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1 Introduction

Gale and Shapley [12] introduce one-to-one stable matching problems. They

first define, the marriage problem, a two-sided matching problem in which agents

are divided into two disjoint groups (e.g. men and women) and any agent can

only be matched to an agent in the other group. Then, they proceed to the

roommate problem, a one-sided matching problem in which all agents belong

to a single group and any agent can be matched to any other. The authors

propose stable matchings as a solution for these problems. A matching is stable

if no two agents prefer one another to their current partners. They show that

for the marriage problem there is always a stable matching, but there may not

be for the roommate problem. The following example, slightly modified from

the original in Gale and Shapley [12], illustrates this case.

Example 1 Consider the following 4-agent problem:

a1 a2 a3 a4

a2 a3 a1 a1
a3 a1 a2 a2
a4 a4 a4 a3
a1 a2 a3 a4

To see that there is no stable matching, assume that one of the first three agents,

say agent a3, is either unmatched or matched to agent a4. Then, agents a2 and

a3 form a blocking pair. Similar arguments can be applied to agents a1 and a2.

In the last few decades an extensive literature on one-to-one matching prob-

lems has emerged in both Economics and Computer Science. However, it focuses

mostly on the marriage problem: the roommate problem has been much less

widely studied. This can be explained by two reasons: First, there are more

economic issues that can be modeled as two-sided problems than as one-sided

ones. Second, the impossibility of finding a stable matching and the more com-

plex structure of the roommate problem may have discouraged researchers from

analyzing it.

Pairing police officers on patrols, pilots on flights (see Cechlárová and Fer-

ková [8]), students to share double rooms in colleges or marriages between agents

of the same-sex poses significant problems worthy of analysis. In sports compe-

titions the way in which players are paired in events such as tennis or paddle-

tennis doubles may affect the final result. The kidney exchange problem has
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been modeled as a roommate problem (see Roth et al. [27]). Furthermore there

are centrally coordinated programs such as odd shoe exchanges,1 holidays home

exchanges2, and centralized pairing methods used in chess competitions (see

Kujansuu et al. [21]), which also suggest potential applications of the room-

mate problem. Moreover, as Klaus et al. [19] point out, the roommate problem

has interest in itself since it boils down to hedonic coalition formation (see Bo-

gomolnaia and Jackson [6]) and network formation problems (see Jackson and

Watts [17]).

In the scarce literature about one-sided matching problems it is common

practice to restrict the analysis to those problems in which a stable matching

exists (solvable problems) (see for instance, Gusfield and Irving [14], Chung [9],

Diamantoudi et al. [10], Klaus and Klijn [19] and Gudmundsson [13]). However,

restricting attention to solvable roommate problems means ignoring a significant

subclass of problems without stable matchings (unsolvable problems). This is

corroborated by Pittel and Irving [25], who observe that as the number of agents

increases the probability of a roommate problem being unsolvable also increases

fairly steeply.

The aim of the current paper is to propose a new solution for the roommate

problem with strict preferences.3 Indeed it is essential to require a solution

which provides a stable matching when dealing with solvable problems and

some matching otherwise. Hence we focus on core consistent solutions.4 At the

interface between Economics and Computer Science several solutions have been

proposed explicitly for dealing with unsolvable problems, but there has yet to

be any in-depth discussion regarding comparisons between solutions and scope

for new ones.

Two interesting core consistent solutions have been analyzed in the literature

on unsolvable problems: Almost stable matchings, proposed by Abraham et al.

[2], form a subclass of Pareto optimal matchings with the minimum number

of blocking pairs.5 The notion of maximum internal stability introduced by

Tan [30], singles out matchings with the largest set of pairs that are stable one

1http://www.oddshoe.org/
2http://www.exchangeholidayhomes.com/
3Except for small number of references, we have deliberately avoided the analysis of a

variety of roommate problem reappraisals.
4Other solutions have been proposed in the literature, for instance popular matchings.

However, this solution is not core-consistent and for that reason we have not considered it in
our analysis. For more details of such solution see Biro et al. [5].

5See Biermann [3] for a critical evaluation of this criterion in the marriage problem.
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with another. However, as far as we know, the following basic proposal has been

overlooked. Consider the case in which two agents are top choices for each other.

Once this pair is formed it never splits. A less extreme case is the existence of

a set of agents who form pairings so stable that they are stably paired within

them and none of them prefers an agent other than his/her current partner no

matter how the outside agents are matched. Hence, once these pairs are formed

they never break. Thus, we believe that a maximum irreversible set of pairs

should form part of the matching selected to solve any roommate problem.

All three of the solutions mentioned show sufficient grounds for consideration

as good candidates for solving roommate problems. It thus makes sense to

consider a proposal that could conciliate most if not all of those solutions.

By studying the relationship between these solutions we find that the al-

most stable solution is incompatible with the other two. Moreover the problem

of finding a matching with the minimum number of blocking pairs happens to

be NP-hard. Hence, our next move is to search a solution that could conciliate

the notions of maximum internal stability and maximum irreversibility. Ac-

cordingly, we select the set of matchings that lie at the intersection of the two

solutions and refer to them as Q-stable matchings. Since our ultimate motive is

to select a single matching to solve the roommate problem, an essential criterion

to take into account is the possibility of determining a Q-stable matching. We

offer an efficient algorithm for computing such a matching.

Finally, we seek to extend what we have learnt from two-sided matching

problems to one-sided matching problems. In two-sided matching problems if

agents interact freely and decide systematically after a match what to do next

then they eventually reach a stable matching. It is also known that market

frictions may prevent a stable matching from being reached.6 This justifies

the presence of clearinghouses7 where agents submit preference lists to a policy

maker who, following a procedure, implements the desired matching. Similarly

in one-sided matchings it could be interesting to identify a matching resulting

from a decentralized process. For the roommate problem it is known that the

blocking dynamic between agents leads to an absorbing set of matchings (see

Inarra et al. [16] and Klaus et al. [20]). In fact, once one of these matchings

6A well-known documented episode of unraveling in matching markets for medical interns
shows that contracts for interns were signed two years earlier than students’ graduation (see,
for instance, Echenique and Pereyra [11] and the references therein).

7For instance, the National Resident Matching Program (NRMP) matches physicians and
residency programs in the United States.
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has been reached the blocking dynamic of the agents does not allow them to

abandon that set. Hence, we proceed by studying whether our proposal is one

of the elements of an absorbing set. We find that not all Q-stable matchings

belong to an absorbing set, but the matching determined by the algorithm does.

Therefore we are providing policy makers with a procedure that implements a

Q-stable matching for solving roommate problems.

The rest of the paper is organized as follows: Section 2 contains the prelim-

inaries. Section 3 presents and discusses the notion of maximum irreversibility

and the other two solutions found in the relevant literature for unsolvable room-

mate problems, and proceeds to compare these three core-consistent solutions.

