Address:
Departamento de Matemática Aplicada
Office 0.9. Matemáticas Building
Facultad de Ciencias
Universidad de Granada
18071-Granada (Spain)


Phone: +34 958 249946
Fax: +34 958 248596

E-mail: tperez(at)ugr.es

Membership


Profiles


Research Subjects

  • Approximation Theory, Orthogonal Polynomials and Special Functions
  • Numerical Analysis

Recent Research Projects

  • Unit of Excelence «María de Maeztu» IMAG, CEX2020-001105-M. Centers and Units of Excellence. Ministry of Science, Innovation and Universities of Spain. Coordinator Joaquín Pérez Muñoz (UGR). Duration: from 2022 to 2025.
  • GOYA - Group on Orthogonality and Applications, FQM-384 Research Group supported by Junta de Andalucía (Spain). Coordinator: Lidia Fernández (UGR). Duration: from 07/03/2017.
Go to top

Publications


2021-2025


  1. S. Barbero, A. M. Delgado, L. Fernández, T. E. Pérez, Symmetry Structure of Starbust. (preprint)
  2. C. F. Bracciali, G. S. Costa, T. E. Pérez, Centrosymmetric and reverse matrices in bivariate orthogonal polynomials. (submitted)
  3. A. Branquinho, A. M. Delgado, T. E. Pérez, Connections between Simplex and generalized Ball Orthogonal Polynomials. (submitted)
  4. A. Branquinho, A. Foulquié, T. E. Pérez, M. A. Piñar, Lax-type pairs in the theory of bivariate orthogonal polynomials. (submitted)
  5. D. Lara-Velasco, T. E. Pérez, Bernstein-type operators preserving derivatives. (submitted)
  6. L. Fernández, F. Marcellán, T. E. Pérez, M. A. Piñar, Sobolev orthogonal polynomials for solving the Schrödinger equation with potentials V(x) = x^{2k}, k > 1. (accepted)
  7. L. Fernández, F. Marcellán, T. E. Pérez, M. A. Piñar, Sobolev orthogonal polynomials and spectral methods in boundary value problems. Appl. Numer. Math. (accepted)
    Open Access
  8. A. Branquinho, A. Foulquié, T. E. Pérez, Quadratic decomposition of bivariate orthogonal polynomials. Medit. J. Math. 20 (2023), no. 3, 118.
    Open Access
    MR4549895
  9. M. E. Marriaga, T. E. Pérez, M. A. Piñar, M. J. Recarte, Approximation via gradients on the ball. The Zernike case. J. Comput. Appl. Math. 430 (2023), Paper No. 115258
    Open Access
    MR4577313
  10. M. E. Marriaga, T. E. Pérez, M. J. Recarte, Simultaneous approximation via laplacians on the unit ball. Medit. J. Math. 20 (2023), Article Number 316.
    Open Access
    MR4655120
  11. M. J. Recarte, M. E. Marriaga, T. E. Pérez, A class of Bernstein-type operators on the unit disk. Bull. Malays. Math. Sci. Soc. 46 (2023), no. 4, 127.
    Open Access
    MR4596003
  12. R. Aktas, I. Area, T. E. Pérez, Three term relations for multivariate Uvarov orthogonal polynomials. Comput. Appl. Math. 41 (2022), Article number: 330.
    Open Access
    MR4491185
  13. C. F. Bracciali, G. S. Costa, T. E. Pérez, Two variable Freud orthogonal polynomials and matrix Painlevé-type difference equations. J. Differ. Equ. Appl. 28 (2022) 1157-1177.
    arXiv
    MR4502152
  14. C. F. Bracciali, T. E. Pérez, Mixed orthogonality on the unit ball. Comput. Appl. Math. 40 (2021), no. 8, Paper No. 274.
    MR4325900
  15. F. Lizarte, T. E. Pérez, M. A. Piñar, The radial part of a class of Sobolev polynomials on the unit ball. Numer. Algorithms 87 (2021), no. 4, 1369-1389.
    MR4287895
  16. M. Marriaga, T. E. Pérez, M. A. Piñar, Bivariate Koornwinder-Sobolev orthogonal polynomials. Mediterr. J. Math. 18 (2021), no. 6, 234.
    MR4320531

