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Abstract. We complete the classification of semigraphical translators for
mean curvature flow in R3 that was initiated by Hoffman-Mart́ın-White.
Specifically, we show that there is no solution to the translator equation on
the upper half-plane with alternating positive and negative infinite boundary
values, and we prove the uniqueness of pitchfork and helicoid translators.

The proofs use Morse-Radó theory for translators and an angular maximum
principle.

1. Introduction

A surface M in R3 is called a translator (for mean curvature flow) with velocity
v if

M 7→ Mt := M + tv
is a mean curvature flow, i.e., if the normal velocity at each point is equal to the

mean curvature vector: H⃗ = v⊥. By rotating and scaling, it suffices (for nonzero
velocities) to consider the case v = −e3. In that case, we refer to M simply as
a translator. Ilmanen [Ilm94] observed that M is a translator if and only if it is
minimal with respect to the translator metric gij(x, y, z) = e−zδij .

If the surface M is the graph of a function u over a region of the (x, y)-plane,
then the translator equation H⃗ = (−e3)⊥ is equivalent to

(1) Div
(

Du√
1 + |Du|2

)
= − 1√

1 + |Du|2
,

which is a quasilinear elliptic PDE.
A smooth, connected, complete properly embedded translator M is called

semigraphical if it contains a non-empty, discrete collection {Ln}n of vertical
lines such that M \

⋃
n Ln is a graph z = z(x, y). This notion was introduced

by Hoffman-Mart́ın-White in [HMW22b], which included a partial classification.
Building on their work, we complete the classification of semigraphical translators
and prove

Theorem 1. A semigraphical translator M in R3 is one of the following:

(1) a (doubly periodic) Scherk translator;
(2) a (singly periodic) Scherkenoid;
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(3) a (singly periodic) translating helicoid;
(4) a pitchfork;
(5) a (singly periodic) trident.

Up to isometries of R3,

(i) translating helicoids and pitchforks are uniquely determined by a single pa-
rameter, the width of a fundamental region,

(ii) tridents are uniquely determined by a single parameter, the period, and
(iii) Scherk translators and Scherkenoids are uniquely determined by two parame-

ters, the width and an angle.

See [HMW22b] for pictures of the surfaces in Theorem 1.
Theorem 1, minus Assertions (i), (ii), and (iii), is the same as Theorem 34

of [HMW22b], except that the list in Theorem 34 included a sixth item, sometimes
called a “yeti”. In [HMW22b], yetis were conjectured not to exist. Asssertions (i),
(ii), and (iii) assert that, for the allowed values of the parameters, the indicated
surfaces exist and are unique. Existence and uniqueness for the tridents was proved
in [HMW22b], and existence and uniqueness for the other surfaces was proved
in [HMW22a], except that uniqueness of pitchforks and uniqueness of translating
helicoids were left as conjectures.

In this paper, we complete the proof of Theorem 1 by proving those three
conjectures: uniqueness for pitchforks (§3) and translating helicoids (§4), and
nonexistence of the yeti (§5).

It is natural to study and classify semigraphical translators following the classi-
fication of graphical solitons in R3, due to the work of Wang, Spruck-Xiao, and
Hoffman-Ilmanen-Mart́ın-White [Wan11,SX20,HIMW19a]. Another starting point
for the study of semigraphical translators is the construction of translating analogs
to Scherk’s doubly periodic minimal surfaces. These were obtained in [HMW22a]
along with more examples, some resembling well-known minimal surfaces and some
without such analogs. For example, the pitchfork (4) contains a single vertical line
of symmetry (see Figure 1). The uniqueness of pitchforks can therefore be viewed
as the translator analog of the characterization of the half Enneper’s surface as
the unique properly embedded non-flat stable minimal surface with straight line
boundary and quadratic area growth, cf. [Pér07].

The doubly periodic (“Scherk”) and singly periodic (“Scherkenoid”) translating
surfaces (2) and (3) of Theorem 1 are constructed in [HMW22a] via repeated
Schwarz reflections around vertical axes of the graph of a function solving the
translator equation (1) on:

(i) for Scherk translators, a parallelogram P(α,w, L) of base angle α ∈ (0, π),
width w, and unique length L(α,w), with boundary values ±∞ on the pairs
of opposite sides;

(ii) for Scherkenoids, the half-strip of boundary data that results from extending
the horizontal sides of P(α,w, L) above into rays in the (+1, 0)-direction.