Section 4 introduces Q-stable matchings and an algorithm for computing one of

them. We also show that such a matching belongs to an absorbing set. Section

5 concludes.

2 Preliminaries

In a roommate problem, a finite set of agents N = {a1, . . . , an} has to be

partitioned into pairs and singletons. Each agent has strict preference over

potential roommates with the possibility of having a room to herself/himself.

Formally, a roommate problem, or a problem for short is a pair (N, (�ai
)ai∈N )

(or (N,�) for short) where N is a finite set of agents and for each agent ai ∈ N ,

�ai
is a complete, transitive preference relation defined on N . Preferences are

strict, i.e., ak �ai
aj and aj �ai

ak if and only if aj = ak. The strict preference

relation associated with �ai
is denoted by �ai

. Agent aj is acceptable for agent

ai if aj �ai
ai. Otherwise he/she is said to be unacceptable. A solution to a

problem, a matching, is a function µ : N → N such that if µ(ai) = aj then

µ(aj) = ai. Thus, a matching is a set of disjoint pairs and singletons formed by

the agents in N . Let µ(ai) denotes the partner of agent ai in matching µ. If

µ(ai) = ai, then agent ai is unmatched in µ. A matching µ with all its agents

paired is called complete. Given S ⊆ N , S 6= ∅, let µ(S) = {µ(ai) : ai ∈ S}.
That is, µ(S) is the set of partners of the agents in S under matching µ. Let

µ |S denotes the restriction of µ to agents in S. If µ(S) = S, then µ |S is a

matching in (S, (�ai)ai∈S).

A matching µ is blocked by a pair {ai, aj} ⊆ N if aj �ai
µ(ai) and ai �aj

µ(aj), that is ai and aj prefer each other to their current partners (if any) in
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µ. If pair {ai, aj} blocks matching µ then {ai, aj} is called a blocking pair of

µ. Let {ai, aj} blocks a matching µ. A matching µ′ is obtained from µ by

satisfying {ai, aj} if µ′(ai) = aj , their partners (if any) under µ are alone in µ′,

and the remaining agents are matched as in µ. A matching without blocking

pairs is called a stable matching. A problem is called solvable if the set of stable

matchings is non-empty and unsolvable otherwise.

We extend each agent’s preferences over his/her potential partners to the

set of matchings in the following way. We say that agent ai prefers µ′ to µ,

and denote it by µ′ �i µ if and only if agent ai prefers his/her partner at µ′ to

her partner at µ, µ′(ai) �ai µ(ai). (We say that agent ai is indifferent between

matchings µ′ and µ, denoted by µ′ ∼ai µ if he/she is matched to the same

partner in both matchings).

Stable partitions

Tan [31] establishes the necessary and sufficient condition for the solvability of

a problem with strict preferences using the notion of stable partition which is

formally defined as follows:

Let A = {a1, ..., ak} ⊆ N be an ordered set of agents. The set A is a ring

if k ≥ 3 and for all i ∈ {1, ..., k}, ai+1 �ai
ai−1 �ai

ai (subscript modulo k).

The set A is a pair of mutually acceptable agents if k = 2 and for all i ∈ {1, 2},
ai−1 �ai

ai (subscript modulo 2). The set A is a singleton if k = 1.

A stable partition is a partition P of N such that:

(i) For all A ∈ P, the set A is a ring, a pair of mutually acceptable agents or a

singleton, and

(ii) For all A,B ∈ P where A = {a1, ..., ak} and B = {b1, ..., bl} (possibly

A = B), the following condition holds:

if bj �ai ai−1 then bj−1 �bj ai,

for all i ∈ {1, ..., k} and j ∈ {1, ..., l} such that bj 6= ai+1.

Thus, a stable partition is a partition of the set of agents such that each set

in a stable partition is either a ring, a pair of mutually acceptable individuals,

or a singleton, and the partition satisfies the (usual) stability condition between

any two sets and also within each set.8 The following assertions are proven by

8Stable partitions are also called stable half-matchings in some recent papers, such as
Biró et al. [4]. A half-matching is a well- known notion in graph theory that also helps to
understand the meaning of this notion.
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Tan [31].

Remark 1 (i) A problem (N,�) has no stable matchings if and only if there

exists a stable partition with an odd ring. (ii) All stable partitions have exactly

the same odd rings and singletons. (iii) All even rings in a stable partition can

be broken into pairs of mutually acceptable agents without upsetting stability.

W.l.o.g. hereafter we suppose that the even parties are always pairs in any

stable partition we are working with.

The notion of stable partition plays a significant role in the present work and

it is not that easy to interpret. Hence, in the appendix, we informally describe

the algorithm introduced by Tan and Hsueh [33] for computing stable patitions,

and illustrate it with a numerical example which we believe clarifies its meaning.

3 Core consistent solutions

In this section we first introduce a notion of strong stability that we believe

is suitable for consideration in the search for a matching that is as stable as

possible. Then we consider two existing proposals for dealing with unsolvable

problems.

3.1 Maximum irreversibility

Consider the case in which two agents are top choices for each other. Once

this pair is formed it never splits.9 A less extreme case is the existence of a

set of agents forming a pairing so strongly stable that they are stably paired

within them and none of them prefers an agent outside to her current partner

no matter how the outside agents are matched. Therefore, once these pairs are

formed they never break. We call this set of pairs ”irreversible”.

A problem may have matchings with different irreversible sets but it seems

natural to require that some of the largest ones be contained in the proposed

matching. Formally,

Definition 1 (i) A set of agents S ⊆ N form an irreversible set of pairs µS if

there is no pair {ai, aj} (possibly ai = aj) such that {ai, aj} ∩ S 6= ∅ such that

{ai, aj} blocks µS. (ii) Matching µ is maximum irreversible if it contains the

largest irreversible set of pairs.

9This property, called ”mutually best” property was introduced by Toda [34] for the mar-
riage problem and by Can and Klaus [7] for the roommate problem.
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The set of maximum irreversible matchings is core-consistent and the larger

the set of irreversible pairs is, the more selective this criterion will be. To see

the robustness of this solution consider the following example:

Example 2 Consider the following 10-agent problem:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a2 a3 a1 a8 a9 a4 a6 a5 a7 a1
a3 a1 a2 a9 a1 a5 a8 a7 a4 a2
a4 a10 a4 a3 a6 a7 a9 a4 a5 a3
a6 a5 a5 a6 a8 a8 a5 a6 a1 a4
a5 a6 a6 a7 a7 a9 a1 a1 a2 a5
a7 a7 a7 a10 a4 a2 a2 a2 a3 a6
a8 a8 a8 a1 a2 a3 a3 a9 a6 a7
a9 a4 a9 a2 a3 a1 a4 a10 a8 a8
a10 a9 a10 a5 a10 a10 a10 a3 a10 a9
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Matching µ1 = {{a1, a2}, {a3}, {a4, a8}, {a5, a9}{a7, a6}, {a10}} is maximum ir-

reversible, with an irreversible set of three pairs. The pairing {{a4, a8}, {a5, a9},
{a7, a6}} is stable and no agent in it prefers any other outside agent to his/her

current partner. Hence, once this pairing is formed these pairs stay together.

