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The effect of the volume fraction of solids on the concentration polarization around spheroidal

particles has been recently investigated using data on the low frequency dielectric dispersion (LFDD) of

suspensions [Rica et al., Soft Matter, 2011, 7, 3286]. In this work, we extend our previous experimental

analysis including new measurements at different surface charge together with dynamic electrophoretic

mobility determinations. This joint study allows us to detect two a relaxations, due to the two

characteristic dimensions of our rod-like particles, in addition to the Maxwell–Wagner–O’Konski

relaxation and the inertial effects on the electrophoretic mobility. Available theoretical models for the

polarization of a single rod are extended to consider particle–particle interactions, this leading to the

estimation of the zeta potential and the characteristic size and geometry of the particles. The most

significant result of the LFDD experiments is the different trend of low and high frequency relaxations

with volume fraction. Calculation of the concentration polarization maps around the spheroidal

particle suggests that such different trends can be explained by the different extent of the polarization

clouds along both semiaxes.
1 Introduction

The field of the electrokinetics of concentrated suspensions is still

poorly understood. A complete description of the hydrodynamic

and electrical interactions between disperse particles surrounded

by a non-homogeneously charged atmosphere (the electric

double layer, EDL) has not been achieved, despite the potential

applicability of electrokinetic techniques to such systems. The

problem has been approximately solved, using cell models, in the

case of hard spherical particles.1–4 Even more limited is our

knowledge of the electrokinetics of nonspherical particles or with

complex internal structures, although they can be found in many

practical situations.5,6

The anisotropy associated to the non-spherical geometry gives

rise to field-induced interactions which are responsible for the

presence of either normal,7 or anomalous8–10 orientation with

respect to the field. All these experiments were performed in

conditions under which the electric double layers around parti-

cles are polarized, and the interactions between the induced

dipoles are responsible for the observed behaviours.

In fact, the polarization state of colloidal particles manifests in

most electrokinetic phenomena.11 However, when a deep phys-

ical insight of polarization is required, as in the above mentioned

situations, an analysis in the frequency domain offers much more
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information than the study of the electrokinetic quantities in the

stationary state. In particular, the development of electro-

acoustic techniques,12 and the recent advances in the determi-

nation of the low frequency permittivity of suspensions,13 have

provided us with very suitable tools. They are especially useful

when the considered suspensions are concentrated and become

turbid or even opaque, because optical determinations cannot be

performed. Even the analysis of the polarization of dilute

suspensions of non-spherical particles is a very challenging

task,14 and available literature has been almost absent until very

recently. Some studies can be mentioned concerning the elec-

trophoresis of spheroids,15,16 or the electric permittivity of their

suspensions,17 but it has been only in the last years that the topic

has gained attention and new theoretical treatments have

appeared.18–24 However, they are also limited to dilute conditions

and a systematic experimental verification is lacking.

We have recently contributed a series of experimental results

on the low frequency dielectric dispersion (LFDD) and dynamic

electrophoretic mobility of moderately concentrated suspensions

of rod-like colloids,6,25–27 showing some of the effects that inter-

actions have on the electrokinetic response investigated. In

particular, we presented some unexpected behaviour of the

LFDD spectra due to interactions between particles.6 Our

measurements suggest that the presence of neighbouring parti-

cles has little effect on the polarization along the symmetry axis

of the particle, while it has strong effect on the perpendicular

component. In order to clarify these observations, we present in

this work new data on the LFDD and electroacoustics of

moderately concentrated (up to 12% volume fraction of solids)
This journal is ª The Royal Society of Chemistry 2012
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suspensions, and on their analysis in terms of the theoretical

models that we developed in ref. 26,27.

The paper is organized as follows. A brief theoretical back-

ground is provided in section 2, stressing the role of the inter-

actions. Section 3 describes the colloidal suspensions used in this

work, as well as the two experimental techniques, namely, LFDD

and electroacoustics, which allow us to analyse the polarization

spectrum of colloidal particles in the range 1 kHz–18 MHz. The

experimental results concerning the effects of the volume fraction

of solids on the electrokinetic response of hematite particles are

presented in section 4. The implications of the experimental

results are discussed in section 5, and a justification for the

observed behaviour based on the geometry of the concentration

polarization clouds is proposed.
2 Electrokinetics of non-spherical particles

The description of the polarization of the double layer is often

presented in terms of the dipole coefficient ~C*, related to the

dipole moment d* (* denotes a complex quantity) induced by the

alternating electric field E with frequency u as follows:28

d*(u) ¼ 3V303m ~C*(u)$E (1)

where ~C*(u) is a complex tensor and V is the particle volume, see

Fig. 1. 30 and 3m are the electric permittivity of vacuum and the

relative electric permittivity of the medium, respectively. In the

case of non-spherical particles, the analysis of the polarization is

complicated by the fact that there is not a single characteristic

dimension. Fortunately, because of the linearity of the problem,

we can consider separately different components. In the frame of

reference defined by the symmetry axes of the spheroid, the only

non-zero components of the resulting diagonal tensor are C*k and
C*
t, respectively in directions parallel and perpendicular to the

symmetry axis (Fig. 1). Hence:

d*i (u) ¼ 4p303mab
2C*

i (u)Ei (2)

where di and Ei are i components (k, t to the axis of the

spheroid) of the induced dipole and the field, and 2a (2b) is the

symmetry axis (diameter) of the spheroid. The dipole coefficient

carries all the information about the polarization processes that
Fig. 1 Semiaxes a and b and components of the dipole and the field.
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take place upon the application of the electric field,13 and hence

the values of the macroscopic quantities of the suspensions can

be calculated from it.

