next up previous
Siguiente: Formalismo de segunda cuantización Subir: Operadores de creación y Anterior: Operadores de creación y

Solución

(a) $ B=A^\dagger$ si y sólo si para dos estados cualesquiera $ \vert\psi\rangle$ y $ \vert\phi\rangle$

$\displaystyle \langle\psi\vert B\vert\phi\rangle=\langle\phi\vert A\vert\psi\rangle^*$ (4.1)

Basta verficarlo para elementos de una base:
$\displaystyle \langle(\cdots,n_\alpha,\cdots)\vert a_\alpha\vert
(\cdots,n^\prime_\alpha,\cdots)\rangle^*$ $\displaystyle =$ $\displaystyle \zeta^{\nu_\alpha^\prime}
\sqrt{n_\alpha^\prime}
\langle(\cdots,n_\alpha,\cdots)\vert(\cdots,n^\prime_\alpha-1,\cdots)\rangle^*$  
  $\displaystyle =$ $\displaystyle \zeta^{\nu_\alpha^\prime} \sqrt{n_\alpha^\prime}
\left(\prod_{\ga...
...delta_{n_\gamma n_\gamma^\prime}\right)
\delta_{n_\alpha n^\prime_\alpha-1} \,.$ (4.2)

Por otro lado
$\displaystyle \langle(\cdots,n^\prime_\alpha,\cdots)\vert a_\alpha^\dagger\vert
(\cdots,n_\alpha,\cdots)\rangle$ $\displaystyle =$ $\displaystyle \zeta^{\nu_\alpha}
\sqrt{n_\alpha+1}
\langle(\cdots,n_\alpha^\prime,\cdots)\vert(\cdots,n_\alpha+1,\cdots)\rangle$  
    $\displaystyle =
\zeta^{\nu_\alpha} \sqrt{n_\alpha+1}
\left(\prod_{\gamma\not=\a...
...delta_{n_\gamma^\prime n_\gamma}\right)
\delta_{n_\alpha^\prime n_\alpha+1} \,.$ (4.3)

En estas expresiones

$\displaystyle \nu_\alpha^\prime=\sum_{\gamma<\alpha}n_\alpha^\prime \,,\qquad \nu_\alpha=\sum_{\gamma<\alpha}n_\alpha \,.$ (4.4)

Los dos elementos de matriz coinciden teniendo en cuenta las deltas de Kronecker. En particular $ \nu_\alpha^\prime= \nu_\alpha$ ya que $ n_{\gamma<\alpha}=n_{\gamma<\alpha}^\prime$ .

(b) Queremos verificar la relación

$\displaystyle a_\alpha a_\beta^\dagger= \zeta a_\beta^\dagger a_\alpha +\delta_{\alpha\beta}$ (4.5)

(b.1) Caso $ \alpha\not=\beta$

$\displaystyle a_\alpha a_\beta^\dagger
\vert(\cdots,n_\gamma,\cdots)\rangle$ $\displaystyle =$ $\displaystyle \zeta^{\nu_\beta} \sqrt{n_\beta+1}
a_\alpha\vert(\cdots,n_\beta+1,\cdots)\rangle$ (4.6)
  $\displaystyle =$ $\displaystyle \zeta^{\nu_\beta+\nu_\alpha^\prime} \sqrt{n_\beta+1}\sqrt{n_\alpha}
\vert(\cdots,n_\alpha-1,\cdots,n_\beta+1,\cdots)\rangle$  

con

$\displaystyle \nu_\alpha^\prime= \left\{ \begin{matrix}\nu_\alpha+1, & \beta<\a...
...begin{matrix}\zeta, & \beta<\alpha \cr 1, & \alpha < \beta \end{matrix} \right.$ (4.7)