However, for unsolvable problems the set of irreversible pairs of a problem

might be empty. Hence, this criterion by itself might be indefinite. In what

follows, we present two core consistent solutions that have been proposed in the

relevant literature.

3.2 Two previous solution concepts

Almost stability

Pareto optimality, one of the most relevant criteria in Economics, has also been

applied to the roommate problem and to a number of extensions of it. In our

setup it can be defined as follows:

Definition 2 A matching µ is Pareto optimal if there is no matching µ′ such

that µ′(ai) �ai
µ(ai) for all ai ∈ N and µ′(ai) �ai

µ(ai) for some ai ∈ N .

There is no doubt that Pareto optimality is an appealing criterion related

to stability. A stable matching is Pareto optimal (see Proposition 5 in Abra-

ham and Manlove [1]) and a non-Pareto optimal matching is always unstable.
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This is because it is blocked by a set of agents who are better off in another

matching.10 However, Pareto optimality by itself is not a convincing criterion

for selecting matchings in the roommate problem for two reasons. First, it re-

quires that when any two agents block a matching by forming a new pair their

partners, if any, must not be worse off in the new matching. In our setting,

however, it suffices for two agents to become better off by forming a blocking

pair, without considering the wellbeing of their abandoned partners in the new

matching formed.11 Secondly, it can select too many matchings: For solvable

problems, the Pareto optimal solution is core-inclusive, that is, it selects all sta-

ble matchings and some unstable ones. For unsolvable problems, it suffers from

a similar drawback; it can select matchings with different numbers of blocking

pairs.

The idea of refining the set of Pareto optimal matchings is taken up by

Abraham and Manlove [1], who prove the following:

Remark 2 Let bp(µ) denote the set of blocking pairs of matching µ, that is

bp(µ) = {{ai, aj} ⊆ N : {ai, aj} blocks µ} (i) If matching µ Pareto dominates

matching µ′ then bp(µ) ⊂ bp(µ′) (ii) If µ is a matching with the minimum

number of blocking pairs of a problem then µ is Pareto optimal.

Following the idea behind the previous results, Abraham et al. [2] study

matchings with the minimum number of blocking pairs and call them almost

stable matchings. Formally,

Definition 3 A matching µ is almost stable if |bp(µ)| ≤ |bp(µ′)| for all µ′ 6= µ,

where |bp(µ)| denotes the number of blocking pairs of matching µ.

Maximum internal stability

A matching µ is maximum stable if it excludes the minimum number of agents

such that the non excluded ones form a complete stable matching see Tan [30],

[32]. Given a stable partition, Tan [30] proposes that to compute a maximum

stable matching one agent be deleted from each odd ring of the partition as

well as all singletons. Then he defines the problem restricted to the set of non-

deleted agents, keeping their original preferences. This new problem is solvable

and the computation of a stable matching gives a maximum stable matching.

10If a matching is not Pareto optimal then it admits an improving coalition. See Proposition
6.24 in Manlove [22]) and Chapter 6 in this book for a survey on Pareto optimal matchings.

11This is not the case in problems in which bilateral approval is required to dissolve part-
nership see Morrill [23].
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Example 2 (cont.) In this problem, P = {{a1, a2, a3},{a4, a6},{a5, a8},{a7, a9},
{a10}} is a stable partition and all maximum stable matchings have four stable

pairs. Matching µ1 ⊇ {{a1, a3}, {a4, a6}, {a5, a8}, {a7, a9}} is maximum sta-

ble and it can be derived from Tan’s proposal by isolating one agent from the

odd ring, agent a2, and the singleton, agent a10. Apart from the maximum

stable matchings obtained in this manner there may be others. For instance,

µ2 ⊇ {{a2, a10}, {a4, a6}, {a5, a8}, {a7, a9}} is also maximum stable.

Tan’s solution is applied to a setting in which a matching is defined as a set

of pairs while isolated agents never form part of that matching. To adapt Tan’s

definition of a maximum stable matching to our setup, where a matching is a

set of disjoint pairs and singletons formed by all the agents of a given set N , we

must add the deleted agents as singletons to the maximum stable matching, so

that all agents in the problem form part of that matching. Other possibility is

to match some (or all) the singletons by forming pairs among them. All these

matchings are equally close to stability in the sense that they contain the same

number of stable pairs. Hence we extend the idea of maximum stability to our

setting:

Definition 4 (i) A set of agents T ⊆ N form an internally stable set of pairs

µT if there is no pair {ai, aj} ⊆ T such that {ai, aj} blocks µT . (ii) Matching

µ is maximum internally stable if it contains the largest number of pairs which

are internally stable.

To see that our definition is an extension of Tan’s definition let us consider

the following example:

Example 2 (cont.) Matching µ = {{a1, a3},{a2},{a4, a6},{a5, a8},{a7, a9},
{a10}} is maximum stable and maximum internally stable, while matching µ′=

{{a1, a3},{a2, a10},{a4, a6},{a5, a8},{a7, a9}} is maximum internally stable but

not maximum stable.

Considering the notion of stable partition, say P, introduced above, Inarra et

al. [15] define matchings associated with that partition, called P-stable match-

ings. These matchings are formally defined as follows:

Let P be a stable partition. A P-stable matching is a matching such that

for each set A = {a1, ..., ak} ∈ P, agent ai is paired with either ai+1 or ai−1

for all i ∈ {1, ..., k} except for a unique agent j who remains unmatched if A
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is odd or a singleton.12 Hence, for each odd ring one agent is left out, and the

rest of the agents in the ring are matched following its order, that is, they are

matched to the subsequent or preceding agent. The reader may have noticed

some similarities between P-stable matchings and maximum stable matchings

as defined above. It turns out that the set of P-stable matchings coincides with

the set of maximum internally stable matchings that can be computed by Tan’s

algorithm.

Remark 3 A P-stable matching is maximum internally stable.

The following result states some features of P-stable matchings obtained

from the same stable partition P.

Given two matchings µ and µ′, we denote µ′Rµ if and only if µ′ is obtained

from µ by satisfying a blocking pair of µ (direct domination). We denote µ′RTµ

if and only if there is a sequence of matchings µ = µ1, . . . , µk = µ′ such that for

all l ∈ {1, . . . , k− 1} µl+1 is obtained from µl by satisfying a blocking pair of µl

(indirect domination).

Remark 4 Let M be the set of all matchings and let P be a stable partition.