Using a sequential compactness theorem [HMW22a, Theorem 10.1], one can extract
subsequential limits from sequences of these Scherk or Scherkenoid surfaces as the
base angle α tends to π. The limit surface is called a translating helicoid if w < π
and a pitchfork if w ≥ π. The uniqueness results in the current paper show that
the limit is unique and thus does not depend on the choice of subsequence.

Pitchforks are simply connected and have entropy 3. They might therefore
arise as blowups of mean curvature flows of surfaces that are initially closed and
smoothly immersed. (By recent work [BK23] of Bamler and Kleiner, they cannot
arise as blowups if the initial surface is embedded.) All semigraphical translators
other than pitchforks and tridents have cubic area growth, and therefore infinite
entropy, and hence cannot arise as such blowups. Tridents have finite entropy but
infinite genus, and thus they cannot arise as blowups at the first singular time.
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In [GMM22], pitchforks are characterized as the only complete embedded simply
connected translating solitons that are contained in a slab, have entropy 3, and
contain a vertical line.

See Figure 1 and Figure 2 for example illustrations of these translators and their
fundamental pieces.

Figure 1. Left: A fundamental piece of the pitchfork of width π. Right:
The whole surface, obtained from the fundamental piece by a 180o rotation
around the z-axis.)

Figure 2. Left: A fundamental piece of the helicoid of width π/2. Right:
Part of the surface, obtained by successive reflections along the vertical
boundary lines.

Tridents, the last item (5) in the list in Theorem 1, were originally constructed
for small neck sizes by Nguyen using gluing techniques [Ngu09]. Later, Hoffman-
Mart́ın-White constructed tridents as semigraphical translators of arbitrary neck
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size a > 0 [HMW22b]. They also proved that, as a → ∞, the tridents converge
subsequentially to a pitchfork of width π. They observed that if there is a unique
pitchfork of width π, then one would get convergence, not merely subsequential
convergence, and the limit would coincide with the pitchfork obtained as a limit of
Scherkenoids of width π. In this paper, we prove the uniqueness, and thus those
consequences of uniqueness follow.

There are interesting translators that are neither graphical nor semigraphical.
Examples include: helicoid-like translators that contain a vertical line and are
invariant under a screw motion about that line [Hal13], surfaces obtained by
gluing [DdPN17,Ngu13,Ngu15,Smi24], rotationally-invariant annuli [CSS07], and
a large family [HMW24] of annuli contained in slabs (and therefore not rotationally
invariant).

The proofs in this paper use Morse-Radó theory [HMW23a], which studies
critical points and level sets for a class of functions arising in minimal surface
theory. (Recall that translators are minimal surfaces with respect to the translator
metric.) The uniqueness proofs use an angular maximum principle that may be of
independent interest. The proof of non-existence of the yeti involves comparison
with an appropriately placed grim reaper surface, using a technique first employed
by Chini [Chi20].

1.1. Acknowledgments. The authors thank David Hoffman for many helpful dis-
cussions and comments, as well as for his crucial role in the classification of
semigraphical translators.

2. An Angular Maximum Principle

In this section, we prove a version of the maximum principle that will be used
to prove the uniqueness of pitchforks and helicoidal translators.

Theorem 2. Suppose that Ω is a domain contained in a half-strip

S := [a,∞) × (b, c).
Suppose that u1, u2 : Ω → R are solutions of the translator equation that extend
continuously to ∂Ω, and suppose that

(u2 − u1)|∂Ω = d

for some constant d. Suppose also that

inf
(x,y)∈Ω x≥x0

νi(x, y) · e2 > ϵ > 0

for some x0 < ∞ and ϵ. Then u2 − u1 ≡ d.

Proof. By translating, we can assume that b = 0.
Suppose, contrary to the theorem, that u2 − u1 is not constant. By relabelling,

we may assume that there are points in Ω where u2 − u1 > d.
By the strong maximum principle,

µ := max
Ω∩{x≤x0}

(u2 − u1) < sup(u2 − u1).