In the case of charged, hard colloidal particles, the frequency-

spectrum of the dipole coefficient exhibits two main relaxations

depending on which polarization processes can follow the field

oscillations. These relaxations are called a and Maxwell–Wag-

ner–O’Konski (MWO). The former takes place in the kHz

region: when the frequency is above its characteristic relaxation

frequency ua, concentration polarization cannot occur. This

phenomenon gives rise to two clouds of perturbed ionic strength

at the outer edge of the electric double layer, one with lower salt

concentration than the bulk and other with higher salt concen-

tration. It is originated by the fact that the transport numbers of

cations and anions inside the EDL are different to their bulk

values.13 A sketch of the situation thus established is shown in

Fig. 2. This process implies the transport of ions along distances

of the order of the particle dimensions, and therefore its char-

acteristic frequency can be estimated as the inverse of the time

that these clouds need to disappear by diffusion, ua ¼ 1/saxD/

L2
D, being LD the diffusion length and D the diffusion coefficient
Fig. 2 Schematics of the electromigrational and diffusive fluxes in the

vicinity of a spheroid oriented parallel (top) or perpendicularly (middle)

to the field, and the way concentration polarization clouds of different

particles overlap when two particles are close enough (bottom). This

overlap leads to a partial cancellation of the perturbations on the ionic

strength and the diffusive fluxes associated to them. j�dn (j�en): diffusive

(electromigrational) fluxes outside the EDL; j�ds (j
�
es): diffusive (electro-

migrational) fluxes inside the EDL; n(r): neutral electrolyte concentration

outside the EDL; nN: neutral electrolyte concentration far from the EDL.
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of the ions. In the case of non-spherical particles, we can

distinguish two characteristic values of the diffusion length LD,k
and LD,t, as illustrated in Fig. 2, and therefore two characteristic

frequencies are expected.

The MWO relaxation takes place in the MHz region of the

spectrum, and is a consequence of the mismatch of the values of

the permittivity and conductivity of particles and medium.

Above the characteristic frequency uMWO, the dipole coefficient

depends on the permittivity of particles and medium, while its

value is determined by their conductivities below uMWO. The

characteristic distance is in this case of the order of the EDL

thickness, k�1, and hence, the relaxation time can be estimated as

sMWO ¼ 1/uMWOxk�2/D. Contrary to the case of a-relaxation,

a single MWO process is expected also for rod-like particles, as it

depends only slightly on size and shape.

These two processes modify the value of the dipole coefficient,

and if they are sufficiently apart in the dielectric spectrum, three

regions will be distinguished, separated by the two characteristic

frequencies, ua and uMWO. Direct experimental access to the

value of the dipole coefficient is not possible, and only indirect

estimations can be made available based on the measurement of

some electrokinetic quantity together with a theoretical model.

In this work, we measured the spectra of the relative electric

permittivity 3*(u) and the dynamic electrophoretic mobility u*e(u)

in suspensions of spheroidal nanoparticles. Their relationship to

the dipole coefficient will be described below, while the electro-

kinetic theory that allows us to obtain the zeta potential and

characteristic sizes of the particles from them is presented in

Appendix A.

Distinguishing again parallel and perpendicular orientation of

the spheroid (i ¼ k, t), the components of the relative permit-

tivity of a dilute suspension and of the dipole coefficient of the

particle are related as follows:13

3*i ðuÞ ¼ 3m þ D3*i ðuÞ

¼ 3m
�
1þ 3fC*

i ðuÞ
� � j

3fKm

u30

�
C*

i ðuÞ � C*
i ð0Þ

�
(3)

where f is the volume fraction of the suspension occupied by

particles, Km is the conductivity of the electrolyte solution and

j ¼ ffiffiffiffiffiffiffi�1
p

. Here, we have defined the dielectric increment D3*i (u),

which accounts for the contribution of the dispersed particles to

the electric permittivity of the suspension, and is the quantity

experimentally accessible. It is also convenient to introduce its

specific counterpart d3*i (u) ¼ D3*i (u)/f, the dielectric increment

per unit volume fraction. These quantities are often expressed in

terms of their real and imaginary components. For example:

D3*i (u) ¼ D3
0
i(u)�jD3

0 0
i (u) (4)

Concerning the dynamic electrophoretic mobility of

a concentrated suspension of colloidal spheroids, it can be found

through a version of the Helmholtz–Smoluchowski equation,

where additional effects are accounted for by multiplying it by

three functions:26

u*e;iðuÞ ¼
3m30z

h
f 1i ðuÞ$f 2i ðuÞ$f 3i ðuÞ (5)

where h is the viscosity of the medium, typically water, and z is

the zeta or electrokinetic potential. Here, f 1i (u) takes into
3598 | Soft Matter, 2012, 8, 3596–3607
account the particle inertia and is found from hydrodynamics,16

f 2i (u) considers the EDL polarization, establishing the depen-

dence with the dipole coefficient, and f 3i (u) carries information

on particle concentration effects.

The inertia function f 1i (u) relaxes above a certain frequency

uin x h/rmb
2 (rm is the density of the electrolyte solution) in the

case of prolate spheroids. This frequency is strongly dependent

on particle size. For higher frequencies, the particle and fluid

cannot follow the fast inversions of the electric field and their

mobility goes to zero.

f 2i (u) was first evaluated by Loewenberg and O’Brien16,29–31 for

klmin [ 1, with lmin the minimum dimension of the spheroid. We

write it in the following way, different to the original papers and

also to our previous one,26 but it is equivalent to them:

f 2i (u) ¼ (1 � Li) � 3Li(1 � Li)C
*
i (u) (6)

where Li are the geometry-dependent depolarization factors.

Expressions for them and for the function f 1i (u) are given in

Appendix A.