Consider M|P = {µ ∈ M : µ is a P-stable matching of P}. Then (i) For any

µ, µ′ ∈ M|P , µRTµ′. (ii) For all ai ∈ N belonging to an odd ring of P, there

exists a matching µ ∈M|P such that µ(ai) = ai.

P-stable matchings play a significant role in Section 4 below.

3.3 Incompatibilities between solutions

In this subsection we analyze whether there is a solution that could reconcile all

the solutions presented above. Unfortunately we find that there is not. In what

follows we show that the solution of almost stable matchings is incompatible

with both the other solutions.

To prove the incompatibility between almost stable matchings and maximum

internally stable matchings, we start by showing the incompatibility between the

latter and the family of Pareto optimal matchings in the following example.

Example 3 Consider the following 8-agent problem:

12Inarra et al. [15] show that from any matching there exists a sequence of blocking pairs
converging a P-stable matching. See Roth and Vande Vate [26] and Diamantoudi et al. [10]
for similar approaches to convergence to stability.
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a1 a2 a3 a4 a5 a6 a7 a8

a2 a3 a1 a1 a1 a7 a8 a6
a3 a1 a2 a2 a2 a8 a6 a7
a4 a4 a4 a3 a3 a4 a4 a4
a5 a5 a5 a6 a6 a5 a5 a5
a6 a6 a6 a7 a7 a1 a1 a1
a7 a7 a7 a8 a8 a2 a2 a2
a8 a8 a8 a5 a4 a3 a3 a3
a1 a2 a3 a4 a5 a6 a7 a8

This example has a unique stable partition P= {{a1, a2, a3},{a4, a5},{a6, a7, a8}}
with two odd rings {a1, a2, a3} and {a6, a7, a8}. Every maximum internally sta-

ble matching has three stable pairs: one pair from each odd ring and the pair

{a4, a5}. First, note that those matchings with singletons are not Pareto op-

timal since any other matching that joins them will Pareto dominate the orig-

inal one. Hence we restrict our attention to those maximum internally stable

matchings without singletons. There are nine such matchings with three stable

pairs each: µ1= {{a1, a2},{a3, a6},{a4, a5}, {a7, a8}}; µ2= {{a1, a2},{a3, a7},
{a4, a5}, {a6, a8}}; µ3= {{a1, a2},{a3, a8},{a4, a5},{a6, a7}}; µ4= {{a1, a3},
{a2, a6},{a4, a5},{a7, a8}}; µ5= {{a1, a3},{a2, a7},{a4, a5},{a6, a8}}; µ6= {{a1, a3},
{a2, a8},{a4, a5},{a6, a7}}; µ7= {{a1, a6},{a2, a3},{a4, a5},{a7, a8}}; µ8= {{a1, a7},
{a2, a3},{a4, a5},{a6, a8}}; µ9= {{a1, a8},{a2, a3},{a4, a5},{a6, a8}}. None of

these matchings is Pareto optimal since in each of them agents in the pair

{a4, a5} and agents in the pair coming from different odd rings can become

better off by changing their partners. Hence the following proposition can be

established.

Proposition 1 The intersection of Pareto optimal matchings and maximum

internally stable matchings may be empty.

Since almost stable matchings are Pareto optimal the following corollary can

be established.

Corollary 2 The set of maximum internally matchings and the set of almost-

stable matchings may have an empty intersection.

This implies that the idea of finding a matching with the minimum number of

blocking pairs conflicts with the idea of finding a matching with the maximum

number of stable pairs. In fact the example shows the well known trade-off

between Pareto optimality and stability.
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Next, the incompatibility between almost stability and maximum irreversibil-

ity is shown in the following example.

Example 4 Consider the following 8-agent problem:

a1 a2 a3 a4 a5 a6 a7 a8

a2 a3 a4 a5 a4 a5 a8 a6
a3 a1 a1 a3 a6 a7 a6 a7
a8 a4 a2 a1 a3 a8 a4 a1
a5 a5 a5 a6 a2 a4 a5 a5
a4 a6 a6 a7 a7 a1 a1 a4
a7 a7 a7 a8 a8 a2 a2 a2
a6 a8 a8 a2 a1 a3 a3 a3
a1 a2 a3 a4 a5 a6 a7 a8

Matching µ = {{a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}} is the only one that is al-

most stable, with {a4, a5} being its only blocking pair. However, pair {a4, a5} is

the maximum irreversible set and it is not contained in matching µ. Hence the

following proposition can be established.

Proposition 3 The intersection of almost stable matchings and maximum ir-

reversible matchings may be empty.

Therefore almost stable matchings are incompatible with the other two solu-

tions. Moreover Abraham et al. [2] show that the problem of finding a matching

with the minimum number of blocking pairs is NP-hard and even hard to ap-

proximate. These results suggest that a proposal could be drawn up for the

roommate problem by conciliating maximum internally stable and maximum

irreversible matchings.

4 Q-stable matchings

Given the incompatibility between almost stable matchings and the other two

solutions demonstrated in the previous section, a natural question to ask is

whether the intersection of the other three solutions is non-empty. The answer is

yes. Matchings lying at the intersection comprise are called Q-stable matchings,

which is analyzed in this section.

Definition 5 A matching is Q-stable if it is maximum internally stable, and

maximum irreversible.

13



As mentioned in the Introduction our aim in this paper is to provide policy

makers with a procedure for computing a Q-stable matching. In what follows

we introduce an algorithm that does this job efficiently. The algorithm starts

with a stable partition of a roommate problem and, by means of an iterative

process, removes from the preference lists those agents who are unable to form

irreversible pairs. Then a stable partition with a maximum set of irreversible

pairs is derived from which a Q∗-stable matching is finally obtained.

Some additional notation is needed.

Given a stable partition Pt. Let Dt be the set formed by the agents in the

odd sets of Pt, i.e. odd rings or singletons. Let St be the set of agents in pairs

so that N = Dt ∪ St. Let Pt|St
denote the set of pairs of partition Pt. Notice

that Pt|St
is a stable pairing of the agents in St.

The algorithm

Stage 1: Finding a maximum irreversible set of pairs

Step 1. Let (N1, (�R1
ai

)i∈N1
) be a problem where N1 = N and (�R1

ai
) = (�ai

).

Compute a stable partition P1 for (N1, (�R1
ai

)ai∈N1
).13

Let N1 = D1 ∪ S1. If S1 = ∅ then STOP and set µI = P1|S1
= ∅. If S1 = N1

then STOP and set µI = P1|S1
. Otherwise, for every agent ai ∈ S1 remove

from (�R1
ai

) every agent ak ∈ D1 and every agent aj ∈ S1, aj 6= ai, such that

ak �ai
aj (ai prefers ak to aj) for some ak ∈ D1.