By replacing Ω by {(x, y) ∈ Ω : u2 − u1 ≥ µ} and by replacing u2 by u2 −µ− d,
we can assume that Ω lies in

[x0,∞) × (0, c),
that u2 = u1 on ∂Ω, and that u2 ≥ u1 on Ω. By the strong maximum principle,
u2 > u1 on Ω.

By translating, we can assume that x0 is as large as we like. In particular, we
can assume that

x0 >
c

ϵ
.
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Since x0 > 0, we have well-defined polar coordinates (with 0 ≤ θ < π/2) on Ω.
Let si = (1 + |Dui|2)1/2. Then

∂ui

∂θ
= ∂ui

∂x

∂x

∂θ
+ ∂ui

∂y

∂y

∂θ

= ∂ui

∂x
(−y) + ∂ui

∂y
x

= −si νi · (−y, x, 0)
= si(y νi · e1 − x νi · e2)
≤ si(c− x0ϵ)
< 0.

Now we define a function ω : Ω → R as follows. If p ∈ Ω, let J(p) be the
connected component of

Ω ∩ ∂B(0, |p|)
containing p.

Since u1 = u2 at the endpoints of J(p) and since ∂ui/∂θ < 0 at all points of
J(p), we see that u1 and u2 map J(p) diffeomorphically to the same interval. Thus
there is a unique q ∈ J(p) such that u2(q) = u1(p). We define

ω(p) = θ(q) − θ(p).

Since u2 > u1, ω(p) > 0.
Now ω is a smooth function with the following geometric interpretation. If

p ∈ Ω, then ω(p) is the smallest positive angle such that

Rω(p)(p, u1(p)) ∈ graph(u2),

where Rθ : R3 → R3 denotes counterclockwise rotation by θ about the z-axis.
Note that ω extends continuously to Ω by setting ω = 0 on ∂Ω. By the strong

maximum principle, ω(·) cannot have an interior local maximum.
Note that if x(p) > 0 and 0 ≤ y(p) ≤ c, then

θ(p) ≥ 0

and

r(p) sin θ(p) ≤ c,

so θ(p) ≤ arcsin(r(p)−1c).
It follows that for every p ∈ Ω,

0 < ω(p) < arcsin(r(p)−1c).

Thus ω(p) → 0 as r(p) → ∞, so ω(·) attains its maximum. But that contradicts
the strong maximum principle. □

3. Uniqueness for Pitchforks

Theorem 3. Let w ≥ π. Up to an additive constant, there exists a unique translator

f : R × (0, w) → R

such that f has boundary values

f(x,w) = −∞,

f(x, 0) =
{

−∞ if x < 0,
∞ if x > 0,

and such that M := graph(f) ∪ Z is a smooth manifold-with-boundary, where Z is
the z-axis.
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Here, M is half of a pitchfork, as in Fig. 1 (viewed from a point in the first
octant). The other half, also shown in Fig. 1, is obtained by rotating M by π
about Z.

Remark 4. The hypothesis that M is a smooth manifold-with-boundary is not
necessary; it is implied by the other hypotheses. See Proposition 11.

The hypothesis w ≥ π is necessary: if w < π, then no such f exists [HMW22a,
Theorem 12.1].

Proof. Existence was proved in [HMW22a, §12], so it suffices to prove uniqueness.
To prove uniqueness, it will be convenient to add two points +∞̂ and −∞̂ at
infinity to R2 such that, for pi ∈ R2,

(2)
pi → +∞̂ if and only if x(pi) → ∞, and

pi → −∞̂ if and only if x(pi) → −∞.

The proof of uniqueness uses the following three facts (see [HMW22a, Theorem
12.1]) about solutions f :

(F1). The Gauss map image of graph(f) depends only on the width w.
(F2). If ν(x, y) is the upward unit normal to the graph of f at (x, y, f(x, y)), then

ν(p) · e2 → 1

as p → +∞̂.
(F3). There is a strictly decreasing function ψ : [0, w] → [∞,−∞], depending only

on w, such that if xi → −∞ and yi → y ∈ [0, w], then
∂f

∂y
(xi, yi) → ψ(y).

Fact (F3) is based on the fact that the function

(x, y) 7→ f(x̄+ x, y) − f(x̄, 0)

converges to a tilted grim reaper over R × (0, w) as x̄ → −∞. In particular,

ψ(y) = ∂

∂y

((w
π

)2
log(sin((π/w)y) − x

√
w2

π2 − 1
)

= w

π

cos((π/w)y)
sin((π/w)y) .

