Departamento de Métodos Cuantitativos para Economía y la Empresa Econometría III - Grado en Economía

Apellidos y Nombre:	DNI:	Grupo:

Examen sobre "Modelos univariantes lineales no estacionarios" 2 de noviembre de 2023

Tiempo disponible: 45 minutos

1. (2 puntos) Supuesto que se cuenta con la información hasta la observación T, dado el error de predicción para el periodo T+3 siguiente:

$$e_T(3) = \epsilon_{T+3} + \psi_1 \epsilon_{T+2} + \psi_2 \epsilon_{T+1},$$

donde ϵ_t es ruido blanco con varianza σ_{ϵ}^2 , demuestre que $Var\left(e_T(3)\right) = \left(1 + \psi_1^2 + \psi_2^2\right)\sigma_{\epsilon}^2$.

- 2. Dado el proceso estacionario e invertible $(1 + 0.5B)Y_t = (1 0.4B)\epsilon_t$, donde ϵ_t es ruido blanco con varianza igual a 2, conteste de forma razonada las siguientes cuestiones:
 - 2.1.- (2 puntos) Calcule la representación $MA(+\infty)$ del proceso Y_t .
 - 2.2.- (2 puntos) Obtenga para k=1,2,3 la predicción puntual del proceso Y_t sabiendo que se dispone de 100 observaciones y que $Y_{100}=1, Y_{99}=2.5$ y $\epsilon_{100}=0.4$.
 - 2.3.- (2 puntos) Tras observar que $Y_{101} = 0$, actualice las predicciones puntuales realizadas en el apartado anterior para k = 2, 3.
 - 2.4.- (2 puntos) Obtenga para k = 1, 2, 3 la predicción por intervalo del proceso Y_t al 95 % de confianza.
- 3. (1 punto) Escriba la expresión teórica de un proveso $ARIMA(1,1,2)\times(2,1,1)_4$ en el que ha sido necesario inducir estacionariedad en varianza y no hay constante.