraded after
repeated insertion and deletion of rays. This is due to the fact that inserting rays triggers
ray summary; some information is lost. Then, rays are removed; the mean direction
value is still the same, but fewer rays are used. The radiance estimate for directions
relatively far away from the mean value obtain a worse estimate than they would with
the original rays.

This method has not yet been implemented.

2.10. GLOSSY SURFACES 35

Figure 2.15: Photon Maps Density Estimation, 200 000 photons

Photosimulation time (first frame) 0.8 seconds.
Photosimulation update 0.02-0.03 seconds.

No Ray Caché Ray Caché

Init 465.46
Frame 3.17

No Sort Queries Sort Queries
Init 66.15
Frame 0.61

Init 64.0
Frame 0.46

Bias Error Noise Error Total Error
14.40 % 8.57 % 16.82 %

Table 2.7: DETP, 10 000 photons

Photons PhotoSimulation Density Estimation Error
Init Frame Init Frame Noise Bias Total

10 000 0.66 0.02 0.66 0.18 172.5 % 62.80 % 54.39 %
50 000 3.14 0.13 0.86 0.34 93.2 % 62.80 % 62.46 %
200 000 12.51 0.50 2.20 1.79 62.2 % 62.80 % 65.72 %

Table 2.8: Photon Maps

36 CHAPTER 2. REAL TIME OPTIMIZATIONS

Chapter 3

Implemented System

3.1 Goals

The system’s primary goal was the development of a program which were able to calcu-
late the global illumination of a static scene, and which could recalculate the illumination
in Real-Time when an object moved through the scene. This was motivated by the fact
that most scenarios are mainly static, and changes in illumination are caused by charac-
ters or small objects moving. The scene is fed to the program using two files: a (static)
scene and a mobile object. For these files, the GRF [11] format was used, because it
allows for the description of the global illumination characteristics of the scene.

3.2 Further Characteristics

Using GRF provided us with some characteristics which could improve the usability of
the program:

� Textures: They allow us to create high resolution material characteristics, so that
the meshing of the geometry can be at a lower resolution. This makes the com-
plexity of the scene smaller, and thus the computing times are decreased.

� Bidirectional Reflectance Distribution Functions (BRDFs): BRDFs provide the
reflection parameters of a surface, and are used to compute a realistic (in the
Physics sense) image of an object.

3.2.1 Supported Surface Types

Object reflect light depending on the characteristics of the material they are made from.
To Realistically simulate light reflection on objects, the way light is reflected on a material
must be defined. This is done with the Bidirectional Reflectance Distribution Function
(BRDF). This program supports the following BRDFs:

� Perfect Diffuse

37

38 CHAPTER 3. IMPLEMENTED SYSTEM

� Perfect Specular

� Phong

� Blinn

� Torrance-Sparrow

� Poulin-Fournier

� He-Torrance-Sillion-Greenberg

� Ward

� Lewis

� Schlick

� Oren-Nayar

� Strauss

� Lafortune

There is also the possibility of creating a linear combination of several of the above
mentioned BRDFs.

Using a non-diffuse BRDF increases strongly the response time. Therefore, for Real
Time purposes, we are using diffuse scenes.

3.3 Supported Estimation Methods

We have implemented the three methods explained in section 1.2: Impact Count, Pho-
ton Maps and Density Estimation on the Tangent Plane, with its optimizations, in order
to study the increase in performance for these classic methods.

3.4 Classic optimizations present in our system

This chapter describes the optimizations added to the Software.

3.4.1 General Purpose Optimizations

Space partitioning data structures

The first step of the algorithm which calculates the illumination consists in a photon
tracking from the light sources. In order to speed up this process, the scene is integrated
into a space partitioning data structure. Several methods have been implemented:

� None (Just for debugging purposes)

� Octree [13]

3.4. CLASSIC OPTIMIZATIONS PRESENT IN OUR SYSTEM 39

� BinaryTree [5]

� Grid3D [1]

� BSPTree (Based on [15]).