The macroscopic values of these quantities are estimated as

their averages, assuming random orientation:

�
3*ðuÞ� ¼ 3*kðuÞ þ 23*tðuÞ

3
(7)

D
u*eðuÞ

E
¼ u*e;kðuÞ þ 2u*e;tðuÞ

3
(8)

Brownian motion ensures a random distribution of the

orientation if the interaction energy W between the induced

dipole moment and the field itself verifies W � kBT, where kB is

the Boltzmann constant and T is the temperature.28 In the case of

prolate spheroids:

3m30VE
2

kBT
� 1 (9)

For a spheroid with a ¼ 300 nm and b ¼ 60 nm, this condition

requires E � 45 kV m�1. As we discuss below, although this

condition is not always fulfilled, orientation effects are negligible

in our experiments.
2.1 Consideration of particle–particle interactions

The presence of other particles in suspension has significant

effects on the electrokinetic response of colloidal suspensions.

Cell models1–4 have demonstrated to be very suitable to account

for such effects, but their application is limited to the case of

spherical particles. There is not a model equivalent to the cell

approach for the evaluation of particle interactions in suspen-

sions of spheroids. It seems hence reasonable to use a phenome-

nological calculation which may allow us to gain a coherent

interpretation of our data. The models used here were originally

developed for spheres, one for the permittivity in the region of

the spectra where the a-relaxation takes place32 and the other for

the dynamic mobility in the MWO relaxation,33 and extended by

us to be applicable to non-spherical particles.6,26,27 The physical

phenomenology associated to the interactions in the low

frequency part of the spectrum, i.e., where the a relaxation takes

place, is richer and contains more information than the
This journal is ª The Royal Society of Chemistry 2012



Fig. 3 The SEM picture of the synthesized hematite particles. Bar

length: 500 nm.
interactions in the region of the MWO one, and therefore we

focus our description on that relaxation.

The first model considers the overlap of concentration-polar-

ization ionic clouds of different particles.32 Such overlap has two

effects on the spectrum of the dielectric permittivity. On one

hand, when two particles are close enough, the ion-enriched

region of one particle will partially balance the ion depleted

region of its neighbour. This provokes partial cancellation of the

perturbations of the local concentration and subsequent reduc-

tion of the fluxes that lead to the large values of the electric

permittivity commonly observed at low frequency. On the other

hand, the ionic diffusion lengths are shortened when particles

approach each other, thus decreasing the characteristic time of

the process, as shown in Fig. 2. In the dielectric spectrum, these

effects lead to the presence of a local maximum in the D30(0) � f

relation followed by a monotonous decrease, while ua,i increases

exponentially if f # 0.6.

The relationship between the specific dielectric increment at

zero frequency and the characteristic a-relaxation frequency of

a moderately concentrated suspension and of a dilute one can be

described by the following expressions:6,32

d3a;i ¼ d3da;i

 
1þ 1

ðf�1=3
eff � 1Þ2

!�3=2

(10)

ua;i ¼ ud
a;i

 
1þ 1

ðf�1=3
eff � 1Þ2

!
(11)

where the superscript d refers to the values in dilute conditions,

and where we have introduced an ‘‘effective volume fraction’’ feff

¼ f � f, needed to properly fit our experimental results.6 Here, f

is a factor including information on the size and shape of the

concentration polarization clouds, and therefore on the particle

geometry. Note that fwill also be different for each orientation of

the particles with respect to the applied field.

As mentioned, the effect of the particle concentration on the

dynamic mobility is taken into account through the function

f 3i (u) in eqn (5). In this case we follow a model proposed by

Ahualli et al.33 accounting for hydrodynamic and electrical

interactions between particles close to each other. Its predictions

are in good agreement with more elaborate treatments explicitly

dealing with interactions between pairs of particles34 or based on

cell models.35 The function f 3i (u) in eqn (5) reads:26

f 3i ðuÞ ¼
1� f

ð1� fC*
i ðuÞÞð1þ fDr=rmÞ

(12)

The numerator in this fraction comes from hydrodynamic

interactions. The first factor in the denominator accounts for

electrical interactions, while the term (1 + fDr/rm) ensures that

calculations are performed in the zero-momentum frame of

reference, in accordance with existing experimental methods.

f 3i (u) has little dependence on the frequency of the applied field,

and it predicts a decrease in the magnitude of the mobility in the

whole spectrum.
‡ Wemust note here that the actual dependence in the relevant part of the
spectrum is 3

0 0
D f u�2 instead of the usually interpreted 3

0 0
D f u�3/2. This

issue will be discussed in a forthcoming contribution.
3 Materials and methods

The hematite particles were synthesized through hydrolysis of

iron(III) chloride solutions at 100 �C as described in ref. 36. Their
This journal is ª The Royal Society of Chemistry 2012
size and shape were characterized by dynamic light scattering

(hydrodynamic radius RH ¼ (130 � 30) nm) and SEM pictures

(semiaxes a ¼ (276 � 18) nm and b ¼ (45 � 6) nm, so that r ¼ a/

b ¼ 6.1 � 1.2, see Fig. 3). Prior to any analysis, the synthesized

particles were cleaned by successive cycles of centrifugation and

redispersion in deionized and filtered water (Milli-Q Academic,

Millipore, France) until the conductivity of the supernatant was

below 1 mS cm�1.

In order to avoid the suspension effect37,38 of the particles when

measuring the pH, the preparation of the samples was as follows:

once the suspension was clean, the centrifugation–redispersion

procedure was repeated with a solution of the desired ionic

strength and pH until they reach constant values in the super-

natant. The volume of the final suspension was controlled to

reach the highest concentration of solids. Suspensions with lower

volume fractions were prepared by dilution.