Step t. Define a reduced problem (Nt, (�Rt
ai

)ai∈Nt
) where Nt = St−1 and (�Rt

ai
)

is agent ai’s preference list after the clearing process over (�Rt−1
ai ). If no agent

is removed from agent ai’s preference list, set (�Rt
ai

) = (�Rt−1
ai ). Compute a

stable partition Pt for (Nt, (�Rt
ai

)ai∈Nt
).

Let Nt = Dt ∪ St. If St = ∅ then STOP and set µI = Pt|St
= ∅. If St = Nt

then STOP and set µI = Pt|St
. Otherwise, for every agent ai ∈ St remove from

(�Rt
ai

) every agent ak ∈ Dt and every agent aj ∈ St aj 6= ai, such that ak �ai aj

(ai prefers ak to aj) for some ak ∈ Dt. Increase t and repeat this step.

Stage 2: Build a stable partition for (N,�).

Let I denote the set of matched agents in µI and let D denote the remaining

agents. Join P1 |D with µI to determine a stable partition P∗ on N . That is,

P∗ = P1 |D ∪µI .

13An algorithm which computes a stable partition in linear time can be found in Tan [31].
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Stage 3: Build a matching from stable partition P∗

From stable partition P∗ derive a P∗-stable matching. This matching is called

Q∗-stable.

If the problem is solvable then the output of the algorithm is a stable match-

ing and therefore it is immediate that it is maximum internally stable and max-

imum irreversible. That is,

Remark 5 A stable matching is a Q-stable.

The previous remark enable us to focus on unsolvable problems. We now

present some claims to prove that the algorithm provides a Q-stable matching.

First, we present some claims, which are needed to show that the algorithm

provides a matching with a set of irreversible pairs of maximum size.

Claim 1 Assume that µI is an irreversible set of pairs formed by a subset of

agents I ⊆ N and P |D is a stable partition for the problem restricted to D =

N\I. Then P = P |D ∪µI is a stable partition on N .

Proof. No pair {ai, aj} ⊆ I can block14 P by the stability of µI , no pair

{ai, aj} ⊆ D can block by the stability of P |D, and no pair {ai, aj} with ai ∈ I
and aj ∈ D can block by the irreversibility of µI .

Claim 2 If agent ai either belongs to an odd ring or is a singleton in a stable

partition P then he/she can never be part of an irreversible set of pairs.

Proof. By contradiction assume that ai is part of an irreversible matching µI .

Then, by Claim 1, µI could be extended to a stable partition P ′ = PN\I ∪ µI .

But then the set of odd rings and singletons would not be the same in P and

P ′, contradicting Remark 1 (ii).

Claim 3 The set of pairs µI derived in Stage 1 of the algorithm, is maximum

irreversible.

Proof. µI is irreversible by construction since there is no agent ai ∈ I such

that ai prefers an agent ak outside I to her current partner. It remains to prove

the maximality of µI . That is, if there exists another irreversible set of pairs

14Abusing notation we say that a pair of agents {ai, bj} block partition P if bj �ai ai−1

then bj−1 �bj ai.
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µI′ with I ′ ⊆ N , then I ′ ⊆ I. Suppose for a contradiction that there exists µI′

such that I ′ \ I 6= ∅. This means that there must be a step t in the algorithm

where I ′ ⊆ Nt, but St \ I ′ 6= ∅. However, if µI′ is irreversible for N then it is

also irreversible for Nt, therefore no agent in I ′ can be a singleton or part of an

odd ring in a stable partition Pt for Nt by Claim 2, a contradiction.

The above claim and the argument in its proof imply the following corol-

lary.15

Corollary 4 For a roommate problem the set of agents matched in the largest

irreversible set of pairs is the same.

If matching Q∗-stable matching is maximum irreversible by Claim 3 and

maximum internally stable by Remark 3 then the following theorem can be

established.

Theorem 5 There always exists a Q∗-stable matching for any roommate prob-

lem.

Regarding the complexity of the algorithm the following result is established.

Proposition 6 A Q∗-stable matching can be computed in O(mn) time, where

n is the number of agents and m is the total length of the preference lists.

Proof. Stage 1 can be invoked at most n times since the set of agents in pairs

in the initial partition P1 can only shrink, and it is stopped when it does not

shrink. The execution of each step takes linear time in m, which is the total

length of the preference lists, since a stable partition can be found with Tan’s

algorithm [31] in O(m) time, and the clearing process in Stage 1 can also be

conducted in linear time. Therefore the algorithm terminates in O(mn) time.16

The algorithm and the results above can be illustrated with an example:

Example 5 Consider the following 10-agents problem:

15This corollary is closely related to Proposition 3 in Inarra et al. [16] although they have
proven in different manner.

16Tan and Hsueh [33] propose another algorithm, which constructs a stable partition incre-
mentally and whose complexity is O(n3) where n is the number of agents. This algorithm can
be seen as a generalization of the procedure of convergence used by Roth and Vande Vate [26]
to a stable marriage.
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

a2 a3 a1 a3 a4 a7 a5 a9 a10 a11 a8 a1
a3 a1 a2 a5 a6 a5 a6 a4 a8 a9 a10 a2
a4 a6 a4 a6 a7 a1 a1 a5 a1 a4 a1 a3
a5 a4 a5 a2 a1 a9 a2 a11 a6 a5 a2 a4
a6 a5 a6 a1 a2 a2 a3 a1 a3 a1 a3 a5
a7 a7 a7 a8 a3 a3 a4 a2 a4 a2 a4 a6
a8 a8 a8 a7 a8 a8 a8 a3 a5 a3 a5 a7
a9 a9 a9 a9 a9 a4 a9 a6 a7 a6 a6 a8
a10 a10 a10 a10 a10 a10 a10 a7 a2 a7 a7 a9
a11 a11 a11 a11 a11 a11 a11 a10 a11 a8 a9 a10
a12 a12 a12 a12 a12 a12 a12 a12 a12 a12 a12 a11
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Stage 1: Finding a maximum irreversible set of pairs

Step 1. Computing a stable partition for the problem (N1, (�R1)ai∈N1
), P1 =

{{a1, a2, a3}, {a4, a5}, {a6, a7}, {a8, a11}, {a9, a10}, {a12}} is obtained, where D1 =

{a1, a2, a3, a12} and S1 = {a4, a5, a6, a7, a8, a9, a10, a11}. Remove from the list

of preferences of each agent in S1 all agents in D1 and those that are less pre-

ferred, except for herself.

Step 2. A reduced problem (N2, (�R2)i∈N2), is defined where S1 = N2 :

a4 a5 a6 a7 a8 a9 a10 a11

a4 a4 a7 a5 a9 a10 a11 a8
a6 a5 a6 a4 a8 a9 a10
a7 a6 a7 a5 a9 a4 a11
a5 a11 a5

a8 a10

Computing a stable partition for this reduced problem, P2= {{a4},{a5, a6, a7},
{a8, a11},{a9, a10}} is obtained, where D2 = {a4, a5, a6, a7} and S2 = {a8, a9, a10, a11}.
Remove from the list of preferences of each agent in S2 all agents in D2 and

those that are less preferred, except for herself.