3.4.2 Radiosity Specific Optimizations

Vertex-based calculation

In a triangle mesh, many vertices are shared among different triangles. Since these
triangles may have a different color, the emited radiance is different depending on which
triangle the vertex is considered to belong to. Nevertheless, the density estimation
calculation can be reused, multiplying later on the radiance with the triangle colour to
obtain the final value.

40 CHAPTER 3. IMPLEMENTED SYSTEM

Chapter 4

Future Work

4.1 Hardware accelerated direct illumination

In the current implementation, both direct and indirect illumination are calculated by
photon tracing. We can make use of graphics hardware to calculate direct illumination,
and add indirect illumination in a second pass. This way, the number of photons can be
reduced, since indirect illumination is smoother.

4.2 Transparent surfaces

This is the most important type of surface not yet present in our system.

4.3 Ray Tracer

This type of algorithm would allow us to simplify geometry specification, and might be
better suited for our goals.

41

42 CHAPTER 4. FUTURE WORK

Bibliography

[1] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing. In
EUROGRAPHICS’87, pages 3–10, Amsterdam, 1987.

[2] J. Arvo. Backward ray-tracing (course developments in ray tracing). ACM Siggraph
Course Notes 12., pages 259–263, 1986.

[3] D. Badouel. An efficient ray-polygon intersection. In Andrew Glassner, editor,
Graphics Gems, pages 390–393. Academic Press, 1990.

[4] Kirill Dmitriev, Stefan Brabec, Karol Myszkowski, and Hans-Peter Seidel. Interac-
tive global illumination using selective photon tracing. 13th Eurographics Workshop
on Rendering, 2002.

[5] V. Havran, T. Kopal, J. Bittner, and J. Zara. Fast robust BSP tree traversal algorithm
for ray tracing. Journal of Graphics Tools, 2(4):15–24, 1997.

[6] Henrik Wann Jensen. Realistic Image Synthesis using Phothon Mapping. AK
Peters, 2001.

[7] M. Lastra, C. Ureña, J. Revelles, and R. Montes. A density estimation technique
for radiosity. 1st Ibero-American Symposium in Computer Graphics (SIACG’2002),
2002.

[8] M. Lastra, C. Ureña, J. Revelles, and R. Montes. A particle-path based method for
Monte-Carlo density estimation. Poster at: 13th EUROGRAPHICS Workshop on
Rendering, 2002.

[9] Miguel Lastra and Carlos Ureña. Density estimation on the tangent plane for ra-
diosity. III Jornadas Regionales de Informática Gráfica, 2002.

[10] T. Möller and B. Trumbore. Fast, minimum storage ray-triangle intersection. Journal
of Graphics Tools 1(2), pages 21–28, 1997.

[11] Rosana Montes and Carlos Ureña. Wannabe Amazing: Una herramienta de tra-
bajo para iluminación global. III Jornadas Regionales de Informática Gráfica, 2002.

[12] S.N. Pattanaik and S.P. Mudur. Computation of global illumination by Monte Carlo
simulation of the particle model of light. Proceedings of 3rd Eurographics Render-
ing Workshop, Bristol, 1992.

43

44 BIBLIOGRAPHY

[13] J. Revelles, C. Ureña, and M. Lastra. An efficient parametric algorithm for octree
traversal. Journal of WSCG (UNION Agency-Science Press), 8(2):212–219, 2000.

[14] Franćois Rouselle and Christophe Renaud. Group accelerated shooting methods
for radiosity. 10th Eurographics Workshop on Rendering, 1999.

[15] Kelvin Sung and Peter Shirley. Ray tracing with the BSP tree. In David Kirk, editor,
Graphics Gems III, pages 271–274. Academic Press, 1992.

[16] S. Teller. Computing the antipenumbra of an area light source. In Siggraph ’92,
pages 26:139–148, July 1992.

[17] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and Philipp
Slusallek. TR-2002-02: Interactive global illumination. Technical report, Computer
Graphics Group, Saarland University, 2002.