2016-2020


  1. F. Marcellán, M. E. Marriaga, T. E. Pérez, M. A. Piñar, Geronimus transformations of bivariate linear functionals. J. Math. Anal. Appl. 484 (2020), 123736, 30 pp.
    MR4040130
  2. F. Marcellán, M. E. Marriaga, T. E. Pérez, M. A. Piñar, Coherent pairs of bivariate orthogonal polynomilas J. Approx. Theory 245 (2019), 40-63.
    MR3945603
  3. A. M. Delgado, L. Fernández, T. E. Pérez, Fourth order partial differential equations for Krall-type orthogonal polynomials on the triangle. Proc. Amer. Math. Soc. 146 (2018), 3961-3974.
    MR3825849
  4. F. Marcellán, M. Marriaga, T. E. Pérez, M. A. Piñar, On bivariate classical orthogonal polynomials. Appl. Math. Comput. 325 (2018), 340-357.
    MR3759149
  5. F. Marcellán, M. Marriaga, T. E. Pérez, M. A. Piñar, Matrix Pearson equations satisfied by Koornwinder weights in two variables. Acta Appl. Math. 153 (2018), 81-100.
    MR3745731
  6. C. F. Bracciali, T. E. Pérez, Bivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs. Appl. Math. Comput. 309 (2017), 142-155.
    MR3646384
  7. M. Marriaga, T. E. Pérez, M. A. Piñar, Three term relations for a class of bivariate polynomials. Medit. J. Math. 14 (2017), no. 2, Art. 54, 26 pp.
    MR3619416
  8. C. F. Bracciali, J. H. McCabe, T. E. Pérez, A. Sri Ranga, A class of orthogonal functions given by a three term recurrence formula. Math. Comp. 85 (2016), 1837-1859.
    MR3471110
  9. A. M. Delgado, L. Fernández, D. S. Lubinsky, T. E. Pérez, M. A. Piñar, Sobolev orthogonal polynomials on the unit ball via outward derivatives. J. Math. Anal. Appl. 440 (2016), 716-740.
    MR3484991
  10. A. M. Delgado, L. Fernández, T. E. Pérez, M. A. Piñar, Multivariate orthogonal polynomials and modified moment functionals. SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), paper no. 090, 25 pp.
    MR3545477

2011-2015


  1. L. Fernández, F. Marcellán, T. E. Pérez, M. Piñar, Y. Xu, Sobolev orthogonal polynomials on product domains. J. Comput. Appl. Math. 284 (2015), 202-215
    MR3319504
  2. M. Alfaro, A. Peña, T. E. Pérez, M. L. Rezola, On linearly related orthogonal polynomials in several variables. Numer. Algorithms 66 (2014), 537-553.
    MR3225001
  3. C. F. Bracciali, T. E. Pérez, M. Piñar, Stieltjes functions and discrete classical orthogonal polynomials. Comput. Appl. Math. 32 (2013), 537-547.
    MR3120139
  4. T. E. Pérez, M. Piñar, Y. Xu, Weighted Sobolev orthogonal polynomials on the unit ball. J. Approx. Theory 171 (2013), 84-104.
    MR3053718
  5. A. M. Delgado, T. E. Pérez, M. Piñar, Sobolev-type orthogonal polynomials on the unit ball. J. Approx. Theory 170 (2013), 94-106.
    MR3044047
  6. A. M. Delgado, L. Fernández, T. E. Pérez, M. Piñar, On the Uvarov modification of two variable orthogonal polynomials on the disk. Complex Anal. Oper. Theory 6 (3) (2012), 665-676.
    MR2944078
  7. L. Fernández, T. E. Pérez, M. Piñar, On Koornwinder classical orthogonal polynomials in two variables. J. Comput. Appl. Math. 236 (2012), 3817-3826.
    MR2923514
  8. M. V. de Mello, V. G. Paschoa, T. E. Pérez, M. A. Piñar, Multivariate Sobolev-type orthogonal polynomials. Jaen J. Approx. 3 (2011), 241-259.
    MR2954375
  9. J. J. Moreno-Balcázar, T. E. Pérez, M. A. Piñar, A generating function for non-standard orthogonal polynomials involving differences: the Meixner case. Ramanujan J. 25 (1) (2011), 21-35.
    MR2787289
  10. L. Fernández, T. E. Pérez, M. A. Piñar, Orthogonal polynomials in two variables as solutions of higher order partial differential equations. J. Approx. Theory 163 (2011), 84-97.
    MR2741221