Step 3. A reduced problem (N3, (�R3)i∈N3
) is defined where S2 = N3 :

a8 a9 a10 a11

a9 a10 a11 a8
a8 a8 a9 a10

a9 a10 a11
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Computing a stable partition for the previous reduced problem P3= {{a8, a9},
{a10, a11}} is obtained, where D3 = ∅ and S3 = {a8, a9, a10, a11}. Since S3 = N3

STOP. Set µI = {{a8, a9}, {a10, a11}}.

Stage 2: Let I = {a8, a9, a10, a11} and D = {a1, a2, a3, a4, a5, a6, a7, a12}. The

following stable partition P∗= P1 |D ∪µI= {{a1, a2, a3},{a4, a5},{a6, a7},{a8, a9},
{a10, a11},{a12}} is determined.

Stage 3: From P∗-stable partition let agent a1 to be left out from the ring while

agents a2 and a3 are matched preserving the ordering of the and the remaining

agents are matched as in P∗. The resulting matching {{a1},{a2, a3},{a4, a5},
{a6, a7},{a8, a9},{a10, a11},{a12}} is a Q∗-stable matching.

Note that we have started with partition P1= {{a1, a2, a3},{a4, a5},{a6, a7},
{a8, a11},{a9, a10},{a12}} and have found that the P1-stable matching derived

from it is not maximum irreversible. With the algorithm partition P∗= {{a1, a2, a3},
{a4, a5},{a6, a7},{a8, a9}, {a10, a11},{a12}} is reached and a Q∗-stable matching

{{a1}, {a2, a3}, {a4, a5}, {a6, a7}, {a8, a9}, {a10, a11}, {a12}} is obtained given that

it is maximum internal stable and it contains the maximum irreversible set of

pairs {{a8, a9}, {a10, a11}}.

So far we have not addressed the importance of maximizing the number

of pairs matched in a matching. However, in many applications an essential

objective is to match as many agents as possible. Consider for example the

problem of dividing agents in a fixed number of two-person rooms, or the kidney

exchange problem.17 In those cases we can join the single agents from the Q∗-

stable matching outcome of the algorithm. In the example above matching

{{a1, a12}, {a2, a3}, {a4, a5}, {a6, a7}, {a8, a9}, {a10, a11}} is obtained.

Remark 6 Every matching formed by joining mutually acceptable unmatched

agents from a Q∗-stable matching is also a Q∗-stable matching.

We give an algorithm for computing a matching which lies at the inter-

section of the set of maximum internal stable matchings and the set of maxi-

mum irreversible stable matchings. It can be checked that neither of these two

17For more details see the survey on market design for kidney exchange by Sönmez and
Ünver [28].
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solutions contain the other. In Example 6, P1-stable matching is maximum

internally stable and not maximum irreversible while, for instance, matching

{{a1}, {a2}, {a3}, {a4, a5}, {a6, a7}, {a8, a9}, {a10, a11}, {a12}} is maximum irre-

versible and not maximum internally stable.

4.1 Q-stable matchings and the absorbing sets

For the roommate problem Inarra et al. [16] seek to determine which matchings

a decentralized process may lead to. They consider a dynamic process in which a

matching is adjusted when a blocking pair of agents mutually decide to become

partners. Either this change gives a stable matching or a new blocking pair of

agents will generate another matching and so on. If there are stable matchings

the process eventually converges to one of them. Otherwise it leads to a set of

matchings (an absorbing set) such that any matching in the set can be obtained

from any other and it is impossible to escape from the matchings in that set.

As mentioned in the Introduction, it is important to investigate whether our

proposal, theQ∗-stable matching, is achievable from a free interactions of agents,

i.e. whether it belongs to an absorbing set. That is the task that we undertake

in this subsection.

A non-empty set of matchings A is an absorbing set if the following condi-

tions hold: (i) For all µ, µ′ ∈ A (µ 6= µ′), µ′RTµ. (ii) For all µ ∈ A there is no

µ′ /∈ A such that µ′RM .

Condition (i) says that every matching in an absorbing set is (directly or

indirectly) dominated by another matching in the same set. Condition (ii) says

that no matching in an absorbing set is directly dominated by a matching outside

that set.

The following remark states some properties of absorbing sets and their

matchings.

Remark 7 (i) Absorbing sets satisfy the property of outer stability, which re-

quires that every matching not belonging to an absorbing set be (indirectly) dom-

inated by the matchings of an absorbing set (Kalai et al. [18]). (ii) Every ab-

sorbing set contains a P-stable matchings but not all P-stable matchings belong

to an absorbing set (Inarra et al. [16]).

Next, consider the relationship between the Q-stable matchings and absorb-

ing sets. We find that not all Q-stable matchings belong to an absorbing set.
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In Example 1 all matchings with at least one pair of agents are Q-stable, how-

ever, matching µ1 = {{2}, {3}, {1, 4}} does not belong to the unique absorbing

set. To see this let µ2 = {{2, 3}, {1, 4}}. It is immediate that µ2R
Tµ1 but not

µ1R
Tµ2. Hence condition 1 of the definition of absorbing set is not satisfied.

However, the matching provided by the algorithm belongs to an absorbing set.

Let P∗ be a maximum irreversible stable partition (one of such a partition

can be obtained at Stage 2 of the algorithm) and let I be the set of agents

irreversibly matched in P∗. Denote by S∗ the set of pairs of P∗ and D∗ = N\S∗.

Claim 4 Let µ be a P∗-stable matching and let V = S∗ \ I. Then µ′RTµ

where µ′ is a matching such that µ′|V (ai) = ai for all ai ∈ V and µ′|N\V (aj) =

µ|N\V (aj) for all aj ∈ N \ V .

Proof. We show that there is a sequence of matchings from µ to µ′, in which

all pairs in µ|V become singles while the remaining agents are paired as in µ.