The method used to measure the spectra of the electric

permittivity consisted in the determination of the impedance of

a parallel platinized-platinum electrode cell with variable cell

constant.39 The impedance was measured with an HP 4284A

(USA) in the 1 kHz–2 MHz range. Typically, the applied electric

field strength was 50 mV cm�1, thus verifying the isotropy

condition given by eqn (9). The main limitation when performing

low-frequency impedance spectroscopy in aqueous media is the

phenomenon of electrode polarization (EP), which may add

a contribution to the measured impedance in the kHz frequency

range, partially masking the signal coming from the particle-

solution interface. Among other existing methods,7,39 the loga-

rithmic derivative technique has been shown to be able to reduce

to a large extent the contribution of electrode polarization.40,41

The logarithmic derivative of the real part of the relative

permittivity, 30(u), is 3
0 0
D ¼�p/2(vD30/v ln u). This quantity

displays a frequency dependence similar to that of the imaginary

part of the electric permittivity (3
0 0
D(u)x3

0 0
(u)), but, interestingly,

the electrode contribution to 3
0 0
D‡ falls with frequency more

rapidly than its contribution to 30 0, and this makes it easier to

eliminate or minimise the electrode polarization contribution.
Soft Matter, 2012, 8, 3596–3607 | 3599



Furthermore, the real component of the permittivity can be

obtained from it by numerical integration.

An example of the correction procedure is shown in Fig. 4,

which shows the low-frequency dielectric spectrum of a suspen-

sion of hematite particles (12% volume fraction of solids). The

upper panel corresponds to the logarithmic derivative 3
0 0
D with

and without the EP contribution. The real part, obtained by

numerical integration of the corrected logarithmic derivative

data, is depicted in the bottom panel. In this spectrum we observe

two relaxation peaks at frequencies ua,LF x 5 kHz and ua,HF x
300 kHz. The spectra were fitted to the real part, and its loga-

rithmic derivative, of a frequency dispersion function consisting

of two Cole–Cole relaxations:42

D3*ðuÞ ¼ D3a;LF

1þ ð ju=ua;LFÞ1�gLF
þ D3a;HF

1þ ð ju=ua;HFÞ1�gHF
(13)

Here, ua,LF and ua,HF are the characteristic frequencies of the

low- and high-frequency relaxations, respectively, whose ampli-

tudes are expressed by the dielectric increments D3a,LF and

D3a,HF. gLF,HF are parameters of the respective Cole–Cole

functions, indicating their width.

The experimental determination of the dynamic mobility was

carried out by means of the electroacoustic technique known as

ESA, or Electrokinetic Sonic Amplitude, based on the determi-

nation of the amplitude and phase of the sound wave generated

in the colloidal suspension by application of an oscillating field in

the frequency range 1 to 18 MHz. The device used is the

Acoustosizer II (Colloidal Dynamics, USA), which is specially
Fig. 4 Logarithmic derivative of the real part (top) and real part

(bottom) of the dielectric increment of a 12% hematite suspension in

a solution 0.5 mM of KNO3 and pH¼ 3.7. Full circles: uncorrected data;

open squares: EP-corrected data. The lines are the best-fit curves of a two

Cole–Cole function to the corrected data. The characteristic frequencies

of the two relaxations are identified as ua, LF and ua, HF.
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useful for the determination of the mobility in the region where

the MWO relaxation and the inertia decrease are present.

The applied field depends on the sample properties, and in

aqueous media it ranges between 1 kV m�1 and 12 kV m�1, so

that the condition given by eqn (9) that E � 45 kV m�1 is not

verified in general. The strength of the field determines the degree

of orientation in steady state, but not the time required to reach

such average orientation. That time is related to the rotational

diffusion coefficient, DR, through the expression sR ¼ 1/6DR; in

our case, sR x 5 ms, much longer than the duration of the

Acoustosizer pulses (a few ms12).
4 Results and discussion

4.1 General features of dielectric and electroacoustic spectra

The two relaxations observed in Fig. 4 correspond to the separate

contributions of the EDL relaxations for parallel and perpen-

dicular orientations, that is, the a-dispersions associated to each

semiaxis of the spheroids.6,25,27 Assuming random orientation of

the particles, we identify:

ua,k h ua,LF (14)

ua,t h ua,HF (15)

D3a,k h 3D3a,LF (16)

D3a;th
3

2
D3a;HF (17)

This interpretation was already proposed in a previous

contribution,25 where the characteristic frequencies of two

a relaxations and the MWO one for dilute suspensions of the

same particles where found to be ua,k x 5 kHz, ua,t x 50 kHz

and uMWO � 4–6 MHz, with almost independence of ionic

strength and pH. The value we find for ua,k is in agreement with

previous experiments in dilute conditions, but ua,t is about one

order of magnitude larger in our case. As we show below, this

disagreement on the ua,t value is due to the effect of particle–

particle interactions present in the LFDD experiments.

A spectrum of the dynamic mobility obtained from electro-

acoustics is shown in Fig. 5, which allows us to estimate the
Fig. 5 Real (left) and imaginary (right) parts of the dynamic mobility

spectrum of an 8% volume fraction hematite suspension in a 0.5 mM

KNO3 solution at pH 5.8. Vertical arrows indicate the approximate

positions of uMWO and uin. Lines are fittings to the model (eqn (5)).

This journal is ª The Royal Society of Chemistry 2012



characteristic frequencies uMWO x 5 MHz and uin x 50 MHz.

This value ofuMWO is in agreement with the ones already referred

to, and the inertia decay is found to be very similar to that theo-

retically expected for our particles, uin x h/rmb
2 x 70 MHz.

Therefore, we have found that the set of experimental results

we obtain from the two experimental techniques used is coherent,

providing information of the two a and the MWO relaxation

processes, and the inertial decay. In the following, we analyse

how solids contents affect the electrokinetic response of hematite

suspensions, interpreting these effects with the described theo-

retical models.
4.2 Effects of f on LFDD

We performed a set of LFDD experimental determinations in

hematite suspensions with a wide range of f values (2%–20%).