Suppose, contrary to the theorem, that there exist two solutions f1 and f2 such
that f1 − f2 is not constant. Let Mi = graph(fi) ∪ Z.

Claim 1. There exists a v ∈ R × (−w,w) such that the function

g(p) := f1(p) − f2(p+ v).

has a critical point. Moreover, we can choose v so that y(v) ̸= 0.

Of course, the domain of g is the intersection of the domains of f1 and of f2.

Proof. The Gauss map images of the graphs of f1 and f2 are the same. Thus if
q ∈ R × (0, w), then there is a q′ ∈ R × (0, w) such that Df2(q′) = Df1(q). Hence,
if v = q′ − q, then the function

(*) f1(p) − f2(p+ v)

has a critical point at q. Note that a critical point of (*) is equivalent to a point
of tangency between the graph of f2(p + v) and the foliation whose leaves are
vertical translates of graph(f1). It follows, by [HMW23a, Corollary 40], that the
function (*) has a critical point for all v sufficiently close to q′ − q. (Indeed, the
number of critical points, counting multiplicity, of (*) is a lower-semicontinuous
function of v.) In particular, there exists such a v with y(v) ̸= 0. □
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By relabeling f1 and f2, if necessary, we can assume that y(v) > 0 in Claim 1.
Thus we have a translator u1 = f1 on R × (0, w), and a translator

u2 : R × (−y(v), w − y(v)) → R

given by u2(p) = f2(p+ v). Note that g := u1 − u2 is defined over the strip

R × (0, b),

where b = w − y(v). Note that 0 < b < w, and that g has boundary values

g(x, 0) = −∞ for x < 0,
g(x, 0) = ∞ for x > 0, and
g(x, b) = ∞ for x ∈ R.

Also, g has a critical point p. By adding a constant to f1, we can assume that
g(p) = 0.

For i = 1, 2, note that if νi is the upward unit normal to graph of ui, then

(3) νi(p) → e2 as p → +∞̂,

by Fact (F2) above.
Let C be a component of the zero set of g that contains the critical point p. Then

C has the structure of a network in which p is a node, and in which the valence of
each node is an even number ≥ 4. (See, for example, [CM11, Theorem 7.3].) By
the maximum principle, C contains no closed loops, so it is a tree with at least 4
ends. From the boundary values of g, we see that each end tends to −∞̂, to +∞̂,
or to (0, 0).

Since M1 := graph(u1) ∪ Z is a smooth manifold-with-boundary, we see that
there is a small disk D ⊂ R2 centered at (0, 0) such that D ∩ g−1(0) consists of a
single curve γ joining (0, 0) to a point on ∂D. Thus at most one end of C tends to
(0, 0). (There might be no such end since γ might lie a component of g−1(0) other
than C.)

We claim that there is a x̃ < 0 such that

(4)
∂g

∂y
(x, y) > 0 on (−∞, x̃] × (0, b).

For if not, there would be (xi, yi) with xi → −∞ such that

∂g

∂y
(xi, yi) ≤ 0.

Passing to a subsequence, we can assume that yi → y ∈ [0, b], and therefore

0 ≥ ∂g

∂y
(xi, yi)

= ∂u1

∂y
(xi, yi) − ∂u2

∂y
(xi, yi)

→ ψ(y) − ψ(y + y(v))
> 0,

since ψ is strictly decreasing, a contradiction. Thus, there is an x̃ for which (4)
holds. Hence, for x ≤ x̃, there is at most one y such that (x, y) ∈ C. Thus, at
most one end of C tends to −∞̂.

Since at most one end of C tends to −∞̂ and at most one end tends to (0, 0),
at least two ends must tend to +∞̂. Hence, C contains two embedded curves α
and β that join p to +∞̂ and that are disjoint except at p. Let Ω be the open
region bounded by α ∪ β. Then g = 0 on ∂Ω and g does not vanish anywhere on
Ω. But, by (3) and the angular maximum principle (Theorem 2), g ≡ 0 on Ω, a
contradiction. □
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4. Uniqueness for Translating Helicoids

Theorem 5. Let w < π. Up to an additive constant, there exists a unique translator

f : R × (0, w) → R

with the following property. There exists an a ∈ R such that f has boundary values

f(x, 0) =
{

∞ if x < 0,
−∞ if x > 0,

f(x,w) =
{

−∞ if x < a,

∞ if x > a,

and such that M := graph(f) ∪ Z ∪ L is a smooth manifold-with-boundary, where
L is the vertical line through (a,w).

