Interactive Global Illumination for Quasi-Static Scenes

- Interactive Global Illumination for Quasi-Static Scenes
- Illumination
- Rubén J. García Hernández

Impact Count

- Counts the impacts in the triangles.
- Vertexes radiance is calculated as an average among the triangles they belong to.
- Variance inversely proportional to triangle size: High Variance.
- Highly dependent on geometry.

Photon Maps

- Takes the n nearest photons, adds the energy and divides by projected area
- Surfaces should be locally planar
- Problems in Borders

Impact Count y Photon Maps

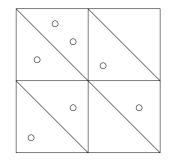
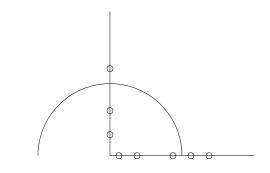
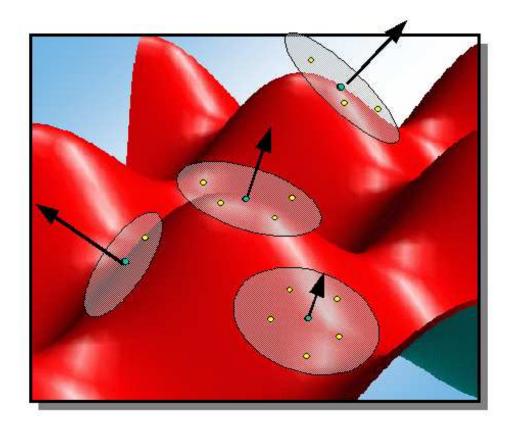


Figure 1 : Impact Count




Figure 2 : Photon Maps

Interactive Global Illumination for Quasi-Static Scenes 4

Density Estimation on the Tangent Plane

- Creates a fixed-size disc centered at the point, in the tangent plane.
- Rays which intersect the disc are calculated.
- Their energy is added and divided by the disc area.
- Independent of geometry.

Density Estimation on the Tangent Plane

Interactive Global Illumination for Quasi-Static Scenes 6

Figure 3 : DETP

 The geometry is composed of triangle meshes
Scene change: Static Vertexes (most). Scene. Dynamic Vertexes (comparatively few). Mobile objects, characters. Static light sources. DETP initially designed for static scenes
Changes needed for interactive update of illumination are shown next.

- As the frames pass, dynamic vertexes move to a new position.
- Rays which intersected dynamic objects in the previous frame or do in this frame should be recalculated.
- The rest of the rays does not change their contribution to the static scene.

Ray Recalculation.

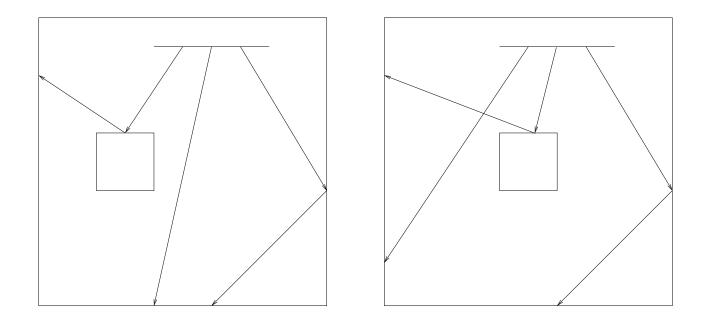


Figure 4 : Ray Recalculation

- The recalculation algorithm depends on the vertex type:
- Static vertexes: Use the rays which changed.
- Dynamic vertexes: The algorithm depends on the estimation method.

- Take the estimated radiosity from the previous frame.
- Add the contribution of the new rays.
- Substract the contribution of the old rays.
- ► The result is radiosity on this frame.

- Algorithm dependent on density estimatin method.
- Impact Count: The same as static vertexes.
- DETP or Photon Maps: Discard radiosity on the previous frame and recalculate it using all rays.

Example scene

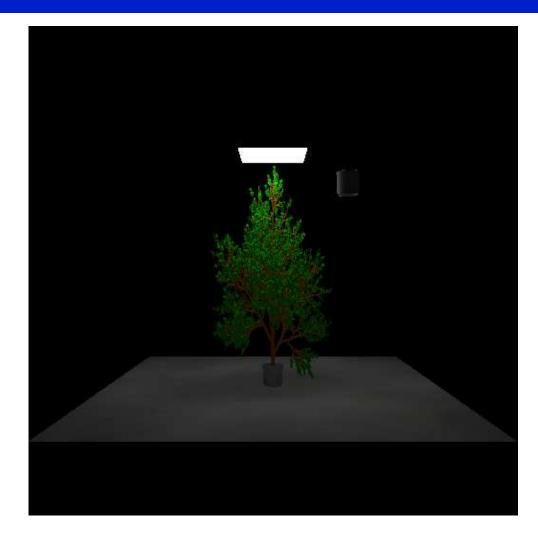


Figure 6 : Tree Scene Interactive Global Illumination for Quasi-Static Scenes 14

Computation time for 10 000 photons and 0.1 radius

PhotoSimulation time (initial frame) 0.09 Photosimulation update 0.00

No Ray Caché		Ray Caché			
Inic	26.14 0.29	No Sort Queries		Sort Queries	
Frame		Inic	2.56	Inic	2.56
		Frame	0.26	Frame	0.11

Activating the Ray Caché and Sort Queries optimization leads us to 1/0.11=9 frames per second, which is clearly interactive.

- 1 J. R. Arvo Backward Ray Tracing. ACM SIGGRAPH '86
- $2\,$ Henrik Wann Jensen Realistic Image Synthesis using Phothon Mapping AK Peters 2001
- **3** M. Lastra et all. A Density Estimation Technique for Radiosity. 1st Ibero-American Symposium in Computer Graphics (SIACG'2002) 2002

Recalculation algorithms

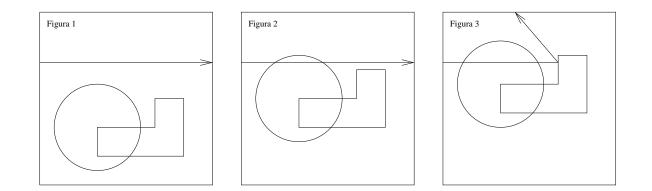


Figure 6 : DETP

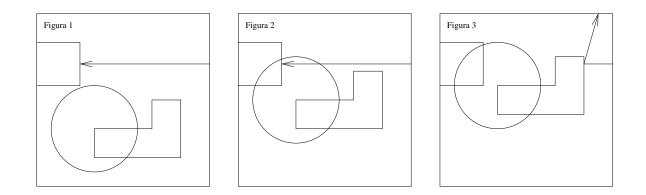


Figure 7 : Photon Maps

Interactive Global Illumination for Quasi-Static Scenes 17