This study was done in a KNO3 0.5 mM solution at pH 3.7,

experimental conditions under which the particles in suspension

have a considerable (positive) surface charge.25 Fig. 6 depicts the

logarithmic derivative of the real part without the contribution of

EP (top panel) and the real part (bottom panel) of the electric

permittivity increment of such suspensions.

We observe that D3a,LF [ D3a,HF. In fact, for the lowest

values of f the HF peak is almost undetectable, as it is

completely masked by the LF one. However, the two maxima

are better resolved the larger the particle concentration, due to

their different tendencies. A quantitative description of the

main features of these spectra is made possible by fitting the

data to the logarithmic derivative of eqn (13). From the fittings,

the parameters in Fig. 7 were obtained. Fig. 7(a) and Fig. 7(b)

show the dielectric increments D3LF,HF and the specific
Fig. 6 Real part of the dielectric increment (bottom) and its logarithmic

derivative (top) for concentrated hematite suspensions in 0.5 mM KNO3

at pH ¼ 3.7, and the indicated values of f. Lines are fittings of

a combination of two Cole–Cole relaxation functions.

Fig. 7 Full squares: LF data. Open circles: HF data. (a) Value of the

dielectric increment obtained from the fittings of data in Fig. 6 to eqn

(13). Solid lines: fits to a linear model of the data with f < 0.02. Dashed

lines are a guide to the eye. The inset is a zoom of the HF curve. (b) Value

of the specific dielectric increment (symbols) and its fittings to eqn (10)

(lines). (c) The same as (a), but for the values of the characteristic

frequency. The lines here are the best fits to eqn (11).

This journal is ª The Royal Society of Chemistry 2012
dielectric increments (d3 h D3/f), respectively, and Fig. 7(c)

includes the characteristic frequencies of the Cole–Cole distri-

butions. Note that, in the fitting procedure, it is not possible to

discriminate between the two peaks for the lowest values of f,

since they are very close to each other. However, we found that

all the curves where the two relaxations are well separated can

be fitted with the values gLF ¼ 0.1 and gHF ¼ 0.19. We selected

these two g values for the whole data set and did not

vary them.

The amplitude of the low-frequency (LF) relaxation process

(Fig. 7a) goes through a maximum and reaches a plateau when

the volume fraction of solids is increased. The amplitude of the

high-frequency (HF) relaxation also describes a maximum, but

beyond it the amplitude of the relaxation decreases. Moreover,

the behaviours of the characteristic frequencies in the LF and HF

cases are very different (Fig. 7c): while the former has a constant

value uLF x 5 kHz, the HF one experiences an increase from

uHF x 40 kHz to uHF x 600 kHz, that is, a shift of more than

one decade.
Soft Matter, 2012, 8, 3596–3607 | 3601



Table 2 Characteristic time and diffusion length of the a relaxation, and
zeta potential, for each orientation of the symmetry axis of the particle
with the field. The surface conductivityKs

i was obtained assuming that all
its contribution comes from that calculated with the Bikerman equation43

sa,i/ms LD,i/nm zi Ki
s/10�9 S

k 34 � 2 971 � 15 136 � 1 1.84 � 0.04
t 3.7 � 0.2 52 � 4 28 � 1 0.046 � 0.003
Fig. 7(b) and (c) also include the best-fit lines of data to eqn

(10) and 11, which allow us to obtain the dilute suspension

parameters d3da,i and ud
a,i (Table 1). According to data in Fig. 7,

only the high frequency behaviour agrees qualitatively with the

predictions of these equations. We can also consider the low

volume fraction parts of D3 � f plots in Fig. 7(a). In this region,

a linear dependence is found because the particles are far enough

from each other as to make their interactions negligible. These

linear ranges were fitted to an equation of the type D3 ¼ d3d � f,

and therefore the values of ‘‘d3da,i’’ can be extracted, as indicated

in Table 1 (‘‘Linear region’’).

As we can see, the characteristic frequencies obtained for the

a relaxations are now in good agreement with those obtained in

dilute conditions,25 thus confirming that the disagreement

mentioned above is due to interaction effects. Finally, we can

calculate the zeta potential by means of eqn (40) and 46 together

with Bikerman equation, eqn (36) (see Appendix A.2). Using zk
and zt, and the two characteristic sizes LD,i (LD,k ¼ a and LD,t

¼ b) as free parameters, we obtain the data shown in Table 2.

We find two clearly different values of the zeta potential, zk
being considerably larger than zt. As a consequence, we also

obtain two different values of the surface conductivity, and that

associated to the parallel orientation is larger than the perpen-

dicular one. The estimated value for b is quite close to the actual

one (45 nm), while the value of a is three times larger than that

obtained by electron microscopy. We could argue that this

disagreement is due to a likely aggregation between particles,

responsible for a larger diffusion length and therefore returning

a smaller characteristic frequency. To clarify this, we analyse

below simultaneously the LFDD and the electroacoustic

response (suitable to accurately determine the size of the parti-

cles) of suspensions of hematite at a higher pH (5.8), closer to the

isoelectric point (pH x 725), where aggregation would be more

likely present, due to the lower surface charge.

4.3 Comparison of LFDD and ESA data

We carried out both types of measurements (LFDD and ESA) in

suspensions with varying values of the concentration of particles

(in the range 2%–12%), always in 0.5 mMKNO3 solutions at pH

5.8. These results are depicted in Fig. 8. Note that the two

dielectric increments (LF and HF) are very similar, as theoreti-

cally predicted.17 In both cases, we see that D3a increases with the

solid contents until reaching a maximum at f ¼ 0.08. Although

the highest value here is f ¼ 0.12 and the tendencies after the

maxima are not clear, we can say that, in agreement with the case

pH ¼ 3.7 (Fig. 6 and 7): (i) D3a,HF decreases when we change f
Table 1 Best-fit parameters of the data in Fig. 7 to eqn (10) and 11, and
to the equation D3(f) ¼ d3d � f. fd3 and fu are the f values obtained by
fitting the data of d3a and ua, respectively

d3da,i fd3 d3d (Linear region)

LF 9900 � 400 1.06 � 0.04 9900 � 400
HF 2130 � 120 1.47 � 0.06 2040 � 140

ud
a/2p (kHz) fu

LF 4.66 � 0.23 —
HF 43 � 4 2.42 � 0.15
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from 0.10 to 0.12, and we also see the concomitant increase of

ua, HF; (ii)D3a, LF(f¼ 0. 10)xD3a,LF(f¼ 0.12), and ua,LF is not

affected by f in the analysed range. Therefore, it seems reason-

able to expect that these parameters will follow a trend with f

compatible with that observed in the case pH ¼ 3.7.