Notice µ|V is blocked by an agent in V and either a single agent from an odd

ring or another agent in V who has previously become single. To do it consider

the following iterative process:

For t = 1. Let υ1 = {{ai, µ(ai)} ⊆ V : µ is blocked by {aj , bj} where aj ∈
{ai, µ(ai)} and bj ∈ D∗} and let V1 = ∪υ1. Let M|P∗ be the set of P∗-
stable matchings of P∗ so that µ ∈ M|P∗ . Thus, V1 is the set of agents

who block some matching inM|P∗ with a single agent of an odd ring of P∗

and their partners under µ.18 Note that V 1 6= ∅ otherwise S∗ = I and we

are done. Set µ = µ1 and consider {ai, ai+1} ∈ µ1|V1
such that bi �ai

ai+1

and ai �bi bi with bi ∈ D∗. W.l.o.g. assume that µ1(bi) = bi, otherwise

by Remark 4 there exists another matching µ̂ ∈ M|P∗ such that µ̂RTµ1

and µ̂(bi) = bi. Matching µ1 is blocked by {ai, bi} forming matching µ1
1

in which µ1
1(ai+1) = ai+1. By the stability of partition P∗, bi−1 �bi ai

and bi �bi−1
µ1(bi−1). Thus, matching µ1

1 is blocked by {bi−1, bi} forming

matching µ1
2 in which µ1

2(ai) = ai and µ1
2(ai+1) = ai+1. Repeat this step

for all pairs in µ|V1
until agents in V1 become singles.19 Hence, we achieve

a matching µ1
k such that µ1

k(ai) = ai for all ai ∈ V1 and µ1
k(aj) = µ1(aj)

for all aj ∈ N \ V1 and µ1
kR

Tµ1. Then go to next step.

18By definition of stable partition no agent in V prefers a singleton of the partition to her
partner in the partition and therefore this type of pairs cannot block any P-stable matching.

19Remark 4 can be extended to any set of matchings such that agents in odd rings are
paired as in the set of P-stable matchings and the remaining agents are equally paired.
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For t > 1. Let µt−1
l be the matching obtained at the end of Step t − 1 such

that µt−1
l RTµ. Set µt−1

l = µt. Let υt = {{ai, µ(ai)} ⊆ V : µ is blocked by

{aj , ak} where aj ∈ {ai, µ(ai)} and ak ∈ Vt−1} and let Vt = ∪υt. If Vt = ∅
then µt = µ′ and we are done. Otherwise there is a pair {al, al+1} ∈ µ|Vt

such that at �al
al+1 and al �at

at for some at ∈ Vt−1. Then matching µt

is blocked by {al, at} forming a new matching µt
1 in which µt

1(al+1) = al+1.

By the stability of partition P∗, µ(at) = at−1 �at al and at �at−1 at−1

so that µt
1 is blocked by pair {at, at−1} forming matching µt

2 in which

µt
2(al) = al, µ

t
2(al+1) = al+1 and µt

2(at) = at−1. Thus pair {at, at−1}
is rejoined and it must be unmatched. Repeat the followed reasoning

backwards from Step t − 1 to Step 1 until we reach a matching in which

all agents in V t−1 ∪ {al, al+1}, where V t−1 = ∪t−1i=1Vi, are alone and the

remaining agents are paired as in µ. Then repeat this step for all pairs in

µ|Vt
until all agents in V t become singles. Hence, we achieve a matching

µt
m such that µt

m(ai) = ai for all ai ∈ V t and µt
m(aj) = µ(aj) for all

aj ∈ N\V t and µt
mR

Tµ. Then increase t and repeat this step.

Since the number of agents in V is finite, the process finishes in finite time.

Proposition 7 Every P -stable matching which is maximum irreversible belongs

to an absorbing set.

Proof. Let µ∗ be a P -stable matching which is maximum irreversible. Assume

that µ∗ does not belong to an absorbing set. By Remark 7 and from the defini-

tion of absorbing set there exists a P-stable matching µ in an absorbing set A
such that µRTµ∗ but not µ∗RTµ.

Since µRTµ∗ then µ∗I = µI since µ∗I is a maximum irreversible set of pairs.

By Remark 1 µ∗|N\U = µ|N\U , hence µ∗|U 6= µ|U otherwise µ and µ∗ coincide.

By Claim 4 µ′RTµ such that µ′(ai) = ai for all ai ∈ U and µ′(aj) = µ(aj)

for all aj ∈ N \ U . But since µ∗(ai) � ai for all ai ∈ U , then it is easy to see

that µ∗(ai)R
Tµ′RTµ, contradicting the initial assumption.

Since the matching obtained as the output of the algorithm is a P -stable

matching which is maximum irreversible, we can state the following:

Corollary 8 The Q∗-stable matching obtained as the output of the algorithm

belongs to an absorbing set.
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To finish this section the following remark can be established.

Remark 8 Every matching formed by joining mutually acceptable unmatched

agents in a Q∗-stable matching belongs to an absorbing set.

5 Concluding remarks

In this paper we have claimed that Q-stable matchings are good proposals in

the class of roommate problems with strict preferences and we have presented

an efficient algorithm for finding one of these matchings. To conclude we discuss

our approach and point out some open questions for future analysis.

Even though the solution of absorbing sets is core-consistent for roommate

problems with strict preferences, we have not considered it in our pool of core-

consistent solutions (Section 3). The main reason is that we propose Q-stable

matchings as a “static” solution for problems where a policy maker has to pro-

vide a single matching in a centralized market. However, absorbing sets is a

“dynamic” solution that rules out those matchings which are not achievable

from the free interaction of agents. That is, they are the resulting matchings

from a decentralized market. In any case, it is interesting to understand the

relation between absorbing sets and the solutions that compose Q-stable match-

ings. On the one hand, the intersection between absorbing sets and maximum

internally stable matchings is non-empty (this is easy to see given that an ab-

sorbing set always contains a P -stable matching). On the other hand, it is easy

to check that absorbing sets are included in the set of maximum irreversible

matchings.20 Given the inclusive relation, one may wonder why we have not

considered instead the intersection between absorbing sets and the set of max-

imum internally stable matchings. The reason is that it is not clear whether

the outcomes of the algorithm are the only reasonable proposals. In Example 2

matching µ1 = {{1}, {2, 3}, {10}, {4, 8}, {5, 9}, {6, 7}} belongs to an absorbing

set while matching µ2 = {{1}, {3}, {2, 10}, {4, 8}, {5, 9}, {6, 7}} does not and,

however, both are maximum internal stable and maximum irreversible. Thus,

20Here we provide a sketch of the proof. First, following a similar reasoning as in Claim 4
it can be deduced that from any P -stable matching which is not maximum irreversible there
is a sequence of blocking pairs to a P -stable matching which is maximum irreversible. Next,
assume that there is a matching µ in an absorbing set which is not maximum irreversible.
Then µ∗RTµ′RTµ where µ∗ is a P -stable matching which is maximum irreversible and µ′ is a
a P -stable matching of the same absorbing set as µ (possibly µ∗ = µ′). However, not µRTµ∗,
contradicting that matching µ belongs to an absorbing set.
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in qualitative terms there are not sufficient reasons for a policy maker to consider

one matching better than the other.