Here, M is a fundamental piece of a translating helicoid, the rest of which is
obtained from M by iterated Schwarz reflections, as in Fig. 2. The hypothesis
w < π is necessary: if w ≥ π, then no such f exists [HMW22a, Theorem 11.1].

Remark 6. The hypothesis that M is a smooth manifold-with-boundary is not
necessary; it is implied by the other hypotheses. See Proposition 11.

Proof. Existence was proved in [HMW22a, §11], so it suffices to prove uniqueness.
As proved there, solutions f have the following properties:

(P1). The Gauss map image of the graph of f depends only on w.
(P2). ν(p) converges to e2 as p → −∞̂ and to −e2 as p → +∞̂.

Here ±∞̂ are the points at x = ±∞ given by (2).
Suppose, contrary to the theorem, that there exist two solutions f1 and f2.

Claim 1 in the proof of Theorem 3 also holds here (with exactly the same proof).
That is, there exists a v ∈ R × (0, w) with y(v) ̸= 0 such that the function

g(q) = f1(q) − f2(q + v)

has a critical point p. By relabeling, if necessary, we can assume that y(v) > 0.
Note that g is defined over a strip R × (0, b), where 0 < b < w. We may assume
(by adding a constant to f1) that g(p) = 0.

Note that g has boundary values

g(x, 0) =
{

∞ if x < 0,
−∞ if x > 0

and

g(x, b) =
{

∞ if x < a,

−∞ if x > a.

Let C be the connected component of g−1(0) containing p. Exactly as in the
proof of Theorem 3, C is a tree with at least four ends, and each end tends to
(0, 0), (a, b), −∞̂, or +∞̂. Also, as in that proof, at most one end tends to each
of those points. (In the cases of ±∞̂, this is by Property (P2) and the angular
maximum principle, Theorem 2.) Thus, exactly one end tends to each of those
points. Consequently, C contains a curve C ′ that joins (0, 0) to (a, b).

Let U be the component of (R × (0, b)) \ C ′ on which x is bounded below:

inf
U
x(·) > −∞.

Since C has an end tending to +∞̂, there are points in U at which g = 0. By the
strong maximum principle, there are also points at which g > 0. Thus the set

Ω := U ∩ {g > 0}
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is nonempty. Now ∂Ω contains no points on the rays {(x, 0) : x > 0} and
{(x, b) : x > a}, since g ≡ −∞ on those rays. Hence g ≡ 0 on ∂Ω. But by
Property (P2) and the angular maximum principle (Theorem 2), g ≡ 0 on Ω, a
contradiction. □

5. Nonexistence of The Yeti

We will use the following facts about tilted grim reaper translators:

Lemma 7. Given a vector v ∈ R2, there is an a ≥ π/2, a tilted grim reaper

f : R × (−a, a) → R,

and a y ∈ (−a, a) such that

Df(x, y) = v

for all x. If |y| ≤ π/4, then |fy(x, y)| ≤ 1.

Proof. Up to an additive constant, a tilted grim reaper over the indicated strip is
given by

f(x, y) = κ2 log(cos(y/κ)) ± x
√
κ2 − 1,

where κ = 2a/π ≥ 1. Thus fx = ±
√
κ2 − 1, so we can choose κ and the sign of ±

so that fx ≡ v1. Note that

fy(x, y) = −κ tan(y/κ),
which ranges from −∞ to +∞, so (given κ) we can choose y so that fy(x, y) = v2.

Now, given |y| ≤ π/4, we know that κ 7→ |κ tan(y/κ)| is a decreasing function
of κ ∈ [1,∞), so

|fy(x, y)| = |κ tan(y/κ)|
≤ | tan y|
≤ 1.