Using the same treatment of LFDD experiments as in the case

of pH ¼ 3.7, we obtain the parameters in Table 3. The charac-

teristic frequencies of the a processes coincide with those

obtained from the pH ¼ 3.7 data, thus confirming that they are

little affected by the surface potential. However, the dielectric

increments are considerably lower, since they strongly depend on

pH through the zeta potential.

Table 4 is obtained following the same procedure to calculate

the parameters as in Table 2, but for the data at pH ¼ 5.8. The

characteristic times and lengths of the a relaxations are equal to

the values obtained at pH 3.7, as their dependence with surface

charge is negligible. However, the zeta potential and surface

conductivity are considerably lower than in the previous case, as

expected from the pH value.

The dynamic mobility spectra, displayed on the right hand side

of Fig. 8, exhibit the well known decreasing tendency of the

dynamic mobility with f due to electrical and hydrodynamic

interactions between particles. The region of the spectra experi-

mentally accessible contains the MWO relaxation (uMWO x
5 MHz) and the beginning of the inertial decay. In the imaginary

part of the mobility (plotted on the bottom-right of Fig. 8) we

observe that both processes are better distinguished when f

increases. This is a consequence of the fact that the MWO

relaxation process is less affected by interactions than the inertial

decrease. When f is raised the amplitude of the inertial decay is

diminished, whereas the MWO relaxation remains unaffected,

this making it more apparent.

From the fittings of these spectra to the model, also shown in

Fig. 8, we obtain the parameters in Table 5. We observe that,

for the specified confidence intervals, a single value of the zeta

potential suffices to fit all the spectra, confirming the validity of

this model, in which the assumption of no EDL overlap is used.

However, the value of the size parameter b slightly decreases as

the volume fraction of solids increases. Note that this behav-

iour must be the consequence of the limited frequency range

accessible, since the only expected tendency would be an

increase of the particle size due to aggregation, which would

lead to smaller characteristic frequencies. Hence, we will take

averages of the obtained values of �z ¼ 39 � 3 mV and �b ¼ 47 �
9 nm, and consider them as representative of moderately

concentrated suspensions of hematite particles at the used ionic

strength and pH.

It seems of interest to consider the comparison of the param-

eters obtained from the two experimental techniques, LFDD and

electroacoustics. From dielectric spectroscopy, we obtain in both
This journal is ª The Royal Society of Chemistry 2012



Fig. 8 Symbols: dielectric (left) and electroacoustic (right) spectra of suspensions of hematite particles in a KNO3, 0.5 mM solution at pH ¼ 5.8 for the

indicated values of f. Lines are fittings of the real part of eqn (13) and its logarithmic derivative (left) and of the dynamic mobility (real and imaginary

parts) to models.

Table 3 Best-fit parameters of the dielectric increment data in Fig. 8 to
eqn (10) and 11. fd3 and fu are the f values obtained by fitting the data of
d3a and ua, respectively

d3 d
a,i fd3 ud

a/2p (kHz) fu

LF 820 � 70 2.2 � 0.1 5.4 � 0.9 —
HF 720 � 130 2.3 � 0.3 50 � 4 1.16 � 0.02

Table 4 As Table 2, but for the experiments at pH 5.8 (parameters in
Table 3)

sa, i/ms LD,i/nm zi/mV Ki
s/10�9 S

k 30 � 6 860 � 90 69 � 2 0.31 � 0.02
t 3.2 � 0.3 51 � 2 18 � 2 0.017 � 0.013

Table 5 Best-fit parameters of the electroacoustic data in Fig. 8 to the
dynamic mobility calculated from the model

f z/mV b/nm

0.02 42 � 3 61 � 5
0.03 42 � 1 54 � 3
0.06 35 � 3 47 � 5
0.08 38 � 1 44 � 3
0.10 39 � 3 61 � 3
0.12 40 � 5 37 � 4
cases (pH 5.8 and 3.7) two very different values of the zeta

potentials (zk and zt), which are also considerably different from

the value obtained from electroacoustics. Note that the presence

of a non-uniform zeta potential is likely to occur considering that

the equipotential surface in spheroidal geometry is not at

constant distance to the spheroidal surface, while the ideal

stagnant (electrokinetic) plane most likely is. However, a simple
This journal is ª The Royal Society of Chemistry 2012
average can suggest that these differences are not that important,

as �z ¼ (zk + 2zt)/3 x 35 mV is very similar to the zeta potential

deduced from electroacoustics. Jimenez et al.25 justified the

necessity of different zeta potentials arguing the existence of

a non-negligible Stern layer conductivity. This assumption was

based on the differences between the zeta potentials obtained

from low and high frequency dielectric spectroscopy, and with

DC electrophoresis data. In fact, rigorous calculations have

recently shown that Stern layer conduction added to the classical

diffuse layer contribution strongly influences the dielectric

behaviour of colloidal suspensions, but have little impact on

electrophoretic mobility.44 Therefore, this additional conduc-

tivity could be also responsible for the disagreements observed in

our experiments.