2006-2010


  1. E. X. L. Andrade, C. F. Bracciali, M. V. de Mello, T. E. Pérez, Zeros for Jacobi-Sobolev orthogonal polynomials following non-coherent pair of measures. Comput. Appl. Math. 29 (2010), 423-445.
    MR2740662
  2. C. F. Bracciali, A. M. Delgado, L. Fernández, T. E. Pérez, M. A. Piñar, New steps on Sobolev orthogonality in two variables. J. Comput. Appl. Math. 235 (2010), 916-926.
    MR2727629
  3. A. M. Delgado, L. Fernández, T. E. Pérez, M. A. Piñar, Y. Xu, Orthogonal polynomials in several variables for measures with mass points. Numer. Algorithms 55 (2010), 245-264.
    MR2720631
  4. L. Fernández, F. Marcellán, T. E. Pérez, M. A. Piñar, Recent Trends on Two Variable Orthogonal Polynomials Differential Algebra, Complex Analysis and Orthogonal Polynomials, P. Acosta-Humánez and F. Marcellán, eds. Contemporary Mathematics, 509, 59-86, American Mathematical Society, Providence, RI, 2010.
    MR2647637
  5. L. Fernández, T. E. Pérez, M. A. Piñar, Y. Xu, Krall-type ortogonal polynomials in several variables. J. Comput. Appl. Math. 233 (2010), 1519-1524.
    MR2559340
  6. M. Álvarez de Morales, L. Fernández, T. E. Pérez, M. A. Piñar, Bivariate ortogonal polynomials in the Lyskova class. J. Comput. Appl. Math. 233 (2009), 597-601.
    MR2582991
  7. M. Álvarez de Morales, L. Fernández, T. E. Pérez, M. A. Piñar, A matrix Rodrigues formula for classical orthogonal polynomials in two variables. J. Approx. Theory 157 (2009), 32-52.
    MR2500152
  8. M. Álvarez de Morales, L. Fernández, T. E. Pérez, M. A. Piñar, A Stieltjes function in two variables. Approximation Theory XII: San Antonio 2007, 1-13, Nashboro Press, Brentwood, TN, 2008.
    MR2537115
  9. M. Álvarez de Morales, L. Fernández, T. E. Pérez, M. A. Piñar, A semiclassical perspective on multivariate orthogonal polynomials. J. Comput. Appl. Math. 214 (2008), 447-456.
    MR2398345
  10. M. Álvarez de Morales, L. Fernández, T. E. Pérez, M. A. Piñar, On differential properties for multivariate orthogonal polynomials. Numer. Algorithms 45 (2007), no. 1-4, 153-166.
    MR2355979
  11. M. Álvarez de Morales,L. Fernández, T. E. Pérez, M. A. Piñar, Semiclassical orthogonal polynomials in two variables. J. Comput. Appl. Math. 207 (2007), 323-330.
    MR2345250
  12. L. Fernández, T. E. Pérez, M. A. Piñar, Second--order partial differential equations for gradients of orthogonal polynomials in two variables. J. Comput. Appl. Math. 199 (2007), 113-121.
    MR2267536

2001-2005


  1. L. Fernández, T. E. Pérez, M. A. Piñar, On multivariate classical orthogonal polynomials. Rend. Circ. Mat. Palermo (2) Suppl. No. 76 (2005), 315-329.
    MR2178443
  2. L. Fernández, T. E. Pérez, M. A. Piñar, Classical orthogonal polynomials in two variables: a matrix approach. Numer. Algorithms 39 (2005), no. 1-3, 131-142.
    MR2137747
  3. L. Fernández, T. E. Pérez, M. A. Piñar, Weak classical orthogonal polynomials in two variables. J. Comput. Appl. Math. 178 (2005), no. 1-2, 191-203.
    MR2127879
  4. M. Álvarez de Morales, T. E. Pérez, M. A. Piñar, Orthogonal polynomials associated with a Delta-Sobolev inner product. J. Difference Equ. Appl. 8 (2002), no. 2, 125-151.
    MR1882484
  5. M. Alfaro, J. J. Moreno-Balcázar, T. E. Pérez, M. A. Piñar, M. L. Rezola, Asymptotics of Sobolev orthogonal polynomials for Hermite coherent pairs. J. Comput. Appl. Math. 133 (2001), no. 1-2, 141-150.
    MR1858274