□

By definition, a yeti is (up to translation and rotation) a complete translator M
such that Z ⊂ M and such thatM\Z is the graph of a function over R2\{y = 0}. If
u is the restriction of that function to the halfplane {y > 0}, then (by completeness)
u has boundary value +∞ on one component of {y = 0} \ {(0, 0)} and −∞ on the
other component. The following theorem proves that such translators do not exist.

Theorem 8. There is no solution

u : R × (0,∞) → R
of the translator equation such that

u(x, 0) =
{

∞ for x < 0, and
−∞ for x > 0,

and such that graph(u) ∪ Z is a smooth manifold-with-boundary.

Remark 9. The hypothesis that graph(u) ∪Z is a smooth manifold-with-boundary
is not necessary. See Proposition 11.

The idea of the proof is as follows. We suppose that there is such a function u,
and we take a subsequential limit of

u(x+ s, y) − u(s, 1)
as s → ∞. (Here 1 is arbitrary; we could use any positive number.) We show
that the subsequential limit is a complete, translating graph over all of R × (0,∞),
which is impossible since, by the classification [HIMW19a] of complete graphical
translators, no such translator exists.
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A priori, the subsequential limit might not exist, or it might be a graph over
a proper subset of R × (0,∞). To exclude those possibilities, we need suitable
gradient bounds on u. By [HIMW19a, Theorem 6.7], to get such bounds, it suffices
to show that |Du| is bounded on some connected, unbounded set contained in a
halfstrip of the form [x1,∞)×I, where I is compact interval in (0,∞). Fortunately,
we are able to produce the necessary set, namely the graph of a certain smooth
function Y : [x1,∞) → I such that, on that graph, uy = 0 and |ux| is bounded.

Proof of Theorem 8. Suppose, contrary to the theorem, that there is such a func-
tion u.

Claim 1. Let a ≥ π/2, and let

f : R × (−a, a) → R
be a function whose graph is a complete translator. (Thus f = −∞ on the
boundary.) Then the infimum of u− f on the half-strip

S := (−∞,−1] × (0, a)
is attained at a point in the right edge {−1} × (0, a) of S.

(We only need the claim when f is a tilted grim reaper.)

Proof. Let Rθ : R2 → R2 be counterclockwise rotation through θ about the point
(−1, 0). For θ ∈ (0, π/2), let

S(θ) := (RθS) ∩ {y > 0}.
Thus S(θ) is a triangular region with (−1, 0) as one vertex. Let E(θ) be the interior
of the edge joining (−1, 0) to the vertex in {y > 0}, and let E(0) be its limit as θ
tends 0:

E(0) = {−1} × (0, a).
Define

fθ : S(θ) → R
by

fθ(p) = f(R−θ(p)).
Note that

u− fθ : S(θ) → R
has boundary value +∞ at all boundary points except those in the edge E(θ). By
the maximum principle, the minimum of u− fθ is attained at a point in E(θ):
(5) min

S(θ)
(u− fθ) = min

E(θ)
(u− fθ).

The result follows by letting θ → 0. (Note that the right-hand side of (5) depends
continuously on θ.) □

Claim 2. There is a c ∈ (0,∞) with the following property. For every x > 0, there
is a y ∈ (0, c) such that uy(x, y) < 0.

Proof. Since u(−1, 0) = ∞,

lim inf
y→0

uy(−1, y) = −∞.

Thus we can choose a point p with x(p) = −1 such that

(6)
0 < y(p) < π/4, and

uy(p) < −1.
Let

g : R × (b, c) → R
be the tilted grim reaper surface defined over a strip parallel to the x-axis such
that g(p) = u(p) and Dg(p) = Du(p). (The function g exists by Lemma 7.) By (6)
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and Lemma 7, the distance from p to the center line {y = (b+ c)/2} of the strip is
greater than π/4, and thus

b+ c

2 < y(p) − π

4 < 0.

Consequently,

(7) gy < 0 on R × [0, c).

Choose a large enough that [b, c] ⊂ (−a, a), and let

f : R × (−a, a) → R

be a tilted grim reaper function such that fx < 0. By Claim 1, and by adding a
constant to f , we can assume that

u− f ≥ 0 on (−∞,−1] × (0, c).