A natural question to be addressed is whether an extension of the Q-stable

matchings could be a core-consistent solution for other models where the core

may be empty. Consider for instance hedonic games, Bogomolnaia and Jackson

[6], which constitute an immediate generalization of the roommate problem. In

these games each agent has a strict preference over coalitions of agents that

contain him. Following analogous patterns of the definitions of maximum irre-

versibility and maximum internal stability we find that the set of the Q-stable

coalitional structures for an hedonic game may be empty as the following ex-

ample shows:

Example 6 Consider the following 11-agents hedonic formation problem:

1 2 3 4 5 6 7 8 9 10 11

{1, 2, 3} {1, 2, 3} {3, 4} {4, 5} {1, 5} {6, 7} {7, 8} {8, 9} {7, 9} {10, 11} {6, 11}
{1, 5} {2, 6} {1, 2, 3} {3, 4} {4, 5} {2, 6} {7, 9} {7, 8} {8, 9} {10, 6} {10, 11}

{6, 10} {6, 7}
{6, 11}

Here, coalition structures containing the set of coalition {{1, 2, 3}, {4, 5}}
are the only maximum irreversible, whilst {{1, 5}, {3, 4}, {2, 6}, {8, 9}, {10, 11}},
{{1, 5}, {3, 4}, {2, 6}, {7, 8}, {10, 11}} and {{1, 5}, {3, 4}, {2, 6}, {7, 9}, {10, 11}}
are the only maximum internally stable sets. Therefore their intersection is

empty. This negative result indicates that the roommate problem has a very

particular structure that makes difficult the extensions of the results in this

paper to more complex models. Hence more work is needed to find a core

consistent solution for such a more general model.
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[4] Biró, P., Cechlárová, K., and Fleiner, T. (2008). The dynamics of sta-

ble matchings and half-matchings for the stable marriage and roommates

problems. International Journal of Game Theory, 36: 333-352.
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6 Appendix

Let (N,�) be a problem where N = {a1, ..., an} is the set of agents. Let (Nk, (�
)k) be the restricted problem where Nk = {a1, ..., ak} and (�)k is the preference

list of agents in Nk in which N\Nk agents have been deleted. Assume that we

have already found a stable partition, say Pk, a for (Nk, (�)k) , 1 ≤ k ≤ n− 1

and that one additional agent ak+1 is added. The question is whether a stable

partition Pk+1 for the enlarged problem (Nk+1, (�)k+1) can be determined.

The answer in in the affirmative. The following acceptance-rejection procedure

determines it:

Let problem (Nk, (�)k) and let ak+1 be the newcomer. By embedding agent

ak+1 into the existent lists and adding her own list to problem (Nk, (�)k),

problem (Nk+1, (�)k+1) is constructed. (Note that {a1} is the unique stable

partition for (N1, (�)1)). Given a stable partition Pk for (Nk, (�)k) let agent

ak+1 propose to the set of agents in Nk according to her preference order:

1. If nobody accepts her proposal, then ak+1 is alone and stable partition

Pk+1 = Pk ∪ {ak+1} is obtained.

2. If ak+1 is accepted by agent x there are three possible cases:

(i) If x is unmatched in Pk then Pk+1 = (Pk\{x}) ∪ {x, ak+1} and stable

partition P\k+1 for (Nk+1, (�)k+1 is obtained.

(ii) If x is currently in an odd ring, say (a1, a2, ..., a2m, x), then the arrival of

ak+1 decomposes the set into pairs and Pk+1 = {{a1, a2}, {a3, a4}....{a2m−1, a2m}}∪
{{ak+1, x}} becomes a stable partition for (Nk+1, (�)k+1).

(iii) If x is in a mutually acceptable pair say {x, y} in Pk then y becomes single

and Pk+1 = (Pk\{x, y}) ∪ {x, ak+1} is a stable partition for Nk+1 \ {y}.
Now y reenters the market as a new proposer. In this phase a proposal-

rejection sequence takes place which may stops in 1 in 2 (i) or 2 (ii). In

both cases the desired stable partition comes out. Otherwise an agent who

made a proposal once receives a proposal later and repetition takes place.

Then stop. All agents involved in the subsequent cycle form an odd ring

and stable partition Pk+1 for problem (Nk+1, (�)k+1) is constructed.

Example 7 Consider the following 7-agent problem:
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a1 a2 a3 a4 a5 a6 a7

a3 a1 a4 a2 a6 a7 a5
a2 a4 a2 a5 a4 a5 a6
a4 a3 a1 a3 a7 a2 a1
a5 a6 a7 a7 a2 a3 a2
a6 a7 a5 a6 a3 a1 a3
a7 a5 a6 a1 a1 a4 a4
a1 a2 a3 a4 a5 a6 a7

W.l.o.g assume that agents arrive to the process in the following arbitrary order:

a1, a2, a3, ..., a7.

• a1 arrives and forms a stable partition {a1} for (N1, (�)1).

• a2 arrives and proposes to a1. Since a1 rather matches a2 than being

alone, accepts the proposal and {a1, a2} is stable partition for (N2, (�)2)

(see Case 2 (i)).

• a3 arrives and proposes to a2 who rejects then proposes to a1 who accepts.

Pair {a1, a3} forms and a2, now alone, proposes to a1 who rejects and

then to a3 who accepts. Pair {a2, a3} and a1 is abandoned. This agent

proposes a3 who rejects and then to a2 who accepts and pair {a1, a2} is

formed and a3 is a proposer again. The cycling agents get together in the

set {a1, a2, a3} and stable partition {{a1, a2, a3}} for (N3, (�)3) is obtained

(see Case 2 (iii)).

• a4 arrives and proposes to a2 who accepts. Stable partition {{a1, a3}, {a2, a4}}
for (N4, (�)4) is obtained (see Case 2 (ii)).

• a5 arrives and is rejected for all agents in the process. Hence stable

partition{{a1, a3}, {a2, a4}, {a5}} for (N5, (�)5) is obtained. (See Case

1)

• a6 arrives and proposes to a5 who accepts. Stable partition {{a1, a3}, {a2, a4}, {a5, a6}}
for (N6, (�)6) is obtained (see Case 2 (i)).

• a7 arrives and proposes to a5 who rejects, then to a6 who acepts and form:

{{a1, a3}, {a2, a4}, {a6, a7}{a5}}. a5 proposes to a4 who rejects and then

to a7 who accepts forming {{a1, a3}, {a2, a4}, {a5, a7}{a6}}. a6 proposes to

a7 who rejects and to a5 who accepts forming {{a1, a3}, {a2, a4}, {a6, a7}{a5}}.
Then a5 proposes to a6 who rejects, then to a4 who also rejects and then

to a7 who accepts forming {{a1, a3}, {a2, a4}, {a5, a6}{a7}} and we reach
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a cycle. The cycling agents get together {a5, a6, a7} and stable partition

{{a1, a3}, {a2, a4}, {a5, a6, a7}} for (N7, (�)7) = (N, (�)) is obtained for

(see Case 2 (iii))

The outcome is stable by construction: there is not a pair of agents be-

longing to different sets or within a set who block the stable partition.
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