Regarding our estimations of the characteristic diffusion

lengths LD,i, it is remarkable the precision reached in the deter-

mination of the correct value of the short semiaxis with both

LFDD and electroacoustics, in spite of the number of assump-

tions made in the development of the theoretical model. On the

contrary, the dimension of the long semiaxis obtained from

LFDD is approximately three times larger than observed in SEM

and light scattering. Considering that aggregation is not plau-

sible in our system, the large diffusion lengths in the parallel

direction could well be the manifestation of a finite Stern layer

conductivity or of non-homogeneous zeta potential distribution.
5 Consideration of concentration polarization clouds

Perhaps the most unexpected finding presented is how the

contents of solids affects (or better, how it does not affect) the

characteristic frequency of the LF a-relaxation. The proved

(both theoretically and experimentally2,32,45) increase in a-

frequency with f in the case of spheres (and in the perpendicular

orientation of our particles) is completely absent in the LF

relaxation peak, giving in turn a zero value for the parameter f.
Soft Matter, 2012, 8, 3596–3607 | 3603



Note that this cannot be explained by assuming that the volume

fraction is low so that the particles are far from each other on

average, as we observe an effect on the dielectric increment.

As previously mentioned, we consider that the suspensions are

overall isotropic. It could be argued that the presence of either

pre-nematic fluctuations of a nematic phase46 can explain the

different effects of f on the LF and HF relaxation processes,

through lateral interactions between the particles. While the

presence of ordered clusters cannot be ruled out, the volume

fractions of the suspensions investigated are far from the typical

values reported for the occurrence of the nematic phase.47 Hence,
Fig. 9 Lines of equal value of the normalized increase of the ionic

strength d�n ¼ 107dn/nNE for the parallel (upper panel) and perpendicular

(lower panel) components of the applied field with respect to the

symmetry axis of the spheroids. Ordinates and abscissas are given in units

of b. Used values: b ¼ 45 nm, r ¼ 6.1, 0.5 mM KNO3, z ¼ 100 mV.
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the eventual alignment that might appear in the form of fluctu-

ating nematic domains cannot significantly affect our results. We

propose that the presented data can be explained without

assuming the presence of such ordering phenomena. Alterna-

tively, a careful examination of the concentration polarization

clouds obtained from the theoretical model by Grosse, Pedrosa

and Shilov17,48 allows us to justify the observed behaviour based

on the geometry of these clouds. Using eqn (49) and 50 in the

Appendix, we plotted the lines of equal increment of ionic

strength due to concentration polarization as shown in Fig. 9

(similar plots were obtained for parallel orientation in ref. 21).

The two plots are, respectively, the extreme situations of electric

field oriented parallel and perpendicular to the symmetry axis of

the spheroid, and any intermediate situation will be an appro-

priate combination of these two. The lines represent the

geometrical locus of equal normalized increment of ionic

strength d�n (see figure caption). The d�n step between each two

consecutive iso-lines is constant, and therefore the gradients of

salt concentration are larger where the iso-lines are closer, as

usual.

From these plots, we can clearly see that the regions of neutral

electrolyte perturbed by concentration polarization are much

larger in the perpendicular case than in the parallel one, and that

the regions of significant perturbation in the latter orientation are

localized very close to the tips of the spheroids. Therefore,

reaching a significant overlap of the concentration polarization

regions close to the ends of the particles will require quite short

distances between particles, shorter than expected in our exper-

iments, given the volume fractions of solids studied. On the

contrary, the extensive perturbation of the component perpen-

dicular to the symmetry axis will lead to very likely interactions

in that direction.

Therefore, the f parameter includes information not only on

the distance between the surfaces of different particles, but also

on the internal structure of the suspension (if any) and the size

and shape of the concentration polarization clouds. These

considerations justify the large differences on the obtained values

of f, also revealing the difficulties that their appropriate inter-

pretation imply.
6 Conclusions

In this work, a wide set of experimental results have been pre-

sented, which allowed us to characterize the AC electrokinetic

response of moderately concentrated suspensions of prolate

hematite particles. The use of an approximate model provides

a coherent interpretation of the observed behaviour and makes it

possible to estimate the zeta potential and the size and geometry

of the suspended particles.

In the low frequency region of the spectrum, LFDD experi-

ments reveal the presence of two a relaxations, associated with

the two characteristic sizes of the particles. The main interactions

in this frequency range are due to the overlap of the regions

outside the EDL with perturbed ionic strength due to concen-

tration polarization. At the examined values of particle concen-

tration, the asymmetry of the concentration polarization clouds

justifies the different trends of the two a relaxations with the

volume fraction of solids.
This journal is ª The Royal Society of Chemistry 2012



A Summary of theory

A.1 Inertia function

The inertia term in eqn (5) can be written in terms of the drag

coefficient Di
H and added mass Mi

a:
16

f 1i ¼ Di
H � juMi

a

Di
H þ juM

(18)

For a not very elongated spheroid (0.1 < r < 10, r ¼ a/b):49

Di
H ¼ �hli

"
Fi
0 þ liBi þ ðliÞ2 M

i
a

rml
3
i

þ
 
ðFi

0Þ2
6p

� Bi

!
li

1þ li

#
(19)

where

li ¼ ð1� jÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
ul2i rm
2h

s
(20)

Here, li is the minimum dimension of the particle in a direction

perpendicular to its motion (hence to the field); in the case of

prolate spheroids, li is the short semiaxis for both orientations.