Since [b, c] ⊂ (−a, a), we see that fx − gx is a constant −k < 0. Thus

f(x, y) − g(x, y) = −kx+ (f(0, y) − g(0, y))
≥ −kx+ f(0, c) − g(0, 0)

since f(0, y) and g(0, y) are decreasing functions of y ∈ [0, c]. Thus, on (−∞,−1]×
[0, c),

u(x, y) − g(x, y) ≥ f(x, y) − g(x, y)
≥ δ − kx

for a constant δ. Hence

(8) lim
x→−∞

min
y∈[0,c)

(u(x, y) − g(x, y)) = ∞.

Let h = u− g. Thus the domain of h is the strip

R × (0, c),

and h has boundary values

h(x, 0) =
{

∞ if x < 0,
−∞ if x > 0,

and

h(x, c) = ∞ (x ∈ R).
Let C be the connected component of h−1(0) that contains p.

Since Dh(p) = 0, C is a tree with at least 4 ends. From the boundary values of
h, we see that each end of C tends to −∞̂, to ∞̂, or to (0, 0). Here ±∞̂ are the
points at x = ±∞ given by (2).

By (8), no end tends to −∞̂.
As in the proof of Theorem 3, at most one end tends to (0, 0).
Thus, at least three ends of C tend to +∞̂. Consequently, for each x > 0, there

are at least 3 values of y ∈ [0, c) for which h(x, y) = 0. Let 0 < y1 < y2 < c be two
of those values. Then

u(x, y1) − g(x, y1) = u(x, y2) − g(x, y2) = 0.

so

u(x, y2) = g(x, y2) < g(x, y1) = u(x, y1),
since gy(x, y) < 0 for y ∈ [0, c). Thus there is a y ∈ (y1, y2) ⊂ (0, c) such that
uy(x, y) < 0. □
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Claim 3. Let c be as in Claim 2. Let Q be the set of (x, y) ∈ R × (0, c) such that
uy(x, y) = 0. There is an x1 ∈ (0,∞) such that Q ∩ {x ≥ x1} is the graph of a
smooth function Y : [x1,∞) → (π/4, c). Furthermore,

sup
Q∩{x≥x1}

|Du| < ∞.

Proof. Suppose pn ∈ Q and x(pn) → ∞. After passing to subsequence, y(pn)
converges to a limit ŷ ∈ [0, c], and

graph(u) − (x(pn), 0, u(pn))

converges to a complete translator that lies in the halfspace {y ≥ 0}. Let M̂ be
the connected component of the limit that contains p := (0, ŷ, 0).

Note that the y-axis is tangent to M̂ at p. Thus, M̂ cannot be a vertical plane

(since M̂ lies in {y ≥ 0}). Hence, M̂ is a graph. By the classification of graphical
translators [HIMW19a], it is the graph of a function ϕ over a strip in {y ≥ 0} of
width ≥ π. Also, by that classification, ϕyy < 0 at all points, and ϕy = 0 only on
the midline of the strip. Since ϕy(0, ŷ) = 0, we see that the line {y = ŷ} is the
midline of the strip. Since the strip has width ≥ π,

ŷ ≥ π/2.

Thus, we have shown that every sequence pn ∈ Q with x(pn) → ∞ has a
subsequence pn(i) such that

(1) y(pn(i)) converges to a limit ŷ ≥ π/2.
(2) uyy(pn(i)) converges to a limit ϕyy(0, ŷ) < 0.
(3) Du(pn(i)) converges to a limit Dϕ(0, ŷ).

Hence, we can choose x1 > 0 large enough so that, for all p ∈ Q with x(p) ≥ x1,

y(p) > π

4 ,(9)

uyy(p) < 0,(10)

and so that

(11) sup
Q∩{x≥x1}

|Du| < ∞.

Let x ≥ x1. We claim there is exactly one y ∈ (0, c) for which uy(x, y) = 0, i.e.,
for which (x, y) ∈ Q.

Now c was chosen according to Claim 2. Thus there is a ỹ ∈ (0, c) for which
uy(x, ỹ) < 0. Since u(x, 0) = −∞, there is at least one value of y ∈ (0, ỹ) for which
uy(x, y) = 0.

If there were two such values y1 < y2, then by (10), the function

y ∈ (y1, y2) 7→ u(x, y)

would attain its minimum at some ŷ ∈ (y1, y2). Thus uy(x, ŷ) = 0 and uyy(x, ŷ) ≥ 0,
contrary to (10).