por otro lado
$\displaystyle a_\beta^\dagger a_\alpha
\vert(\cdots,n_\gamma,\cdots)\rangle$ $\displaystyle =$ $\displaystyle \zeta^{\nu_\alpha} \sqrt{n_\alpha}
a_\beta^\dagger\vert(\cdots,n_\alpha-1,\cdots)\rangle$ (4.8)
  $\displaystyle =$ $\displaystyle \zeta^{\nu_\alpha+\nu_\beta^\prime} \sqrt{n_\alpha}\sqrt{n_\beta+1}
\vert(\cdots,n_\alpha-1,\cdots,n_\beta+1,\cdots)\rangle$  

con

$\displaystyle \nu_\beta^\prime= \left\{ \begin{matrix}\nu_\beta, & \beta<\alpha...
...begin{matrix}1, & \beta<\alpha \cr \zeta, & \alpha < \beta \end{matrix} \right.$ (4.9)

( $ \zeta=\pm 1$ ). Las expresiones coinciden salvo un factor $ \zeta$ sobre cualquier elemento de la base, es decir,

$\displaystyle a_\alpha a_\beta^\dagger= \zeta a_\beta^\dagger a_\alpha \qquad (\alpha\not=\beta) \,.$ (4.10)

(b.2) Caso $ \alpha=\beta$ .

Para bosones $ (\zeta=+1)$ ,

$\displaystyle a_\alpha a_\alpha^\dagger\vert(\cdots )\rangle$ $\displaystyle =$ $\displaystyle \sqrt{n_\alpha+1}a_\alpha\vert(\cdots,n_\alpha+1,\cdots)\rangle
=
(n_\alpha+1)\vert(\cdots)\rangle$  
$\displaystyle a_\alpha^\dagger a_\alpha\vert(\cdots )\rangle$ $\displaystyle =$ $\displaystyle \sqrt{n_\alpha}a_\alpha^\dagger\vert(\cdots,n_\alpha-1,\cdots)\rangle
=
n_\alpha\vert(\cdots)\rangle$ (4.11)

es decir,

$\displaystyle a_\alpha a_\alpha^\dagger= a_\alpha^\dagger a_\alpha+1 \qquad ($bosones$\displaystyle ) \,.$ (4.12)

Para fermiones $ (\zeta=-1)$ ,

$\displaystyle a_\alpha a_\alpha^\dagger\vert(\cdots,n_\alpha=0,\cdots )\rangle$ $\displaystyle =$ $\displaystyle (-1)^{\nu_\alpha}a_\alpha\vert(\cdots,n_\alpha=1,\cdots)\rangle =
\vert(\cdots,n_\alpha=0,\cdots)\rangle$  
$\displaystyle a_\alpha^\dagger a_\alpha\vert(\cdots,n_\alpha=0,\cdots )\rangle$ $\displaystyle =$ 0 (4.13)

es decir

$\displaystyle (a_\alpha a_\alpha^\dagger + a_\alpha^\dagger a_\alpha-1) \vert(\cdots,n_\alpha=0,\cdots )\rangle =0$ (4.14)

análogamente
$\displaystyle a_\alpha a_\alpha^\dagger\vert(\cdots,n_\alpha=1,\cdots )\rangle$ $\displaystyle =$ 0 (4.15)
$\displaystyle a_\alpha^\dagger a_\alpha\vert(\cdots,n_\alpha=1,\cdots )\rangle$ $\displaystyle =$ $\displaystyle (-1)^{\nu_\alpha}a_\alpha^\dagger\vert(\cdots,n_\alpha=0,\cdots)\rangle =
\vert(\cdots,n_\alpha=1,\cdots)\rangle$  

y por tanto

$\displaystyle (a_\alpha a_\alpha^\dagger + a_\alpha^\dagger a_\alpha-1) \vert(\cdots,n_\alpha=1,\cdots )\rangle =0$ (4.16)

En todo caso

$\displaystyle a_\alpha a_\alpha^\dagger = -a_\alpha^\dagger a_\alpha+1 \qquad ($fermiones$\displaystyle ) \,.$ (4.17)


next up previous
Siguiente: Formalismo de segunda cuantización Subir: Operadores de creación y Anterior: Operadores de creación y
salcedo 2013-02-08