The expression of the added mass in terms of the depolarization

coefficients:

Lk ¼

1

1� r2
þ r

ðr2 � 1Þ3=2
ln
�
rþ ðr2 � 1Þ1=2

�
r. 1

1

1� r2
� r

ð1� r2Þ3=2
cos�1 rr\1

8>>><
>>>:

(21)

Lt ¼ 1� Lk
2

(22)

is:

Mi
a ¼ rmVm

i
a ¼ rmV

Li

1� Li

(23)

with mi
a the dimensionless added mass. The Stokes resistance

reads:

F
k
0 ¼ 8pr

1þ Lkð2r2 � 1Þ (24)

Ft
0 ¼ 8pa=li

r2 � Ltð2r2 � 3Þ (25)

and the Basset force:

Bi ¼ Hi

l2i ð1� LiÞ2
(26)

where:

Hi ¼ 4p

3
ab2gi (27)

For prolate spheroids (h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
, being 2h the focal

distance):

gk ¼ 3a

2bh

	
a2 � 2b2

h2
arctan

h

b
þ b

h



(28)
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gt ¼ 3a

2bh

	
a2

2h2
arccot

b

h
þ bða2 � 2b2Þ

2a2h



(29)

A.2 Electrokinetic model for the dipole coefficient

The simplest description of the frequency spectrum of the dipole

coefficient, including the two relevant relaxation mechanisms (a

and MWO), can be expressed as the superposition of two Debye-

type relaxations:

C*
i ðuÞ ¼ CN

MWO;i þ
C0

MWO;i � CN
MWO;i

1þ jusMWO;i

þ C0
a;i � CN

a;i

1þ jusa;i
(30)

where C0
MWO,i and CN

MWO,i represent the low and high frequency

limits of the dipole coefficient given by the MWO theory,

respectively, while C0
a,i and CN

a,i are the limiting values of the

a relaxation. Note that CN
a,i ¼ C0

MWO,i.

The results of approximate models in the case of thin EDL

(ka [ 1 y kb [ 1) are briefly described below.

A.2.1 High frequency: MWO. Dukhin and Shilov50 showed

that the following limiting values of the dipole coefficient and the

characteristic frequencies of the MWO relaxation constitute

a good approximation to the exact numerical solution:

C*
MWO;iðuÞ ¼ CN

MWO;i þ
C0

MWO;i � CN
MWO;i

1þ jusMWO;i

(31)

sMWO;i ¼ 30
ð1� LiÞ3m þ Li3p

ð1� LiÞKm þ LiKp;i

(32)

CN
MWO;i ¼

3p � 3m

3ð3m þ ð3p � 3mÞLiÞ (33)

C0
MWO;i ¼

Kp;i � Km

3ðKm þ ðKp;i � KmÞLiÞ (34)

being

Kp,i ¼ Ksgi (35)

whereKs is the surface conductivity, obtained from the Bikerman

equation,43 which for a binary electrolyte reads:
Ks ¼ Ks+ + Ks– (36)

Ksþ ¼ 2z2e2nN

kkBT
Dþ
	
exp

	
� zez

2kBT



� 1


	
1þ 3mþ

z2



(37)

Ks� ¼ 2z2e2nN

kkBT
D�
	
exp

	
zez

2kBT



� 1


	
1þ 3m�

z2



(38)

Here, e is the elecron charge, z is the valence of the ions, nN is

the ionic strength in the bulk, D� are the diffusion coefficients of

cations and anions, and m� are the dimensionless mobility

coefficients of ions:

m� ¼ 23m30

3hD�

	
kBT

e


2

(39)
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A.2.2 Low frequency: a relaxation. The approach that we

follow was elaborated by Grosse, Pedrosa and Shilov, based on

the free energy stored in the suspensions because of the

concentration polarization.17,48,51 It is assumed that the double

layer is thin everywhere, z is moderately high and convection is

negligible. The final expressions, useful for the calculation of the

permittivity spectra, are shown here. The low-frequency dielec-

tric increments read:

d3a;ið0Þ ¼ 33mk
2

16pab2
ðgþ

i � g�
i Þ2Ii (40)

where, for prolate spheroids, Ii can be written as:

Ik ¼ 3p

5h6

	
� a3b2 ln2aþ h

a� h

þ 2hb2ða2 þ b2Þ ln aþ h

a� h
þ 4ah2ða2 � 2b2Þ


 (41)

It ¼ 3p

20h6

	
� ab4ln2aþ h

a� h

þ 4hða4 þ h4Þln aþ h

a� h
� 4ah2ð3a2 � 2b2Þ


 (42)

The g�
i functions are:

g�
i ¼ ab2

3

K�
p;i � Km=2

Km=2þ ðK�
p;i � Km=2ÞLi

(43)

and the conductivities K�
p, i:

K�
p,i ¼ giK

s� (44)

It will be also useful to have an expression for the induced

dipole coefficient:

C0
a;i ¼

1

2ab2
ðgþ

i þ g�
i Þ (45)

The characteristic time sa is found to be:

sa;ix
d3a;ið0Þ

33mðCN
a;i � C0

a;iÞ
sm (46)

where sm ¼ 303m/Km is the relaxation time of the electrolyte.

In the case of prolate spheroids a simple analysis of eqn (46)

permits to obtain the following approximate relationships

between the characteristic times and the diffusion length in each

orientation:17

sa;kf
L2

D;k
2D

f
a2

2D
(47)

sa;tf
L2

D;t

2D
f

b2

2D
ln
a

b
(48)

Finally, the expressions for the increments of the salt

concentration outside the EDL due to concentration polariza-

tion are given by:

dnk
nN

¼ eE

2kBT
ðgþ

k � g�
k Þ

3Q1ðcoshcÞcosw
h2

(49)
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dnt

nN
¼ � eE

2kBT
ðgþ

t � g�
tÞ

3Q1
1ðsinhcÞsinwcos x

2h2
(50)

where c, w and x are the spheroidal coordinates. The functions

Q1(x) and Q1
1(x) are:

Q1ðxÞ ¼ x

	
1

2
ln
xþ 1

x� 1



� 1 (51)

Q1
1ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

2
ln
xþ 1

x� 1
� xffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p (52)
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