1996-2000


  1. M. Álvarez de Morales, J. J. Moreno-Balcázar, T. E. Pérez, M. A. Piñar, Nondiagonal Hermite-Sobolev orthogonal polynomials. Acta Appl. Math. 61 (2000), no. 1-3, 257-266.
    MR1783293
  2. E. García-Caballero, T. E. Pérez, M. A. Piñar, Hermite interpolation and Sobolev orthogonality. Acta Appl. Math. 61 (2000), no. 1-3, 87-99.
    MR1783285
  3. M. Alfaro, M. L. Rezola, T. E. Pérez, M. A. Piñar, On symmetric differential operators associated with Sobolev orthogonal polynomials: a characterization. Acta Appl. Math. 61 (2000), no. 1-3, 3-14.
    MR1783278
  4. H. G. Meijer, T. E. Pérez, M. A. Piñar, Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Laguerre type. J. Math. Anal. Appl. 245 (2000), no. 2, 528-546.
    MR1758554
  5. M. Alfaro, T. E. Pérez, M. A. Piñar, M. L. Rezola, Sobolev orthogonal polynomials: the discrete-continuous case. Methods Appl. Anal. 6 (1999), no. 4, 593-616.
    MR1795525
  6. E. García-Caballero, T. E. Pérez, M. A. Piñar, Sobolev orthogonal polynomials: interpolation and approximation. Electron. Trans. Numer. Anal. 9 (1999), 56-64 (electronic).
    MR1749798
  7. M. Álvarez de Morales, T. E. Pérez, M. A. Piñar, A. Ronveaux, Non-standard orthogonality for Meixner polynomials. Electron. Trans. Numer. Anal. 9 (1999), 1-25 (electronic).
    MR1749794
  8. M. Álvarez de Morales, T. E. Pérez, M. A. Piñar, Sobolev orthogonality for the Gegenbauer polynomials {C^(-N+1/2)}_{n>0}. J. Comput. Appl. Math. 100 (1998), no. 1, 111-120.
    MR1658734
  9. T. E. Pérez, M. A. Piñar, Sobolev orthogonality and properties of the generalized Laguerre polynomials. Orthogonal functions, moment theory, and continued fractions (Campinas, 1996), 375-385, Lecture Notes in Pure and Appl. Math., 199, Dekker, New York, 1998.
    MR1655670
  10. M. Álvarez de Morales, T. E. Pérez, M. A. Piñar, A. Ronveaux, Orthogonal polynomials associated with a nondiagonal Sobolev inner product with polynomial coefficients. Orthogonal functions, moment theory, and continued fractions (Campinas, 1996), 343-358, Lecture Notes in Pure and Appl. Math., 199, Dekker, New York, 1998.
    MR1655668
  11. A. Martínez-Finkelshtein, J. J. Moreno-Balcázar, T. E. Pérez, M. A. Piñar, Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures. J. Approx. Theory 92 (1998), no. 2, 280-293.
    MR1604939
  12. F. Marcellán, H. G. Meijer, T. E. Pérez, M. A. Piñar, An asymptotic result for Laguerre-Sobolev orthogonal polynomials. J. Comput. Appl. Math. 87 (1997), no. 1, 87-94.
    MR1488822
  13. T. E. Pérez, M. A. Piñar, On Sobolev orthogonality for the generalized Laguerre polynomials. J. Approx. Theory 86 (1996), no. 3, 278-285.
    MR1405981
  14. F. Marcellán, T. E. Pérez, M. A. Piñar, Laguerre-Sobolev orthogonal polynomials. J. Comput. Appl. Math. 71 (1996), no. 2, 245-265.
    MR1399895
  15. F. Marcellán, T. E. Pérez, M. A. Piñar, A. Ronveaux, General Sobolev orthogonal polynomials. J. Math. Anal. Appl. 200 (1996), no. 3, 614-634.
    MR1393104

1991-1995


  1. F. Marcellán, J. C. Petronilho, T. E. Pérez, M. A. Piñar, What is beyond coherent pairs of orthogonal polynomials? J. Comput. Appl. Math. 65 (1995), no. 1-3, 267-277.
    MR1379136
  2. F. Marcellán, T. E. Pérez, M. A. Piñar, Regular Sobolev type orthogonal polynomials: the Bessel case. Rocky Mountain J. Math. 25 (1995), no. 4, 1431-1457.
    MR1371348
  3. F. Marcellán, T. E. Pérez, M. A. Piñar, Orthogonal polynomials on weighted Sobolev spaces: the semiclassical case. Special functions (Torino, 1993). Ann. Numer. Math. 2 (1995), no. 1-4, 93-122.
    MR1343524
  4. F. Marcellán, T. E. Pérez, M. A. Piñar, Gegenbauer-Sobolev orthogonal polynomials. Nonlinear numerical methods and rational approximation, II (Wilrijk, 1993), 71-82, Math. Appl., 296, Kluwer Acad. Publ., Dordrecht, 1994.
    MR1307190
  5. T. E. Pérez, M. A. Piñar, Global properties of zeros for Sobolev-type orthogonal polynomials. J. Comput. Appl. Math. 49 (1993), no. 1-3, 225-232.
    MR1256030
  6. M. A. Piñar, T. E. Pérez, On higher order Padé-type approximants with some prescribed coefficients in the numerator. Numer. Algorithms 3 (1992), no. 1-4, 345-352.
    MR1199381
  7. F. Marcellán, T. E. Pérez, M. A. Piñar, On zeros of Sobolev-type orthogonal polynomials. Rend. Mat. Appl. (7) 12 (1992), no. 2, 455-473.
    MR1185903
  8. T. Pérez Fernández, M. Piñar González, Properties of the Bernstein-Jacobi operator in Cr[0,1]. (Spanish) Proceedings of the XVth Portuguese-Spanish Conference on Mathematics, Vol. V (Portuguese) (Évora, 1990), 143-148, Univ. Évora, Évora, 1991.
    MR1161874

Other Publications (in Spanish)

Editorial Activity

Women in Computer and Telecommunication

Researching

  • Researching at Oberwolfach MFO. July, 2019.

Open problems

  • My family. Barranco de la Luna (Granada). August, 2018.