Hence there is exactly one y ∈ (0, c) – call it Y (x) – such that (x, y) ∈ Q.
Note that Y (x) ∈ (π/4, c) (by (9)), and that |Du| is bounded on the graph of
Y (by (11)). Finally, Y (x) is a smooth function of x ∈ [x1,∞), by (10) and the
implicit function theorem. □

We are now ready to complete the proof of Theorem 8. We use the following
special case of Lemma 6.3 in [HIMW19a]:

Lemma 10. Suppose u : [x1,∞) × (0, A) → R is a translator. Suppose I is a
compact interval in (0, A) and that Y : [x1,∞) → I is continuous function such
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that |Du| is bounded on the graph of Y (·). Then for every compact subset K of
(0, A),

(12) sup
[x1,∞)×K

|Du| < ∞.

We have shown that, in our situation, the hypotheses of Lemma 10 hold with
A = ∞ and I = [π/4, c]. Hence, (12) holds for every compact K ⊂ (0,∞). It
follows that the functions

(x, y) ∈ R × (0,∞) 7→ u(x+ s, y) − u(s, 1)

converge subsequentially as s → ∞ to a function

w : R × (0,∞) → R

whose graph is a complete translator. But there is no such function by [HIMW19a,
Theorem 6.7]. □

The following proposition was not used in this paper, but it justifies the assertions
in Remarks 4, 6, and 9.

Proposition 11. Suppose that

u : {(x, y) ∈ B2(0, R) : y > 0} → R

is a smooth solution to the translator equation such that

u(x, 0) =
{

−∞ if x < 0,
∞ if x > 0.

Then graph(u) ∪ Z is a smooth-manifold-with-boundary.

Proof. Let C(R) be the cylinder B2(0, R) × R. Let M be the graph of u. Then
M minimizes the translator area in the following sense: if K is a compact portion
of M and if K ′ is a compact surface in C(R) ∩ {y > 0} with ∂K ′ = ∂K, then

area(K) ≤ area(K ′).

Here and in what follows, we use area(Σ) to refer to the translator area of a surface
Σ, computed with respect to Ilmanen’s translator metric gij(x, y, z) = e−zδij .

Actually, the assumption that K ′ lies in C(R) ∩ {y > 0} is not needed. For
suppose that K ′ is any compact surface with ∂K ′ = ∂K. Let Q be a compact
convex subset of B2(0, R) ∩ {y > 0} such that Q× R contains K and let K ′′ be
the projection of K ′ to Q× R. Then

area(K) ≤ area(K ′′) ≤ area(K ′).

In particular, if K is a convex, compact subset of C(R) ∩ {y > 0}, then M ∩K
and V ∩ ∂K have the same boundary, where

V = {(x, y, z) ∈ C(R) : y > 0, z < u(x, y)}

is the subgraph of u. Thus

area(M ∩K) ≤ area(V ∩ ∂K)
≤ area(∂K)

Thus, if K is any compact, convex subset of C(R), then

area(M ∩K ∩ {y ≥ ϵ}) ≤ area(∂K ∩ {y ≥ ϵ})
≤ area(∂K).

Thus, letting ϵ → 0,
area(M ∩K) ≤ area(∂K).
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The fact that M ∩K has finite area together with the fact that M ∩ {y = 0}
has area 0 implies that the surfaces

(*) M ∩K ∩ {y > ϵ}
converge (as currents, with the mass norm) to M ∩K as ϵ → 0. Thus, M ∩K is
area-minimizing, since it is the limit of the area-minimizing surfaces (*).

Let S be the strip

S = {(x, 0, z) : x ∈ (0, R), z ∈ R}.
Let [[M ]], [[S]], and [[V ]] be the locally integral currents obtained by orienting M
by the upward unit normal, and S by the unit normal e2, and by giving V the
standard orientation.

Then

[[∂R]] C(R) = [[M ]] − [[S]],
so

[[∂M ]] C(R) = [[∂S]] C(R)
= [[Z]].

We have shown: M is translator-area minimizing and has boundary (in C(R)) the
line Z with multiplicity 1. Hence by [HS79], M ∪ Z is a smooth manifold-with-
boundary. □
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